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Observer-Based Control of Discrete-Time LPV
Systems With Uncertain Parameters

W. P. Maurice H. Heemels, Jamal Daafouz, and Gilles Millerioux

Abstract—In this note, linear matrix inequality-based design conditions
are presented for observer-based controllers that stabilize discrete-time
linear parameter-varying systems in the situation where the parameters
are not exactly known, but are only available with a finite accuracy. The
presented framework allows to make tradeoffs between the admissible
level of parameter uncertainty on the one hand and the transient perfor-
mance on the other. In addition, the level of parameter uncertainty can be
maximized while still guaranteeing closed-loop stability.

Index Terms—Linear matrix inequalities (LMIs), linear param-
eter-varying (LPV) systems, output feedback and observers, robust
control, separation principle.

I. INTRODUCTION

Linear parameter-varying (LPV) systems and controllers have re-
ceivedconsiderableattentionfromthecontrolcommunity inrecentyears
[2]–[4], [6], [15]–[17]. When LPV controllers are implemented in prac-
tice two important properties need to be satisfied. First of all, the con-
troller needs to be output-based, as in practice it is rarely the case that
the full state variable is available for feedback. Secondly, the controller
must be robust with respect to some degree of mismatch between the
available and the true parameters as the real parameters are not always
known exactly, although this is often assumed in the literature on LPV
systems. This note will address the design of stabilizing controllers for
discrete-time LPV systems that satisfy these two properties.

In [2] and [12], the continuous-time version of this problem was con-
sidered, but, unfortunately, only conditions in terms of bilinear matrix
inequalities (BMIs) were presented. Only recently a solution was given
in [8] using convex programming techniques. In the discrete-time case,
output-based control design for LPV systems for which the measured
parameters do not exactly fit the real ones is at present an open problem.
In [14], it is shown that an observer that is asymptotically recovering
the state when the parameters are exactly measured, is input-to-state
stable (ISS) [10], [18] with respect to mismatch between the true and
the available parameters. However, [14] does not study the observer
synthesis nor the output-based stabilization problem. These two im-
portant problems will be solved in this note.

Closely related to LPV systems are switched linear (SL) systems and
piecewise affine (PWA) systems, which can be perceived as a subclass
of LPV systems in which the parameters only take a finite number of
values. Observer-based control design for SL systems has been con-
sidered in [5] under the assumption of having exact knowledge of the
parameter values. In case of unknown parameters, [1] proposes design
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conditions for observers that include an estimation procedure for the
parameters. In [11], [19] observers and observer-based controllers were
designed for PWA systems based on linear matrix inequalities (LMIs).
In this case the parameters are also unknown as they depend on the
state variable that has to be estimated. However, as for SL and PWA
systems the number of parameter values is finite, these results are not
applicable to general LPV systems.

This note provides a solution to the open problem of output-based
controller design for discrete-time LPV systems with uncertain param-
eters. The main contributions are LMI-based conditions for the separate
design of state observers and input-to-state stabilizing state feedbacks
for discrete-time LPV systems. We prove that the resulting closed-loop
system is globally exponentially stable for some level of mismatch be-
tween the true parameters and the available ones. The flexibility in our
framework allows to make tradeoffs between the level of mismatch
and the transient performance of the closed loop in terms of the decay
factor. Moreover, the level of parameter uncertainty can be maximized
while still guaranteeing closed-loop stability.

NOTATION AND BASIC DEFINITIONS

, ��, and are the field of real numbers, the set of nonnega-
tive reals and the set of nonnegative integers, respectively. The �-th
entry of a real vector � is denoted by �� (subscripts are used for de-
noting discrete-time dependence). We denote by ��� �

�
�� � the Eu-

clidean norm of � in �, where �� denotes the transpose of a vector
or matrix � , and by ���� its infinity norm given by ���� ����. For
a sequence ������ with �� � �, we denote its supremum norm
���

�� ���� by ����. For a matrix � � ��� we denote its spec-
tral norm ��������	 by ���, where ��������	 denotes the
largest eigenvalue of ��� . When a matrix � is positive definite (in-
cluding symmetry), we write � � 
. If it is positive semi-definite, we
use � � 
. Similarly, for (semi-)negative definiteness we write 	 and

. By � and �we denote the zero and the identity matrix of appropriate
dimensions.

A function � � �� � �� belongs to class � if it is contin-
uous, strictly increasing and ��
	 � 
 and to class �� if additionally
���	 � 
 as � � 
. A function 	 � �� � �� � �� belongs
to class �� if for each fixed 
 � ��, 	��� 
	 � � and for each fixed
� � ��, 	��� �	 is decreasing and �
���� 	��� 
	 � 
. Consider
now the discrete-time nonlinear systems

���� � ����� 
�	 (1)

and

���� � ������ ��� 
�	 (2)

where �� � � is the state, �� � � is an unknown disturbance input
and 
� � � is an uncertainty parameter at discrete time 
 � .
� � � � � � � and �� � � � � � � � � are arbitrary
nonlinear functions. We assume that 
� � �, 
 � for some set
� � � .

Definition 1: [10], [18] The system (1) with uncertainty set � is
called globally asymptotically stable (GAS), if there exists a��-func-
tion 	 such that, for each �� � � and all �
���� with 
� � �,

 � , it holds that the corresponding state trajectory satisfies ���� �
	������ 
	 for all 
 � . If 	 can be taken of the form 	��� 
	 � ����

for some � � 
 and 
 � � � � the system (1) with uncertainty set
� is called globally exponentially stable (GES). The system (2) with
uncertainty set � is said to be ISS with respect to � if there exist a
��-function 	 and a �-function � such that, for each �� � �, all
������ and all �
���� with 
� � �, 
 � , it holds for all 
 �
that ���� � 	������ 
	 � ������	�
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We call � a decay factor for (1) and the function � an ISS gain of
(2). Next we state sufficient conditions for ISS using so-called ISS Lya-
punov functions. The proofs are omitted for shortness, but can be based
on [10], [13] by adopting parameter-dependent Lyapunov functions.

Theorem 1: Let ��� �� � ��, let �� �� �� � � �� with � � �
and let 	��
� �� �
�, 	��
� �� �
�, 	��
� �� �
� and � � �.
Furthermore, let � � � � � � �� be a function such that

	���
�� � � �
� �� �	���
�� (3a)

�����
� �� ���� ������
� �����	���
��������� (3b)

for all 
 � �, all � � � and �, ��, �� � �. Then system
(2) with uncertainty set � is ISS with respect to �. In case (3a) and
� ���
� ���� ���� � �
� ��� � �	���
�� hold for all 
 and �, ��,
�� � �, then system (1) with uncertainty set � is GES with decay
factor � � ����� � �	� ��.

A function � that satisfies (3) is called an ISS Lyapunov function.

II. PROBLEM STATEMENT

We consider discrete-time LPV systems given by


��� ������
� � ��� (4a)

�� ��
� � ��� (4b)

with 
� �
�, �� �

� and �� �
� the state, output, and control

input at discrete time � � , �� �
	 is a time-varying parameter

and ���� � ��� for each �, � � ���, � � ���, � � ��� .
The parameter �� , � � lies in some set 
 � 	 and we assume
that � � 
 � ��� can be written in the polytopic form ���� �



��� ������� for certain continuous functions �� � 
 � and ma-

trices �� �
���, � � �� � � � � � . In addition we assume that the map-

ping � � 
� 
 given by � �� ���� � � � � �
 �� is such that ��
� � 	
with 	 � 
� � 
 � �� � 	� � � �� � � � � � �
� 


��� �� � �
.
Hence, ���� lies for each � � 
 in the convex hull��
��� � � � � �

.

In this note, we focus on the situation where the true (time-varying)
parameter �� is not available, but only an estimated parameter ��� � 

fulfilling ��� � ����� � � is known, where � is some nonnegative
constant indicating the uncertainty level.

Problem 1: Design an observer-based controller

�
��� ��������
� � ��� � ��������� � ���� (5a)

��� ���
� � ��� (5b)

�� ��������
� (5c)

with ������ �


��� ��������� and ������ �



��� ��������� by ap-

propriately choosing the gains �� and ��, � � �� � � � � � such that
the closed-loop system (4)–(5) is GAS when the uncertainty satisfies
��� � ����� � � and ��� � 
 for all � � .

III. OBSERVER DESIGN

We first focus on the estimation of the state 
� using a polytopic
observer of the form

�
��� � �������
� � ��� � ��������� � ����

��� � ��
� � ����
(6)

where ��� � 
 and possibly �� �� ��� . The estimation error ����
� �
�
� is governed by

���� � ��������� � �� (7)

with ������� ��


��� ������� ���, where ��� � �� � ��� and

�� � ������� ������

���
	� �
� �

�
� (8)

Sometimes we write �� �� ����� and ��� �� ������ for shortness.
Theorem 2: Assume that there exist symmetric matrices

!� �
���, matrices �� �

���, "� �
���, � � �� � � � � �

and a scalar ��� � � satisfying for all �� # � �� � � � � � the LMIs

��
� � �� � !� � ���� � "�� ��

� � � �

��
� ��

� � ��" �
� � !� �

��
� � � ����

� � (9)

then the error dynamics (7) with uncertainty set 
 for �� and1 �� �
���� "� is ISS with respect to � with ISS gain ��
� � ���
, 
 � ��.
Moreover, ������ ���� � ��� �



���

����!���� is an ISS Lyapunov func-
tion that satisfies for all ��� , ����� � 	 , �� �

�, �� �
�

�������� ������������� ���� ������
���������

� (10a)

����
� � ������ ���� ��������

� (10b)

Proof: The feasibility of the LMIs (9) for all �� # � �� � � � � �
implies that

� �

� !�
� � �
�

��
� � �� � !� ��

��
� ����

� � (11)

are satisfied for all �� # � �� � � � � � . From (11) it follows that !� � �

and ��
� � �� � !� � ����� ���

�
� � 	 for all �� # � �� � � � � � . Since

�!
����
� ��

� � !
���
� �� �!

����
� ��

� � !
���
� � � 	 implies

��!
��
� ��

� � �� � ��
� � !� (12)

it follows now that ��!
��
� ��

� � ����� ���
�
� and thus !� � ����,

# � �� � � � � � , because �� is invertible. Invertibility of �� follows
from ��

� � �� � !� as this leads for ��
 � 	 that 
�!�
 � 	 and
thus 
 � 	. As such, we have (10b) for all �� �

� and all ��� � 	 .
To prove (10a), note that feasibility of the LMIs (9) gives together

with (12) for all �� # the LMI

��!
��
� ��

� � ���� � "�� ��

� � � �

��
� ��

� � ��" �
� � !� �

��
� � � ����

� � (13)

This is equivalent for all �� # to

�������
�
�� � � ���� ��� �

��!
��
� � � �

� � � �

� � � �

� � � �

(14)

and

��� �

!� � !���� � ���� !�
� � � �

��� � �����!� � !� �

!� � � ����

 

Hence, we have that for all �� # ��� � �. For shortness, we write ���� �
������� and ��� � ������. Multiplying ��� � � by ���� and summing,

1The LMIs (9) imply that � is invertible for each � � �� � � � � � as is shown
in the proof.
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multiplying by ������ and summing, and using the Schur lemma yield

�� �

� ����
� �������

�
�

� �

���� �

� �

������� �

� �
� �

with �� �� � ����� �� �
���

������ and ���� �� � ������� �
�
���

�������� . Note that we used ��� , ����� � � (due to ��� , ����� � �).

Hence, for all �� � � and �� � � � ��� ��� ��
��

��
� � with

��
�������������

������������ ��������
�����

������������ ����� � ����
�

This implies for all �� and all �� that

���������� � ���
��������������� � ���� �

�
�����
� ���� �� � ����

�
� ���

This can be rewritten as (10a). We could base ourselves now on The-
orem 1 to obtain ISS, but we proceed here to explicitly compute the
ISS gain. From (10a) and (10b), one has

	������
 ������ � 	� 	

���
	����
 ���� � ���	��	�� (15)

Applying (15) repetitively leads to

	����
 ����

� 	� 	

���

�

	����
 ���� � ���

���

	��

	� 	

���

��	��

	�		�

� 	� 	

���

�

	����
 ���� � �
�

��	�	���

Finally, by using again (10b), taking the square root, we obtain the
inequality

	��	 � 

��� 	� 	

���

�
�

	��	� ���	�	�� (16)

This inequality shows ISS with respect to � with linear ISS gain ���� �
����, � � ��.

In case the conditions of Theorem 2 hold, the polytopic observer (6)
guarantees GES of the error dynamics (7) in the nominal case where
�� � ��� for all 
 � (as then �� � �, 
 � ). In case �� �� ��� ,
ISS as in (16) guarantees only a steady-state estimation error � that
is smaller than ���� 
���� 	��	 with � �� 
���
���
 ��� 
 	� �
��	� � 
�. Hence, a kind of steady state relative error can be obtained
in the sense that

��� 
����� 	��	
��� 
����� 	��	

� ����

as was used also in [11] in the context of observer design for discon-
tinuous PWA systems.

Remark 1: Note that the normalization of certain constants in (10)
to 1 is without loss of generality as any ISS Lyapunov function 	� of
the quadratic type as specified in the theorem for (7) can be multiplied
by a sufficiently large positive constant to satisfy (10).

As mentioned, if the hypotheses of Theorem 2 are satisfied, the poly-
topic observer (6) guarantees GES of the error dynamics in the nominal
case (�� � ��� for all 
 � ). Actually, the observer satisfies the ma-
trix inequalities

��� � ����� ������ � ����� ��� � �
 �
 � �	
 � � � 
 � ���

��� � �
 � �	
 � � � 
 � (17)

which are both necessary and sufficient conditions for the existence of
a parameter-dependent quadratic Lyapunov function proving GES of
the estimation error dynamics in the nominal case (��� � ��) [7], [14].
Interestingly, the nominal conditions in (17) also guarantee that the hy-
potheses of Theorem 2 are satisfied (as will be shown in Theorem 3
below). This shows the nonconservatism of the LMIs (9) as the exis-
tence of a nominal observer for the exact LPV system, with a param-
eter-dependent quadratic Lyapunov function proving GES of the error
dynamics, is sufficient for (9) to hold. This also shows that any GES
observer for the exact LPV system has some degree of robustness.

Theorem 3: [9] If there exist ��� and ��, � � 	
 � � � 
 � such that
(17) holds, then there are symmetric matrices �� and matrices ��, ��,
� � 	
 � � � 
 � and a scalar ��� satisfying for all �
 � � 	
 � � � 
 � the
LMIs (9).

IV. STATE FEEDBACK DESIGN

We now focus on the design of a state feedback for (4a) using an
estimated state given by

�� � ��������� � ��������� � ��� (18)

with ������ �
�
��� �

�������� and �� the estimation error. This re-
sults in the closed loop

���� � ��������� � �� ���������� (19)

with, as before, �� given by (8) and

������� �

�

���

�
������ ��� �����

�

�

Again, we sometimes write ���� � ������� and ��� � ������. We now
study ISS of (19).

Theorem 4: Assume that there exist symmetric matrices
�� � ���, matrices �� � 
��, � � 	
 � � � 
 � and scalars
���
 ���
 � with � � � and ��� � 	 satisfying for �
 � � 	
 � � � 
 �
the LMI conditions

�� � � ���
�
� � ��

� �
� ��

� ���� � � �

� � ���� ���
� �

�
�

���� ���� � ���� �� �

�� � � � �

� �

(20a)
and for � � 	
 � � � 
 �

�� � �� (20b)

then the closed-loop system (19) with uncertainty set� for �� and�� �
���

��
� , � � 	
 � � � 
 � , is ISS with respect to � and � and 	����
 ���� �

���
�
���

�������� with �� � � ��� , � � 	
 � � � 
 � , is an ISS Lyapunov
function that satisfies for all ��� , ����� � � , all �� � �, all �� � �

and all �� � �

	������
 ������� 	����
 ����

� �	��	� � ���	��	� � �
��

���	��	� (21a)

and

	��	� � 	����
 ���� � ���	��	�� (21b)

Proof: Assume that the LMIs in (20) are feasible and define�� ��
� ��� . Premultiply the LMIs in (20a) by � �  �!"���
�
 ��
�
��,
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postmultiply it by � � � � and apply the Schur lemma to arrive for
�� � � �� � � � � � at

�� � � � � ��� �����
�

� 	��� � �

� � 	���
�
� ���

� �
�

�� ���� � ���� ����

� �
 (22)

Multiply (22) by ���� , sum for � � �� � � � � � (note that �

���
���� � �,

since ��� � �) and use the Schur lemma pivoting again around the
south east block to obtain for � � �� � � � � �


�� ���� ����

���
�

���

�����	
� ��� � 	��� ����


��
�

���

�������

�

�� 
��

� � (23)

where 
�� ��� �

���
�����	
��

����
�

���
�����	
���

�

���
�������

�, 
�� � � �

���
��������

����
�

���
�����	
��, and 
�� �

�� �

���
��������

����
�

���
�������� � 	��

�

���
�����

�
� . Using

that ��� � ����, � � �� � � � � � due to the second LMIs in (20),
multiplying (23) by ������ and summing for � � �� � � � � � (note that

�

���
������ � �, since ����� � �) leads, in a similar way as we

obtained (10a) in the proof of Theorem 2, to

�������� ������� ������ ����

� ������ � 	������� � ���	�������
 (24)

As (22) implies �� � � and �� � 	���, we have for all �� � �

and �� � 	 that (21b) holds. From Theorem 1 it follows now that the
closed-loop system is ISS with respect to � and �.

The following corollary applies when the full state �� is known (i.e.,
�� � 	 for all � � ).

Corollary 1: Let the hypotheses of Theorem 4 be satisfied. Then the
LPV system consisting of (4a) and the state feedback �� � ��������
with uncertainty set � for � and �� � ���

��

� , � � �� � � � � � is GES
for all uncertainties satisfying �
���� ���� � �� when � � ��	�� .

Proof: From (21a) with �� � 	, � � , and �� �

����� ������ , it follows that

�������� ������� ������ ���� � ���� 	���������
 (25)

Together with (21b) this proves GES on the basis of Theorem 1.
An analogous result to Theorem 3 can also be shown for the

state feedback design. In particular, a nominal state feedback
�� � ������� with ����� �

�

���
�������� (i.e., without estima-

tion error (�� � 	, � � ) and exact knowledge of the parameters,
�� � ��� , � � ) coupled to the LPV system (4a) is GES if there are
��, ���, � � �� � � � � � such that

��� �����
� ������ ������ ��� 
 �� �� � ��� � � � � �

��� � �� � ��� � � � � �
 (26)

Clearly, a state feedback (18) that renders (19) ISS (proved by param-
eter-dependent quadratic ISS Lyapunov functions) certainly satisfies
(26). Interestingly, the converse also holds in the sense that a nomi-
nally stabilizing state feedback for (4a) satisfying (26) has some ro-
bustness properties in the sense that (21) holds for some �� and even
stronger, the LMIs in (20) are feasible. This clearly indicates the non-
conservatism of the derived LMIs in Theorem 4. However, note that
(26) does not allow any minimization of the ISS gains, while the re-
sults of Theorem 4 do.

Theorem 5: [9] Suppose that there exist ��, ���, � � �� � � � � � such
that (26) is satisfied. Then there are symmetric matrices �� and matrices

��, � � �� � � � � � and scalars 	��� 	��� � with � � 	 and 	�� � �
satisfying the LMIs (20) for �� � � �� � � � � � .

V. OBSERVER-BASED CONTROL DESIGN

Next, we will show that the separate design of the observer as in
Section IV and a state feedback as in Section V leads to a stabilizing
output-based controller for some nontrivial level of uncertainty � ��

����
���� ���� 
 ��� ���� � 
�. The closed-loop system is given
by

����
����

�
������������� ��������

������ ������ ��������������

��
��


 (27)

Theorem 6: Let an observer (6) that satisfies the hypotheses of The-
orem 2 and a state feedback law that satisfies the hypotheses of The-
orem 4 be given. Then for any ������ ��	��� �� ��	��� � � � �
and any 	 � � � ��� ��� ��	�����

��	�� the closed-loop system
(27) is GES with decay factor equal to

�
� for all uncertainties satis-

fying

�
���� ���� � � ��
� ��� ��� ��	���

	�� � �	��



Proof: Consider the candidate Lyapunov function
������ ��� ���� �� ������� ���� � ������ ���� for the closed-loop
system (27) with � � 	. From (10) and (21) and noting that
�� � 
����� ������ with

� � 
����
���� ���� 
 ��� ���� � 
�

we have that


������ ��� ���� ������

� ��� � �	���
� � 	���

������� � ��� ����	��������� (28)

where 
������ ��� ���� ������ �� �������� ����� ������ �
������ ��� ���� with ������� �

�
����

� as in (27). To ob-
tain GES with decay factor

�
� it suffices to guarantee

�������� ����� ������ � ������� ��� ���� as �� can be bounded by
quadratic � functions ��� � � ! � and ��� � � " � as in (3a) in the
norm ����� � ��� �� �. To obtain this inequality, it is sufficient to have


������ ��� ���� ������ � ���� ����	������� � 	�������� (29)

because ������ ��� ���� � �	������� � 	�������
 Due to (28), the
inequality (29) holds when (i) � � �	���

� � 	���
� � �� � ���	��

and (ii) �� ����	�� � ��� ��	�� . Obviously, under the hypotheses
of the theorem these conditions are true, which completes the proof.

It is of interest to find the Lyapunov function �� that pro-
vides the largest robustness in terms of �. To maximize the
value for �� (for a fixed value of the decay factor

�
�) it is clear

that we have to maximize #��� �� ���	�� � �	���
 Since
$#����$� � 	����	�� � �	���

� � 	� the maximum is obtained for
the largest allowable value of �, which is ��� ��� ��	�����

��	��
and thus the maximum of � is

���� �
��� ��� ��	������ ��� ��	���

���	��	�� � ��� ��� ��	���	��

 (30)

Hence, we obtained the following corollary.
Corollary 2: Let an observer (6) that satisfies the hypotheses of The-

orem 2 and a state feedback law that satisfies the hypotheses of The-
orem 4 be given. Then for any ������ ��	��� �� ��	��� � � � �
the closed-loop system (27) is GES with decay factor equal to

�
� for

all uncertainties satisfying �
���� ���� � ���� with ���� as in (30).
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Suppose we now would like to find the value of � such that the admis-
sible uncertainty level ���� is maximal. Since it can be inspected that
��������� � � for any ������ ����� � �� ������ � � � �, maxi-
mizing robustness requires maximizing (actually taking supremum of)
� and thus taking it close to 1. This yields that the maximal value of �
can become arbitrarily close to

���� �
�

	�������� 	 ���
(31)

while still guaranteeing stability. Hence, for maximizing robustness in
terms of maximizing ����, we should maximize � meaning that the
performance in terms of the decay factor

�
� is worst. As such, we en-

countered a “classical” tradeoff between robustness and performance.
The reasoning above maximizes robustness for fixed values of ��� ,

��� and ���. Since we have determined the maximum ���� as in (31)
given these �’s, we can now optimize robustness by appropriately se-
lecting the gains 
� and ��, � � �� 
 
 
 � 
 . From (31), it is clear that
we have to minimize	��������	��� to get the maximal value for the
uncertainty level (just below) ���� � ���	�������� 	 ����, while
still guaranteeing GES (for decay factor just below 1). This gives rise
to the following procedure to get maximal robustness in the mismatch
between the scheduling parameter ��� and the actual one �� as reflected
in �, while still guaranteeing GES.

Design Procedure:
Step 1: Minimize ��� subject to (9) for �� � � �� 
 
 
 � 
 . This gives

the minimum ���� and the corresponding observer gains
�,
� � �� 
 
 
 � 
 .

Step 2: Given ���� as in Step 1. Fix 	 � � and minimize the expres-
sion 	��������� 	 ��� subject to the LMIs given in (20).
This results in the feedback gains ��, � � �� 
 
 
 � 
 .

The optimization problems in Step 1 and 2 are convex problems as
we are minimizing linear costs subject to LMI constraints. Step 2 might
even be extended by performing a line search in 	 and applying the
above procedure repetitively. Once, the minimal value 	��������

�

�� 	
���� is found, one can on the basis of Theorem 6 and (30) still make
tradeoffs between transient performance in terms of the decay factor�
� and robustness in terms of ����. Letting � increase from ������

������ � � ������ (maximal performance, minimal robustness) to 1
(minimal performance, maximal robustness), tradeoff curves between
performance and robustness are obtained, as was already indicated in
Corollary 2.

VI. ILLUSTRATIVE EXAMPLE

Consider the LPV system (4) with

����� �

���
 � �

� ��� �

� � ��� 	 ��

� � �

�

�

�

� � �� � ��� � � �

and �� � �� � ��
�, � � . In this case, we can take the func-
tions ����� � ���
� �����
 and ����� � ����
 with �� � ����
and �� � ����
�. The observer is designed using Theorem 2 along
with the optimization problem in Step 1 of the design procedure pre-
sented in the previous section. The optimal solution is given by ���� �

����� with observer gains 
� � �������
 ������� ������ ��

and 
� � �������
 ������� ������ �� � With this optimal ob-
server and the associated slope of the linear ISS gain ���� , a line search
involving 	 � � is performed in order to minimize the cost � �
	������

�

��	��� subject to the LMIs given in (20) for all �� � (Step 2).
Fig. 1 shows the minimum of � for each fixed 	, which is the smallest

Fig. 1. Line search �.

Fig. 2. Tradeoff performance/robustness.

for 	� � ������ yielding ���� � ������ and ���� � ������� and cor-
responds to the controller gains �� � ��������� ������� �������,
�� � ������
 � ������� �������.

As a consequence, the maximum level of uncertainty is

����� �
�

	����������� 	 ����
� �������

Hence, for ������ ���� � ��� � ���� � � � ������ GES of the
closed-loop system (27) is guaranteed (with a decay factor close to 1).
Letting � increase from ������ ������� �� ������� to 1 leads to the
tradeoff curves between performance in terms of the decay factor

�
�

and robustness to uncertainty ������ ���� in terms of � as depicted in
Fig. 2.

VII. CONCLUSION

In this note, the design of robustly stabilizing output-based feedback
controllers is considered for discrete-time LPV systems in which the
scheduling parameters are only known up to a given precision. The
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output-based controllers are obtained using a separate design of the ob-
server and the state feedback and we showed that the interconnection of
the LPV plant, observer and state feedback leads to a globally exponen-
tially stable closed-loop system for certain levels of mismatch between
estimated and true parameters. The nonconservatism of our approach
is demonstrated by showing that well known conditions for nominally
stabilizing observers and feedbacks (i.e., without mismatch between
true and available parameters) imply our LMI-based conditions. The
flexibility in the framework allows to construct the controller that guar-
antees global exponential stability for the largest level of parameter un-
certainty and to make tradeoffs between transient performance in terms
of decay factors and robustness with respect to parameter uncertainty.
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Adaptive Tracking for Stochastic Nonlinear
Systems With Markovian Switching

Zhao Jing Wu, Jun Yang, and Peng Shi

Abstract—The problem of the adaptive tracking for a class of stochastic
nonlinear systems with stationary Markovian switching is considered in
this note. An Ito formula is proposed for stochastic integral equations with
an integral about martingale measure. An adaptive backstepping controller
is designed such that the closed-loop system has a unique solution that is
globally bounded in probability and -norm of the tracking error con-
verges to an arbitrarily small neighborhood of zero. A simulation example
demonstrates the efficiency of the proposed scheme.

Index Terms—Backstepping, Markovian switching, nonlinear stochastic
systems.

I. INTRODUCTION

Recently, there have been increasing attentions devoted to stochastic
hybrid systems, in which the stochastic continuous dynamics (states)
are intertwined with the stochastic discrete events (modes). The recent
work [1] and [2] provided a framework of theory of stochastic differ-
ential equations with Markovian switching for the following general
system:

����� � ������� �� �������� ������� �� ������� ��� (1)

where ���� � � is the state of system and � ��� is an 	-dimensional
independent standard Wiener process (Brownian motion). The under-
lying complete filtration space is taken to be the quartet ���� ���� 
 �

with �� satisfying the usual conditions. ���� is a right-continuous
Markov process on the probability space taking values in a finite mode
space � � ��� �� � � � � �� with generator 	 � �
������ given by


����� � 
����� �� � ������ � ��

�

���� ����� 
� � �� �

� � 
���� ����� 
� � � �
(2)

for any �� � � � where 
�� � � is the transition rate from mode �

to mode � if � �� � while 
�� � � �

����� ���

�� . The Markovian

process ���� is independent of the Brownian motion � ���. Functions
� 
 � 	 � 	 � 
 � and � 
 � 	 � 	 � 
 ��� are
locally Lipschitz in � � � for all � � �. As in [3], let ����� �� �� be
consecutive, left closed, right open intervals of the real line each having
the length 
�� such that ��� � ��� 
������� � �
��� 
�� � 
��� and
so on. Define a function � 
 � 	 
 by

���� �� �
� � �� 
� � � ���

�� ������
��
(3)
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