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This paper studies the coordinated motion control of a 
hydraulic arm driven by single-rod hydraulic actuators (a 
scaled down version of an industrial backhoe/excavator 
arm). Compared to conventional robot manipulators 
driven by electrical motors, hydraulic arms have a richer 
nonlinear dynamics and strong couplings among various 
joints (or hydraulic cylinders). This paper presents a 
physical model based adaptive robust controller (ARC) 
to explicitly take into account the strong coupling among 
various hydraulic cylinders (or joints). In addition, an 
observer is employed to avoid the need of acceleration 
feedback for ARC backstepping design. Theoretically, 
the resulting controller is able to take into account not 
only the effect of parametric uncertainties coming from 
the payload and various hydraulic parameters but also 
the effect of uncertain nonlinearities. Furthermore, the 
proposed ARC controller guarantees a prescribed output 
tracking transient performance and final tracking accu- 
racy while achieving asymptotic output tracking in the 
presence of parametric uncertainties. Simulation and ex- 
perimental results are presented to illustrate the proposed 
control algorithm. 
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1 I n t r o d u c t i o n  
Compared with electrical motors, hydraulic actuators 
have a much smaller size-to-power ratio and the ability 
to apply very large force and torque. As such, they are 
widely used in industry in a wide number of applications, 
especially in earth moving equipment such as excavators 
and backhoe loader. In order to increase the productiv- 

ity and performance of industrial hydraulic machines like 
excavators, it is essential to be able to control a robot- 
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arm-like mechanical device driven by hydraulic actuators 
(i.e., a hydraulic robot arm) well. 
The precision motion control of a hydraulic arm driven by 
hydraulic cylinders is difficult both theoretically and ex- 
perimentally due to the following several reasons. Firstly, 
the coupling effects among various joints are strong. Un- 
like electric motors, hydraulic cylinders are linear actua- 
tors and can not be placed at thejoints of the arm, which 
normally results in a complicated mechanical configura- 
tion. Secondly, in addition to the coupled multiple-input 
multiple-output (MIMO) nonlinear dynamics of the rigid 
hydraulic arm, the dynamics of the hydraulic actuators 
must be considered in the control of a hydraulic arm, 
which substantially increases the controller design dif- 
ficulties. It is well known that a robot arm including 
actuator dynamics [1] has a "relative degree" more than 
three. Synthesizing controllers for such a system usu- 
ally requires joint acceleration feedback for a complete 
state feedback, which may not be a practical solution. 
Furthermore, the single-rod hydraulic actuator studied 
here has a much more complicated dynamics than elec- 
trical motors. The dynamics of a hydraulic cylinder is 
highly nonlinear [2]. The dynamic equations describing 
the pressure changes in the two chambers of a single-rod 
hydraulic actuator cannot be combined into a single load 
pressure equation, which not only increases the dimen- 
sion of the system to be dealt with but also brings in the 
stability issue of the added internal dynamics. Thirdly, a 
hydraulic arm normally experiences large extent of model 
uncertainties including the large changes in load seen by 
the system in industrial use, the large variations in the hy- 
draulic parameters, leakages, the external disturbances, 
and frictions. Partly due to these difficulties, so far, the 
model-based robust control of a hydraulic arm has not 
been well studied and fewer results are available. 
This paper is devoted to solving the theoretical and prac- 

tical problems mentioned above. In [3, 4], the adaptive 
robust control (ARC) approach proposed by Yao and 
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Tomizuka in [5, 6, 7.8] was generalized to provide a rig- 
orous theoretical framework for the high performance ro- 
bust motion control of a one degrees-of-freedom (DOF) 
single-rod hydraulic actuator. The stability of zero out- 
put tracking error dynamics of single-rod hydraulic actu- 
ator was also addressed in [3, 4]. 
This paper will extend the nonlinear adaptive robust con- 
trol strategies proposed in [3, 4] to the precision motion 
control of a MIMO 3 DOF robot arm driven by single- 
rod hydraulic actuators. The main theoretical issues to 
be addressed here are the strong couplings among various 
hydraulic cylinders due to the hydraulic arm dynamics. 
the need for avoiding acceleration feedback, and pres- 
ence of parametric uncertainties and uncertain nonlin- 
earities in both the robot dynamics and the hydraulic 
dynamics. A model-based adaptive robust observer is 
first constructed to obtain the estimates of the joint ac- 
celerations. The resulting observer based ARC controller 
is able to take into account not only the effect of the 
parametric uncertainties coming from the payload and 
various hydraulic parameters but also the effect of uncer- 
tain nonlinearities such as uncompensated friction forces, 
external disturbances. Theoretically, the ARC controller 
guarantees a prescribed output tracking transient per- 
formance and final tracking accuracy in general while 
achieving asymptotic output tracking in the presence of 
parametric uncertainties. Simulation and experimental 
results are presented to show the effectiveness of the pro- 
posed control algorithm. 
The proposed adaptive robust observer design is moti- 
vated by the research done in [1], where an observer 
based adaptive controller is constructed for the robot 
manipulator with electrical motor dynamics. The main 
difference between the two observer designs is that the 
proposed adaptive robust observer design is able to take 
into account the effect of both parametric uncertainties 
and the uncertain nonlinearities and achieve a prescribed 
transient performance and final tracking accuracy in gen- 
eral while the observer design in [1] deals with parametric 
uncertainties only. It is well known that pure adaptive de- 
sign may become unstable when the system is subjected 
to uncertain nonlinearities [9]. 

2 Problem Formulation and Dynamic 
Models 

The system under consideration is depicted in Fig.l, 
which represents a 3 DOF robot arm driven by three 
single-rod hydraulic cylinders. The swing angle q~, boom 
angle q2 and stick angle q~ are defined as shown in the fig- 
ure. Iz, 12 and 13 are the pin-to-pin lengths for the swing, 
boom and stick arm respectively, z = [zo, Xb, X,=] r is the 
displacement vector of the swing, boom, and stick cylin- 

ders, which is uniquely related to the angle q~, q2 and q~, 
i.e., z,(q~), zb(q~) and x,~(q~). The goal is to have joint 
angles q = [ql,q2,q~]T track any feasible desired motion 
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Figure 1: A Hydraulic ~o b o t  Arm 

trajectories as closely as possible for precision maneuver 
of the inertia load of the hydraulic robot arm. The rigid- 
body dynamics of the hydraulic arm can be described by: 

M(q)~ + C(q, q)q + G(q) = ~(AzPz°= _ ASP2) + T(t, q, q) 
(z) 

where Pt = [Pi,, Plb, Pl,t] T,P2 = [P2,, P2b, P2,t] T and 
Pi,, Pzb, PI,~, P2,, P=b, P2,~ are the forward cham- 
ber pressures and return chamber pressures for the 
swing, boom and stick cylinder respectively, Az = 
diag[Al,,Azb , Az,~] and A2 = diag[A2,, A2b, As,t] are the 
ram areas of the two chambers of the swing, boom and 
stick cylinders respectively, and T(t,  q, q) E R 3 represents 
the lumped disturbance torque including external distur- 
bances and terms like the friction torque. 
Let mL be the unknown payload mounted at the end of 
the stick arm, which is treated as a point mass for sim- 
plicity. Then, the inertial matrix M(q), coriolis terms 
C(q,q) and gravity terms G(q) in (1) can be linearly 
parametrized with respect to the unknown mass mL as 

M(q) = Me(q) + ML(q)mL, G(q) = Ge(q) + GL(q)mL 
C(q,q) = Cc(q,q) + CL(q,q)mL 

(2) 
where Me(q), Mn(q), Cc(q,q), CL(q,q), Gc(q), GL(q) are 
known nonlinear functions of q and q. 
Assuming no cylinder leakages, the actuator (or the cylin- 
der) dynamics can be written as [2], 

Vl(X) Pi = - A i ~  + Qz = - A z ~ + Q I  (3) 

where Vz(x) = Vhl + Azdia9[=] E R 3x3 and V2(x) = 
Vh2 -A2d iag [x ]  are the diagonal total control volume 
matrices of the two chambers of hydraulic cylinders re- 
spectively, which includes the hose volume between the 
two chambers and the valves, Vh, = diag[Vhz,, Vhzb, Vhz,=] 
and Vh2 = diag[Vh2,,V~2~,Vh2,~] are the control vol- 
umes of the two chambers when x = 0, diag[z] = 
diag[x,,Zb, Xo=] , ~, E R is the effective bulk modulus, 

01 = [Q l , ,Q lb ,Q l , t ]  r is the vector of the supplied flow 
rates to the forward chambers of the three cylinders, and 
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Q2 = [Q2,,Q2b, Q2~t] T is the vector of the return flow 
rates from the return chambers of the cylinders. 
Let x~,, X~b, and x~o= denote the spool displacements of 
the valves in the swing, boom, and stick loop respec- 
tively. Define the square roots of the pressure drops 
across the two ports of the swing valve g3a and gas as: 

-P lo  for X~o>0 
g3s(Pls,sign(zv,)) = ~ - er xv, < 0 

- P ~  for z~,_>0 
g4s(Pz,, sign(xv.))  = VIE - P2, Zv, < 0 

(4) 
where P, is the supply pressure of the pump, and P, is 
the tank reference pressure. Similarly, let gab, g4b, gz,t, 
and g4ot be the square roots of the pressure drops for 
the boom and stick loops respectively. For simplicity of 
notation, define the diagonal square root matrices of the 
pressure drops as: 

.qz(P1, sign(x~,)) = diag[g3. (Pl,, sign(x~,)), 
g3b(Plb, sign(zvb)), g3at(elst, sign(x~o,)] (,.5) 

g4(P2, sign( x~ ) ) = diag[g4, ( P2, , sign( x~, ) ) , 
g4b ( P2b, sign( xvb ) ), g4,t (P2,t, sign( z~,, ) ) ] 

Then, Q1 and Q2 in (3) are related to the spool displace- 
ments of the valves z~ = [z~,, x~b, x~,t] T by [2], 

Q1 = kqlg3( P1, sign(x~, ) )xv, 
02 = kq2g4(P2, sign(xv))x~ (6) 

where kql = diag[kqls, kqlb, kqlst] 
and kq2 =diag[kq2,, kq2b, kq2,t] are the constant flow gain 
coefficients matrices of the forward and return loops re- 
spectively. 
Given the desired motion trajectory qLd(t), the objec- 
tive is to synthesize a control input u = x~ such that 
the output y = q tracks qLd(t) as closely as possible in 
spite o] various model uncertainties. 

3 Adapt ive  R o b u s t  Control ler  Des ign  

I I I .1  Design Model and Issues to be Addressed 
In this paper, for simplicity, we consider the parametric 
uncertainties due to the unknown payload mL, the bulk 
modulus ,B,, the nominal value of the lumped disturbance 
T, T, only. Other parametric ucnertainties can be dealt 
with in the same way if necessary. In order to use param- 
eter adaptation to reduce parametric uncertainties to im- 
prove performance, it is necessary to linearly parametrize 
the system dynamics equation in terms of a set of un- 
known parameters. To achieve this, define the unknown 
parameter set as 0 = [01,02, 03] T where 01 = mL, 02 = T~, 
and 03 = ~,. The system dynamic equations can thus be 
linearly parametrized in terms of O as 

M(q)4 + C(q, q)~ + C(q) = ~(P1Ai°= _ P2A2) 
+02 + T ( t ,  q, (1), T = T ( t ,  q, (1) - T .  

P1 = 03Vl-l(q) [ -Al  ~ + Qt(u, ga(Pl,sign(u))] (7) 
P2 03VZ1(q) [ A 2 ~ j  - Q2(u, g4(P2,sign(u))] 
Since the extent of the parametric uncertainties and un- 
certain nonlinearities are normally known, it is assumed 
that 

3 0 3
e ~ ae=~{o: em~.<e<0m.=} (s) 
I~'(t,q,q)l _< 6T(q,~,t) 

where 0,~,, = [0z , , , , . . . ,  03rain] T ,  Omaz~ ' [~ lmaz ,  . . .  , 
0 ~ = ]  T, and 6r(t,q,q) are known. 
At this stage, it can be seen that the main difficul- 
ties in controlling (7) are: (i) The system dynamics are 
highly nonlinear and coupled, due to either the nonlinear 
robot dynamics or the dependence of the effective driving 
torque on joint angle (terms like ._~.2) and the nonlin- 
earities in the hydraulic dynamics; (ii) the system has 
large extent of parametric uncertainties due to the large 
variations of inertial load mL and the change of bulk 
modulus caused by the entrapped air or change of tem- 
perature, etc; (iii) The system may have large extent of 
lumped uncertain nonlinearities 7' including external dis- 
turbances and unmodeled friction forces; (iv) The added 
nonlinear hydraulic dynamics are more complex than the 
electrical motor dynamics. (v) The model uncertainties 
are mismatched, i.e. both parametric uncertainties and 
uncertain nonlinearities appear in the dynamic equations 
which are not directly related to the control input u = Xv. 
To address the challenges mentioned above, following 
general strategies will be adopted in the controller de- 
sign. Firstly, the nonlinear physical model based analysis 
and synthesis will be employed to deal with the nonlin- 
earities and coupling of the system dynamics. Secondly, 
the ARC approach [5, 8] will be used to handle the effect 
of both parametric uncertainties and uncertain nonlinear- 
ities; fast robust feedback will be used to attenuate the 
effect of various model uncertainties as much as possi- 
ble while parameter adaptation will be introduced to re- 
duce model uncertainties for high performance. Thirdly, 
backstepping design via ARC Lyapunov function will be 
used to overcome the design difficulties caused by the 
unmatched model uncertainties. Finally, an adaptive ro- 
bust observer will be synthesized in order to avoid the 
need for acceleration feedback. The details are outlined 
below. 

I I I .2  A R C  Controller Design 
The design parallels the recursive backstepping design 
procedure via ARC Lyapunov functions in [8, 3] as fol- 
lows. Let Pro j# (o )  denote the discontinuous projection 
defined in [10, 11, 5], the adaptation law is given by 

k 
e = - P r o j ~ ( r r )  (9) 

where F > 0 is a diagonal matrix and r is an adaptation 
function to be synthesized later. 

Step 1 
From (7), define the load pressure as PL = AlP1 -A2P2. 
If we treat PL as the virtual control input to the first 
equation of (7), a virtual control law PLd for PL will be 

synthesized such that zl = q - q d  is as small as possible 
with a guaranteed transient performance, in which qd is 
the reference trajectory. The ARC approach proposed in 
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I I~(q,  ~ ,  dl, eo~, z2, t ) l l  _< o'~ (q, ~,., ~ ,  eo2, z2, t) l leo~ll  
[8] will be generalized to accomplish the objective. The 
control function PLd Consists of two parts given by 

PLd(q,q, Ol,O2,t) = PLda + PLd. 

PL~o = ( ~ ) - '  [~(q)~ ,  + ~'(q,4)4, + ~(q)  - ~2] 
PLd° = PLd°I -I- PLd°2, PLd,1 = -- ( ~ ) - 1  g2z~ 

T2 = ¢2Z~ 
¢2 = [ML (q)qr "{- eL  (q, q)4r -I- GL (q), --]3 x a, 0] T 

(10) 
where .,Qr(q) = Me(q) + ML(q)O:, ~ ( q , q )  = C~(q,4") + 
CL(q,q)O1, G(q) = Cc(q) + GL(q)O1, qr = q d -  klZl,  
Z2 = ~ - qr, k: is a positive feedback gain, and K2 is 
a symmetric positive definite(s.p.d) control gain matrix. 
The robust control function Pcd°~ iS synthesized to sat- 
isfy the following conditions 

condition i T oz ~T~ + ~,] < Z2 [~PLdo2 + e2 (11) 
~ T  Okk rJ condition ii ~2 ~X~Ld°2 ~ 0 

where e2 is a positive design parameter which can be 
arbitrarily small. How to choose Pcd°2 to satisfy con- 
straints like (11) can be worked out in the same way as 
in [6, 7].  
Let za = PL -- PL~ denote the input discrepancy. Sub- 
stituting (10) into the first equation of (7), one obtains 

Oz z M(q)~2 + C(q,q)z2 = -K2z~  + ~q 3 (12) 
O x  T" +~qPLd.2 + ¢2 0 + 

Define a positive semi-definite function (p.s.d.) as V~ = 
]z~M(q)z~. Notice that . , i f (q)-  2C(q,q) is a skew- 
symmetric matrix [12], from (12), the time derivative 
of V~ can be expressed as: 

~r r ~T 19z _ T Z2 T [ ~q ~Lda2 -~" ,~: ~ + = .2  ~ - z2 K 2 z 2  + o= ~] 
(13) 

Step 
In this step, an actual control law will be synthesized so 
that z3 converges to zero or a small value with a guar- 
anteed transient performance and accuracy. If we were 
to use the backstepping design strategy via ARC Lya- 
punov function as in [3, 8], then, the resulting ARC law 
would require the feedback of the joint acceleration ~ for 
adaptive, model compensation since ~ is needed in com- 
puting PLd, the calculable part of the derivative of the 
desired virtual control function PLd. In order to avoid the 
need for joint acceleration feedback, in the following, an 
adaptive robust observer is first constructed to obtain the 
estimates of the joint velocity and acceleration. Those 
estimates will be used to form ['Ld and PLd. 

Observer Design 
Define the observer errors as: 

eo~ = q - y, y .  = y - ko~eo~ (14) 
eo~ = 4 - ~, ~ = ~ - k o : ( 4  - ~) 
where y and f /are  the estimates of q and 4 respectively. 
The proposed nonlinear observer is : 

3 0 3
O=p 
M(q)ii, + C(q, 4 ) ~  + G(q) = ~ ~ (15) 

+(Ko2 + Ko2,)eo2 + To, + 02 
where l~f(q) = Mc + MLO:, C(q, q) = Cc + CL~i and 
G(q) = G~ + GLO1, in which 0 = [01, 02] T is a new set of 
parameter est imate for 0 and is used in the construction 
of the above observer only. go2 is any positive definite 
gain matrix, and Ko2, is a nonlinear positive definite gain 
matrix to be specified later• To, is a robust observer 
error feedback term which will be specified later for a 
guaranteed transient performance. 

t T  M Define a p.s.d, function as Vo = :eo2 (q)eo2. Differen- 
tiating it and noting (1) and (15), it can be shown that 

Vo = -e~2(Ko~ + Ko2.)eo2 + eoT2 [coT0. -I- ~' (16) 
-- (I  -- 0ol ML (q)~I-l(q))To.]  

where 0o=0-0  is the parameter estimation error in the 
observer, and ¢o = [ M n ( q ) ~ f - l ( ~  PL+ (Ko2 + Ko2.) 

eo2+ ~2 -~(q, 4)~--¢(q))+Cn(q, 4)y~+GL(q), --laxa, 0] T 
[f the parameter variation §o~ is within certain limit such 
that  [tSo~ML(q)~I-l(q)[[ < 1, then, a robust feedback 
function Too(q, q, O, Y, Y, $) can be determined in the same 
way as in (11) to satisfy following conditions: 

condition i eoT2[--(I -- OolML]~'-I)To. + c~oTOo -t- 7'] _< eo 
condition ii - eoT2(I -- OolMn~14-1)Toa < 0 

• (1~) 
where eo is a positive design parameter. The adaptation 
law for parameter estimates is given by 

T (18) = - P r o j ~ ( r o r o ) ,  ro = ¢o eo2 
From (15), Yr can be computed by: 

Y~ =117t-1(q)[~ PL -I" (K°2 + K°2°)e°2 + T°" (19) 

and can be used in the design of the control law u. In 
general, the observer (19) needs the calculation of the 
inverse of the inertial matrix estimate .,~/(q), which may 
become singular during parameter adaptation process [1]. 
Here, due to the use of projection mapping in (18), the 
parameter estimate is guaranteed to stay within the pre- 
scribed bound [5], and the singularity problem [1] may 
be avoided in our design. 
Note that y, and ~ are the estimates of the joint veloc- 
ity and acceleration respectively. By using the velocity 
estimate y, to replace the joint velocity 4 in the virtual 
control law PLd, we obtain the estimate of the PLd as 
Pnd = Pnd (q, y,, 81,02, t) . Let ~a = PL -- Pnd be the new 
input discrepancy. Then, (13) becomes: 

V~ =z2~-Ta=~,a --z2TK2z2 +z2T L~rO=PLd°2 + ~T~ + ~,] + z2Tp 
(20) 

Oz (p PLd) represents the effect of the where p = ~ ,  Ld-- 
observer error, which has the property summarized by 
the following lemma. 

Lemma 1 # is bounded by 
(21) 
where a~ is a positive scalar function. 
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P r o o f .  The proof can be obtained from the author. 13. 

The following is to synthesize a control input u such tha t  
~3 = PL - Pza converges to zero or a small value with a 
guaranteed transient performance. From (7), 

A 2 y - l ~ O x z  
~3 = & - PLd = e~ [ - (A12V;  ~ + ~2 .~ J ~  (22) 

++(AzV~-IQ1 + A~V2-1Q~)] - PLd 
. . . . .  k 

whereP.= Define the 
load flow QL as 

QL = Ai Vl-l q~ + A~ V ;  z Q~ = [AW;-~ k~ga(P~, sign(u)) 

(2_3) 
then step 2 is to synthesize a control function QLd for 
Q~ such that PL tracks the desired control functionPLa 
with a guaranteed transient performance. Consider the 

l E T ^  augmented p.s.d, function Vm = V, + ~ z 'Z3' From (22) 

V m  = "~"r -I- ,~3T~3 = V r  I,~s=o "t-,~z T [03QL + QLd, "F ¢3T~ 
(24) 

where V~ I~s=o is a short-hand notation used to represent 
V, when ~3 = 0, QLde = a= ^ 2 - 1  2 - 1  a = "  ~qz2-e3(A1V 1 +A~V~ ) ~ q - -  

PLd, ¢3  = [ 0 ,  'a ~ ' ' A 2 V ~ - I  ' A 2y,-l'O='~lT 

The control function QLa consists of two parts given by 

Qc~(q,a,~.,i~.,P~,P~,O,~) = QL~, + ~ .  

QLaa = --~s ~Ld¢ 
QLd~ = QLdsl "1- QLda2, ~nds1 : -~'-L--K3z3 ~3min  

(25) 
where K~ is a constant positive definite control gain ma- 
trix, Q~a,2 is a robust control function satisfying the fol- 
lowing two conditions 

condition i ~.s T [OaQzd.2 + csT~] _< ea (26) 
condition ii ~T(~nd, < 0 

where ea is a positive design parameter. 
Once the control function Qnd for QL is synthesized as 
given by (25), the actual control input u can be backed 
out from the continuous one-to-one nonlinear load flow 
mapping (23) as follows. Noting that the elements of 
the diagonal matrices g3, g4, V~, and V2 are all positive 
functions, ui should have the same sign a s  Qz, di. Thus  

U = [A1Vl-lkqlgz(P1, sign(OLd)) 
-i-A2W~-lkq2y¢(P2, sign(QLd))]-lQLd (27) 

111.3 Main Theoretical Results 

Theorem 1 Let the parameter estimates be updated by 
the adaptation law (9) in which 7- = ¢2z2 + ¢3~3. Let k2, 
k3, and ko2 be any positive gains and construct a p.s.d. 
function as V = Vm + Vo. I f  the control gain matrices 
K2, K3 and Ko2 are chosen such that Xmi,(K2) _> k2+ ~, 
Ami.(Kz) _> k3, Ami.(Ko2) _> ko2, and A,nin(Ko2.) _> $a~,l 2 

then, the following results hold i f  the control law (27) 
with the adaptation law (9) is applied: 

303
A.  

B 

In genera/, the tracking errors and the observer er- 
rors, zl,z2,£3,eol, and eo2, are bounded. Further- 
more, V, an index for the bound of  the tracking 
errors and observer errors, is bound above by 

V(t) < exp(-~vt)V(O) + ~v[1 - exp(-Avt)] 
(28) 

2rain{ k2,k3,ko2 } where Av = maZ{kM,l} , ev = e2 + 63 + eo, and 
kM is the upper bound of  the inertial matrix (i.e., 
M(q) < kMI3×3 ). 

I f  after a finite time to, T = O, Le., in the presence of  
parametric uncertainties only, in addition to results 
in A, asymptotic output tracking is also obtained. 

P r o o f  : The theorem can be proved in the same way as 
in [3, 4]. The details can be obtained from the authors. 
E3. 

4 S i m u l a t i o n  a n d  E x p e r i m e n t a l  R e -  
s u i t s  

To test the proposed nonlinear ARC strategy and study 
fundamental problems associated with the control of 
electro-hydraulic systems, a three-link robot arm (a 
scaled down version of industrial backhoe loader arm) 
driven by three single-rod hydraulic cylinders shown in 
Fig.1 has been set up. The three hydraulic cylinders are 
controlled by two proportional directional control valves 
and one servovalve manufactured by Parker Hannifan 
company. 
The exact model of the hydraulic arm shown in Fig.1 
is quite messy and can be obtained from the au- 
thors. Parameters of the actual arm are: ml =22.98kg, 
m2 =24.94kg, m3 =19.68kg, mL = 20kg, 11 =0.3683m, 
12= 0.9906m, and 13 =0.8001m. Cylinder parameters  are: 
At =diag[2.0268 x 10 -3,  2.0268 x 10 -3,  2.0268 x 10-3]m 2, 
A2 =diag[1.0688 x 10 -a ,  1.0688 x 10 -3 ,  1.0688 x 10-a im 2, 
Vat =diag[4.9953 x 10 -4,  5.2125 x 10 -4,  4.8505 x 10-4]m a, 
and Va2 = diag[9.0676 x 10 -4, 8.7237 x 10 -4, 9.2667 x 
10-4ira 3. The  valve parameters  are: kql = diag[3.5904 x 

8 3 
10 -s ,  7.4965 x 10 -8 , 7.4965 x 1 0 - ] , , c ~ p ~ v '  kq2 = 

m 3 diag[3.7206 x 10 - s ,  6.9047 x 10 -8 , 6.9047 x I0 -s]  ~ - - . ~ . ,  

P, = 6.9 x 10°Pa, and ,8~ = 2.7148 x 10Spa. The de- 
sired joint position vector is qd = [0.9 + 0.25sin(~t) ,  0.5 + 
0.25sin( ~t), -0.6 + 0.25sin( ~t)]rad. 
Firstly, simulation is conducted to validate the design 
of the controller. The  control gain and gain matrices 
are chosen as k~ = 200, K2 = Kz = diag[310,250, 240], 
kol = 500, and Ko~ = diag[500,1000,1000]. Adap- 
tation gain matrices are F = diag[1,100, 20,1, 3] and 
Fo = diag[lO0, 100, 100, 100, 0]. As seen in Fig. 2, the sys- 

t em has very small t racking errors during both transient 
period and s teady-s ta te  period. Parameter  es t imates  for 
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Figure 4: Experiment Results for Each Joint 
01 shown in Fig.3 reveals that both the parameter esti- 
mate 01 used in the controller and 01 used in the observer 
approach to their true value 01. 
The controller is then implemented on the actual sys- 
tem to test its performance. Due to the severe mea- 
surement noise problem associated with the position and 
pressure sensors and the limited valve bandwidth (around 
10Hz for the servovalve and around 7Hz for the pro- 
portional valves), much smaller controller gains than 
those in the simulation is used: k, = 20, K2 = K~ = 
diag[20, 25, 30], ko~ = 50, and Ko~ = diag[50, 60, 65]. 
Adaptation gain matrices are F = diag[O.O1, 0.3, 1,1.6, 3] 
and Fo = diag[0.3, 11, 16, 19, 0]. The tracking errors of all 
joints are shown in Fig. 4. The results are not as good 
as those in simulation results, which is mainly due to 
the severe measurement noises and the neglected valve 
dynamics. Further efforts are needed to address these 
practical implementation issues, which is the focus of 
our current research. 

5 Conclus ion 

In this paper, a physical model based adaptive robust 
controller (ARC) is constructed for the coordinated mo- 
tion control of a hydraulic arm driven by single-rod hy- 
draulic actuators. The ARC controller explicitly takes 
into account the strong coupling among various hydraulic 
cylinders (or joints). In addition, an observer is employed 
to avoid the need of acceleration feedback. Simulation 
and experimental results are presented to illustrate the 
proposed algorithm. 
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