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Abstract—This paper deals with state-feedback current control
for power converters, which are equipped with an LCL filter
and connected to a weak grid. The grid-side current is measured
and other states needed by the current controller are estimated
using a reduced-order observer. The control system is designed
directly in the discrete-time domain. The gains of the control
system are calculated using direct pole placement, assuming a
strong grid. Recommendations for the nominal pole locations are
given. The results show that the control system is robust against
the unknown grid impedance, ranging from strong to very-weak
grid conditions. The proposed design is validated by means of
experiments.

Index Terms—Grid converter, LCL filter, reduced-order ob-
server, state-feedback current control, weak grid.

I. INTRODUCTION

Grid converters are typically used to interface distributed

and renewable energy sources with the AC grid. Long trans-

mission lines increase the grid impedance seen from the point

of common coupling (PCC). The large and unknown grid

impedance may lead to unstable operation of a converter [1]–

[4]. The grid impedance is related to the short-circuit ratio

(SCR), which is the ratio of the short-circuit capacity of the

AC system to the rated DC power [5]. The grid is categorized

as weak if SCR < 3.

In order to connect a converter to the grid, an LCL filter is a

preferred option to attenuate the switching harmonics because

of its compact size [6], [7]. However, the LCL filter presents

a resonant behavior that needs to be damped. The resonance

of the LCL filter can be damped passively by introducing

additional passive elements [8] or actively using control [6],

[9], [10]. Active damping of the resonance is preferred since

it makes the system more efficient than passive damping.

However, the active damping of the LCL-filter resonance

becomes more difficult due to the large grid impedance [10],

[11].

The state-feedback current control provides a convenient

and straightforward way for active resonance damping and

for setting the desired dominant dynamics [6], [7], [12]–

[15]. Using direct pole placement, the controller gains can

be expressed analytically using the system parameters and

the desired (nominal) pole locations, cf. [7], [13]. However,

the actual poles of the system depend on the unknown grid

impedance, which may degrade the dynamic performance and

even cause the instability.

For the full-state feedback, all the states must be measured

or estimated using an observer. The observer reduces the
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Fig. 1. Space-vector circuit model of an LCL filter and a grid in stationary
coordinates (vectors marked with the superscript s).

number of sensors, increases reliability, and decreases the costs

in comparison with the methods in [7], [16]. The observer

could be of full order [13], [17] or of reduced order [15],

[18]. The reduced-order observer provides better disturbance

rejection, but it is more sensitive to noise than the full-order

observer [18].

The continuous-time design decreases the pole-placement

accuracy with low sampling (switching) frequencies. The re-

alized dynamics can be much worse than the desired dynamics,

cf. [13]. The direct discrete-time design makes it possible

to choose the sampling frequency more freely [13], [14]. In

addition, the intrinsic delays of the digital implementation

and pulse-width modulator (PWM) can be easily taken into

account in the direct discrete-time design, giving superior

performance as compared to the continuous-time design [13],

[14].

This work deals with control of grid-connected converters

equipped with an LCL filter, taking into account the weak-

grid conditions. A state-feedback current controller is designed

directly in the discrete-time domain. The grid-side current is

measured and other states are estimated using a reduced-order

observer. The design rules for robust operation against grid in-

ductance variations are given. It is shown that stable operation

from strong-grid conditions to very weak-grid conditions can

be achieved without changing the tuning of the control system.

The proposed design is experimentally evaluated using a 12.5-

kVA grid converter.

II. SYSTEM MODEL

A. Continuous-Time Model

Fig. 1 shows an equivalent circuit of an LCL filter connected

to an inductive grid. The converter voltage is denoted by uc,

the voltage across the capacitor by uf , the PCC voltage by

ug, and the grid voltage by eg. The converter-side current is

denoted by ic and the grid-side current by ig. The LCL filter

parameters are: converter-side inductance Lfc; capacitance Cf ;



TABLE I
PARAMETERS OF A 12.5-KVA CONVERTER SYSTEM

Parameter Value Value (p.u.)

LCL filter

Capacitance Cf 8.8 µF 0.036
Converter-side inductance Lfc 3.3 mH 0.081
Grid-side inductance Lfg 3.0 mH 0.074

Grid

Inductance Lg (strong grid) 0 0
Inductance Lg (very weak grid) 37 mH 0.926
Angular frequency ωg 2π· 50 rad/s 1

Voltage (phase-neutral, peak)
√

2/3 · 400 V 1

Converter

Rated current (peak)
√
2 · 18.3 A 1

DC-bus voltage udc 650 V 2
Sampling period Ts 125 µs

and grid-side inductance Lfg. The total grid-side inductance is

given by

Ls = Lfg + Lg (1)

where the grid inductance is Lg. Losses of the filter and the

grid are neglected. The resonance angular frequency of the

system

ωp =

√

Lfc + Ls

LfcLsCf
(2)

depends on the grid inductance Lg via the total grid-side

inductance Ls.

In synchronous dq-coordinates rotating at the grid angular

frequency ωg, the dynamics of the grid-side current are

dx

dt
=
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where x =
[
ic,uf , ig

]T
is the state vector.

B. Hold-Equivalent Discrete-Time Model

The plant model is converted to a hold-equivalent discrete-

time model. The PWM is modeled as the zero-order hold

(ZOH) in stationary coordinates. With the sampling period

Ts and the discrete-time index k, the hold-equivalent discrete-

time model is

x(k + 1) = Φx(k) + Γcuc(k) + Γgeg(k)

ig(k) = Cgx(k) (4)
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Fig. 2. Control system. The sampling is synchronized with the PWM.
The PCC-voltage angle ϑg is obtained using a PLL. The effect of the
computational delay on the voltage reference angle is compensated for in
the coordinate transformation using ϑ′

g = ϑg + Tsωg.

where the system matrices are

Φ = eATs Γc =

(
∫ Ts

0

eAτe−jωg(Ts−τ)dτ

)

Bc

Γg =

(
∫ Ts

0

eAτdτ

)

Bg. (5)

The closed-form expressions of the matrices are given in [13].

C. System Parameters

The parameters of a 12.5-kVA converter system, given

in Table I, will be used in this paper. Two different grid

conditions are considered:

• Strong grid: Lg = 0 (SCR = 14);

• Very weak grid: Lg = 0.926 p.u. (SCR = 1).

The definition SCR = 1/Ls [p.u.], corresponding to [19], has

been used, i.e., the SCR values are defined at the capacitor

terminals of the LCL filter. Throughout the paper, the control

system is tuned assuming Lg = 0. Hence, the control system

sees the grid inductance as a parameter error.

III. CURRENT CONTROL DESIGN

Fig. 2 shows the overall block diagram of the control

system. The current controller operates in PCC-voltage co-

ordinates, where ug = ug + j0. The grid-side current is

measured for state-feedback control. The DC-link voltage udc

is measured for the PWM and the PCC voltage is measured for

the phase-locked loop (PLL) and for the AC-voltage controller.

Fig. 3 shows the observer-based current controller in more

detail. Based on the separation principle [18], the control de-

sign procedure is divided into two steps: 1) full-state feedback

control is designed assuming all the states are available; 2)

reduced-order observer is designed separately.

A. Full-State Feedback Control

One-sampling-period computational delay exists in standard

implementations. In stationary coordinates, the effect of the

computational delay on the voltage production can be modeled



as us
c(k) = us

c,ref(k−1), where us
c,ref is the voltage reference

for the PWM according to Fig. 2. Transforming this expression

to synchronous coordinates yields [13]

uc(k) = e−jωgTsuc,ref(k − 1) = u′

c,ref(k − 1) (6)

where the modified voltage reference u′

c,ref is defined to

simplify notation. The effect of the computational delay on

the angle of the converter voltage is compensated for in the

coordinate transformation, cf. Fig. 2. The extra state needed

for modeling the computational delay is included in (4) as

xd(k + 1) =

[
Φ Γc

0 0

]

︸ ︷︷ ︸

Φd

xd(k) +

[
0

1

]
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u′

c,ref(k) +

[
Γg

0

]

︸ ︷︷ ︸
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Cg 0
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Cgd

xd(k) (7)

where xd = [ic,uf , ig,uc]
T is the new state vector augmented

with the delayed voltage reference.

For improved disturbance rejection, the system model (7) is

also augmented with an integral state

xi(k + 1) = xi(k) + ig,ref(k)− ig(k) (8)

where ig,ref is the current reference. The augmented model is
[
xd(k + 1)
xi(k + 1)

]

︸ ︷︷ ︸

xa(k+1)

=

[
Φd 0

−Cgd 1
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Γgd
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eg(k)

ig(k) =
[
Cgd 0
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Cga

xa(k) (9)

where xa is the augmented state vector and Φa, Γca, Γt, and

Γga, and Cga are the augmented system matrices.

The reference feedforward is used for improved reference-

tracking performance. In accordance with Fig. 3, the control

law is

u′

c,ref(k) = ktig,ref(k) + kixi(k)−Kxd(k) (10)

where kt is the feedforward gain, ki is the integral gain, and

K =
[
k1,k2,k3,k4

]
is the state-feedback gain. From (9) and

(10), the closed-loop reference-tracking transfer function is

ig(z)

ig,ref(z)
= Cga(zI−Φa + ΓcaKa)

−1(ktΓca + Γt) (11)

where Ka =
[
K,−ki

]
is the augmented state-feedback gain.

The characteristic polynomial is

D(z) = det(zI−Φa + ΓcaKa). (12)

Let the desired closed-loop characteristic polynomial be

D(z) = (z − p1)(z − p2)(z − p3)(z − p4)(z − p5). (13)
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Fig. 3. State-feedback current control with a reduced-order observer. The true
state xd in (10) is replaced with the state estimate x̂d.

The gain Ka can be solved from (12) and (13) either analyt-

ically, as in [13], or using numerical tools.

The reference feedforward of the control system produces a

zero in the closed-loop transfer function (11). If the reference-

feedforward zero is to be placed at zt, the feedforward gain

becomes

kt = ki/(1− zt). (14)

The reference-feedforward zero can be used to cancel one of

the control poles.

B. Reduced-Order Observer

The presented scheme measures only the grid-side current

ig, cf. Fig. 3. To design the reduced-order observer, the state

vector x(k) is split into the unknown states x1(k) and the

measured state ig(k). The grid voltage is considered as an

unknown disturbance. The model (4) becomes
[
x1(k + 1)
ig(k + 1)

]

=

[
Φ11 Φ12

Φ21 φ22

] [
x1(k)
ig(k)

]

+

[
Γc1

γc2

]

uc(k) (15)

where Φ11, Φ12, Φ21, and φ22 are submatrices of Φ and Γc1

and γc2 are submatrices of Γc. Only the two unknown states

x1 = [ic,uf ]
T are to be estimated. Therefore, the reduced-

order observer is formulated as [18]

x̂1(k) = Φ11x̂1(k − 1) +Φ12ig(k − 1) + Γc1uc(k − 1)

+Ko[ig(k)− φ22ig(k − 1)

− γc2uc(k − 1)−Φ21x̂1(k − 1)] (16)

where Ko =
[
ko1,ko2

]T
is the observer gain. The character-

istic polynomial of the estimation-error dynamics is

Do(z) = det(zI−Φ11 +KoΦ21). (17)

Let the desired observer characteristic polynomial be

Do(z) = (z − po1)(z − po2). (18)

The gain Ko is solved from (17) and (18).

It is worth noticing that the whole control system is com-

paratively simple: first the state estimate is updated using (16)

and then the voltage reference is calculated using the control
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law (10). The closed-form expressions are available both for

the system matrices and for the gains.

C. Selection of Nominal Closed-Loop Poles

As shown in Fig. 4, the open-loop system (4) has three poles

located at

p1,2,ol = exp[−j(ωg ± ωp)Ts] p3,ol = exp(−jωgTs).
(19)

The computational delay and the integral action add two more

poles. All the five closed-loop poles can be arbitrarily placed

by means of full-state feedback. Based on the separation

principle, the control and observer poles can be considered

separately. The desired pole locations are discussed in the

following.

1) Control Poles: To simplify the tuning process, the de-

sired control pole locations are parametrized here as [13]

p1,2 = exp
[(

−ζr ± j
√

1− ζ2r

)

ωpTs

]

p3,4 = exp(−αcTs)

p5 = 0 (20)

where ζr and αc are the design parameters. The undamped

natural frequency ωp of the resonant pole pair is not altered,

but the damping ratio ζr can be set freely. The dominant

dynamics are determined by the pair p3,4 of double real poles.

The design parameter αc corresponds to the approximate

closed-loop bandwidth. The pole p5 originating from the

computational delay is not moved since it is already in the

optimal location. Fig. 4 shows the resulting control poles

for ζr = 1, giving a critically-damped system in nominal

conditions. The selection of ζr will be considered in more

detail in Section IV.

The reference-feedforward zero is placed at

zt = exp(−αcTs). (21)

Therefore, it cancels one of the control poles at p3,4.

2) Observer Poles: The observer poles should preferably

be placed at frequencies higher than the frequency of the

dominant control poles [18]. The observer pole locations are

parametrized as

po1,o2 = exp
[(

−ζo ± j
√

1− ζ2o

)

ωpTs

]

(22)

where the damping ratio ζo is the design parameter. Fig. 4

shows the resulting poles for ζo = 1, giving a pair of real

poles at the same location as p1,2.

IV. ROBUSTNESS ANALYSIS

The robustness of the observer-based current controller is

examined by calculating the eigenvalues of the closed-loop

system. The system shown in Fig. 3 is assumed, i.e., the outer

control loops are not taken into account. The parameters are

given in Table I.

Three parameters are needed for tuning the current con-

troller: αc, ζr, and ζo. The control system is tuned assuming

the strong grid, i.e., Lg = 0, which naturally means that

the actual closed-loop poles will move from their nominal

locations for any nonzero grid inductance Lg. In the following,

the stability of the control system is studied taking into account

nonzero Lg.

The following design parameters are first used: αc = 2π·400
rad/s and ζr = ζo = 1. Fig. 5(a) shows the loci of the closed-

loop poles as the grid-side inductance is increased in the range

Lg = 0 . . . 0.926 p.u., corresponding to the total grid-side

inductance in the range Ls = Lfg . . . 1 p.u. The green crosses

show the nominal pole locations, i.e. Lg = 0, corresponding

to Fig. 4. When the grid inductance increases, the poles move

toward the unit circle. The red crosses show the pole locations

for the very-weak-grid case, i.e., Ls = 1 p.u. All the poles

are still inside the unit circle, i.e., the system is stable from

nominal conditions to very-weak-grid conditions. The analysis

was repeated with different values for the nominal bandwidth

αc while ζr = ζo = 1; it was found out that the poles are

inside the unit circle if αc ≥ 2π · 46 rad/s.

Fig. 5(b) shows the loci of the closed-loop poles for the

very-weak-grid case (Ls = 1 p.u.), when the damping ratios

ζr = ζo are varied from 0 to 1. The system is stable if

ζr = ζo > 0.22. If the damping ratios are selected separately,

stability condition changes. For example, if ζr = 1 is selected,

ζo ≥ 0 provides stable operation. In this paper, the damping

ratios ζr = ζo = 1 are selected.

V. IMPLEMENTATION ASPECTS

A. Current Reference

The reference for the active-power-producing current com-

ponent is

igd,ref =
2

3

Pref

ug,ref
(23)

where ug,ref is the reference for the PCC voltage and Pref is

the reference for the active power.

An AC-voltage controller is necessary for operation in weak

grids [1], [4]. Here, an integral controller is used for simplicity.
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It gives the reference for the reactive-power-producing current

component

igq,ref(k) =
Tski,ac
z − 1

[ug,ref(k)− ug(k)] (24)

where ki,ac is the integral gain. The gain can be related to the

approximate bandwidth αac of the AC-voltage control loop

by means of a simple small-signal model, where the PLL

dynamics are omitted and ideal current control is assumed.

These assumptions lead to ki,ac = αac/(ωgLB), where LB is

the base inductance.

B. PLL

A simple PLL operating in synchronous coordinates is used

[20]. In weak grids, the PCC voltage varies with the grid

current. Therefore, a slow PLL should be used in order to

(a)

(b)

Fig. 6. Measured step responses of the active power and the corresponding
grid-side current components igd and igq: (a) strong grid, Lg ≈ 0; (b) very
weak grid, Ls ≈ 1 p.u. The same controller tuning based on Lg = 0 is used
in both cases.

avoid the coupling between the current control dynamics and

the PLL dynamics [2].

VI. EXPERIMENTAL RESULTS

The proposed control strategy is verified by means of

experiments. A 12.5-kVA 50-Hz grid-connected converter is

considered (Table I). The control method was implemented

on the dSPACE DS1006 processor board. The switching

frequency of the converter is 4 kHz and synchronous sampling

(twice per carrier) is used. The bandwidth of the AC-voltage

controller is αac = 2π ·10 rad/s and the bandwidth of the PLL

is 2π·2 rad/s. The PCC voltage reference is ug,ref = 1 p.u. The

design parameters of the current controller are αc = 2π · 400
rad/s and ζr = ζo = 1. The grid inductance Lg = 0 is assumed

in the control system.

Fig. 6(a) shows the measured active power response and

the corresponding grid-side current components igd and igq
in the strong-grid condition, when the active power reference

Pref is set with three successive steps (0.2 → 0.6 → 1 p.u.).

As expected, the response in this nominal case is critically



damped. Under these conditions, the bandwidth αc and the

sampling frequency could be freely chosen within the limits

coming from the Nyquist frequency and parameter accuracy.

Fig. 6(b) shows the measured active power response and the

corresponding grid-side current components igd and igq in the

very-weak-grid condition. It is worth mentioning that reactive

current is needed in order to keep the PCC voltage at 1 p.u.

It can be seen that the system remains stable even if the SCR

≈ 1. The same control system and parameters are used in both

cases.

VII. CONCLUSION

This paper presented a state-feedback current controller with

a reduced-order observer designed directly in the discrete-time

domain for a grid converter equipped with an LCL filter. Only

the grid-side current is measured for the current controller.

The control method does not require additional damping for

the resonance of the LCL filter. The controller provides stable

operation in the whole range of grid inductance variation from

strong-grid conditions to very weak-grid conditions. The de-

sign rules for the robust operation against the grid-impedance

variations are given. The proposed method is validated by

means of experiments.
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