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Abstract

The paper deals with an observer-based event-triggered control strategy for linear systems using only

local (that is available) variables. Sufficient conditions based on linear matrix inequalities (LMI) associ-

ated to convex optimization problems are proposed to ensure the asymptotic stability of the closed loop

and the output convergence to a constant reference in both emulation and co-design contexts. Indeed,

the proposed approach allows either to design the event-triggering rules or co-design the event-triggering

rule along with the controller gain.

Keywords: Event-triggered observer, stability, co-design, constant reference tracking, LMI.

1 Introduction

Nowadays the implementation of modern control systems is performed through digital communication net-

works using both wired and wireless technologies. In this context, aperiodic event- and self-triggering

strategies have been proposed to deal with issues such as limited communication capabilities, energy and

computation constraints. In particular, in many distributed applications the point of measurement is geo-

graphically separated from the location of the control processing. The sensor information is therefore sent

through a wireless network, where the energy consumption can be a critical issue, since these devices are in

general feed by batteries. Indeed, there are peaks of energy consumption for transmission/reception of data.

Hence, to reduce the sampling activity, i.e., the instants where the measurement information is transmitted is

of great importance. On the other hand, in classical wired networks, it can be of interest to reduce the num-

ber of messages sent through the network, alleviating in this way the traffic and problems regarding delays

and package losses. For more details, the reader may refer, for instance, to [17, 19, 23, 28] and references

therein.

Self-triggered strategies pre-define the sampling instants based on the available measurements and on

predictions of the plant response. On the other hand, event-triggered controllers consider only the current

measurements in order to define the next sampling instant. Self-triggering strategies for observer-based

controllers have been proposed in [4] based on a cascade interconnection of a discrete-time observer and a

∗This work was supported by ANR projects LimICoS contract number 12 BS03 005 01, SCIDIS, contract number 15-CE23-

0014 and STIC-AmSud project "ADNEC". We also like to thank the support of CNPq under grants 30.6210/2009-6 (PQ) and

480638/2012-8 (Universal).
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controller designed for state feedback. This approach has also been extended to deal with interconnected

systems [3].

For event-triggered strategies, [14] proposes the use of a state observer in the event generator node and

an upper bound on the estimation error for designing an event-triggered mechanism to guarantee asymptotic

stability of the closed-loop system. A more general approach is proposed in [24], where three architec-

tures for dynamic output feedback controllers are presented. The event-triggering conditions depend only

on the norms of the local variables and are obtained using Lyapunov arguments. Dynamic output feedback

controllers are also addressed in [29], where the asymptotic stability of the resulting closed-loop system is

guaranteed by a condition in terms of an LMI (Linear Matrix Inequality) and in [30] these results are ex-

tended to deal with uncertain systems. However, none of these works have addressed the problem of tuning

key parameters of the event generator to minimize the number of triggering events. In the event-triggered

control framework, one can consider two approaches. In the first one, which corresponds to an emulation

problem, the controller is given a priori (see, for example, [13], [27], [19], [2] and references therein).

The second approach, which is called a co-design problem, performs the design of both the controller and

the event-triggering rule, simultaneously, and is addressed in a few papers. The control parameters design

is then carried out by using a fully continuous-time approach [6, 21, 22, 23] or a fully discrete-time ap-

proach [12]. Of course, the attainable performances are affected by the choice of the continuous-time or

the discrete-time synthesis approach, as for example discussed in [1, 5] where some optimality criteria are

included in the synthesis phase.

In this work, inspired by [15] and [21], the design of the event-triggering strategy for observer-based

state feedback is proposed based on the decrease of a Lyapunov function. In the context of event-triggered

control, the plant evolves in continuous time, whereas the control signal is updated depending on discrete-

time events, the resulting closed-loop system can be cast as hybrid or impulsive systems. Nevertheless,

instead of considering the classical hybrid framework to study mixed continuous and discrete dynamics

as defined in [11], we use an alternative direction as proposed in [20, 23]. The paper then deals with

an observer-based event-triggered control strategy for linear systems using only local (that is available)

variables. Let us emphasize that the design of event-triggered controllers based on measured signals is

a challenging problem (see, for example, [2], [9] and references therein). Sufficient conditions based on

LMI associated with convex optimization problems are proposed to ensure the asymptotic stability of the

closed loop and the output convergence to a constant reference in both emulation (see, for example, [18,

19, 26, 28] and references therein) and co-design contexts (see, for example, [19] and references therein).

Indeed, the proposed approach allows either to design the event-triggering rules or co-design the event-

triggering rule with the controller gain. Moreover, the results we propose in the paper are complementary to

those previously cited in the sense that we pursue an event-triggering strategy for observer-based controllers

allowing to track a constant reference. The stability of the closed-loop sampled-data system under the

event-triggering strategy is formally proven based on the Lyapunov theory. Furthermore, following the idea

presented in [16], Zeno behaviors are avoided thanks to a minimum dwell-time, which is explicitly forced

as a design parameter of the LMI conditions. The paper can then be considered as a comprehensive version

of [20], where the event-triggering strategy was based on a simple and rough algorithm, without a guarantee

of the absence of Zeno phenomenon. In addition, the LMI conditions are proposed both in emulation and

co-design contexts and are expressed in a very simple and compact form, differently from those of [20].

The originality of the paper relies on the design of the event-triggered control based on two conditions:

one to ensure the continuous-time stability conditions and the second one to adjust the co-design among all

possible solutions of the first condition thanks to a tunable parameter. The problem of tuning the control

strategy is also addressed from a simple optimization criterion, which cope with the implicit objective to

reduce the number of updates by playing on the optimization of event-triggered rule and on the parameter

related to the expected average sampling rate of the event-triggered implementation.

The paper is organized as follows. Section 2 presents the system under consideration, the sampled-data
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control implementation and then the event-triggered problem we intend to solve. In Section 3, upon giving

basic ingredients on which the approach is based, the event-triggered strategy is proposed in a context of

emulation. Then, Section 4 is dedicated to the co-design of event-triggered control, that is to the design

of both the controller gain and the event-triggering rule. Section 5 proposes an optimization method to

compute the parameters of the event-triggering rule and the controller gain (in the co-design approach). In

Section 6, several simulations illustrate the application of the proposed methodology and the influence of

different parameters such as the dwell-time and the observer gain. Section 7 ends the paper with concluding

remarks and potential future works.

Notation. For any matrix A, A′ denotes its transpose and He{A}= A+A′. For two symmetric matrices

of the same dimensions, A and B, A > B means that A−B is symmetric positive definite. I and 0 stand

respectively for the identity and the null matrix of appropriate dimensions. Let us point out the main defi-

nitions of states used throughout the paper: xp, xo, x̃, (xp,eq,xo,eq,ueq), and εeq denote respectively the plant

state, the observer state, the state estimation error, the equilibrium point for the plant state, the observer state

and the input, and the difference between the observer state and its equilibrium point.

2 Problem Statement

2.1 System data

Consider the following continuous-time linear plant:
{

ẋp(t) = Apxp(t)+Bpu(t),
yp(t) = Cpxp(t),

(1)

where xp(t) ∈ R
n, u(t) ∈ R

m, yp(t) ∈ R
p are the state, the input and the output of the plant, respectively.

The matrices Ap, Bp and Cp are constant and of appropriate dimensions. In addition, the pairs (Ap,Bp) and

(Cp,Ap) are controllable and observable. Moreover, system (1) satisfies the following assumption.

Assumption 1 m ≥ p and rank(
[

Ap Bp

Cp 0

]

) = n+ p.

Assumption 1 means that the plant has no transmission zeros at zero [31].

An observer-based state feedback controller to drive the output to a given nonzero constant set-point r

is defined by:






ẋo(t) = Apxo(t)+Bpu(t)−Ko(yp(t)− yo(t)),
yo(t) = Cpxo(t),
u(t) = Kcxo(t)+Krr,

(2)

where xo(t) ∈ R
n, yo(t) ∈ R

p and r ∈ R
p are the state and the output of the observer and the constant

reference signal, respectively. Furthermore, Kr ∈R
m×p is a feedforward gain, Ko ∈R

n×p and Kc ∈R
m×n are

the observer and controller gains, respectively.

By considering the continuous-time system described by (2), the control design is carried out according

to the separation principle. The observer gain Ko is then designed to make Ap +KoCp Hurwitz and the state

estimation error dynamics is given by:

ė(t) = (Ap +KoCp)e(t), (3)

where the state estimation error, e(t)= xp(t)−xo(t)∈R
n, is globally asymptotically stable, i.e. limt→∞ e(t)=

0. Consequently, the estimation output error ey(t) = Cpe(t) also asymptotically converges to zero, i.e.

limt→∞ ey(t) = 0. On the other hand, the dynamic of the observer with the state feedback controller

u(t) = Kcxo(t)+Krr is given by:

ẋo(t) = (Ap +BpKc)xo(t)+BpKrr−Koey(t). (4)
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For a given constant reference signal r, the equilibrium point (xp,eq,xo,eq) of (3) and (4) satisfies

xo,eq = xp,eq, (Ap +BpKc)xo,eq +BpKrr = 0, Cpxo,eq = r. (5)

The two last equations of (5) can be rewritten as follows

[

Ap Bp

Cp 0

][

I 0

Kc Kr

][

xo,eq

r

]

=

[

0

r

]

. (6)

Thanks to Assumption 1, the pseudo-inverse
[

Ap Bp

Cp 0

]#

exists such that
[

Ap Bp

Cp 0

][

Ap Bp

Cp 0

]#

= In+p and from

equation (6) one gets

Kr =
[

−Kc I
]

[

Ap Bp

Cp 0

]#[
0

I

]

. (7)

Such an expression of the feedforward control gain Kr is valid for any controller gain Kc. Let us define

the error dynamics between the observer state xo(t) and its equilibrium point, εeq(t) = xo(t)− xo,eq, which

satisfies

ε̇eq(t) = (Ap +BpKc)εeq(t)−Koey(t). (8)

where ey(t) can be interpreted as an input to this system. Assuming that the controller gain Kc is designed

such that (Ap +BpKc) is Hurwitz, system (8) is input-to-state stable with respect to ey and the unforced

linear system (i.e. with ey = 0) is asymptotically stable. Since (4) is also supposed to be asymptotically

stable, it follows that limt→∞ ey(t) = 0, which implies that limt→∞ εeq(t) = 0. We can therefore conclude

that if (Ap +BpKc) and (Ap +KoCp) are Hurwitz one has limt→∞ xo(t) = limt→∞ x(t) = xeq, i.e. the output

yp converges asymptotically to the desired reference r.

While the problem of continuous-time or periodic sampled-data implementation of such a class of con-

troller has been widely studied in the literature, our objective is to address the problem of an aperiodic

sampled-data implementation of such an observer based-controller based on an event-triggered control strat-

egy.

2.2 Sampled-data implementation of the control input

In this paper, we consider that the control input, u, is not assumed to be continuously implemented but is

updated at certain instants {tk}k∈N, which form a sequence of strictly increasing positive scalar and which is

defined in the sequel. We consider that the control action is held constant between two sampling instants (tk
and tk+1) through a zero order hold. Note, however, that differently from classical digital control approaches,

the sampling interval tk+1 − tk is not assumed to be constant. In such a situation, the closed-loop system can

be represented by







ẋp(t) = Apxp(t)+Bpu(tk),
ẋo(t) = Apxo(t)+Bpu(tk)−Koey(t),
u(tk) = Kcxo(tk)+Krr,

∀t ∈ [tk , tk+1), (9)

where we recall that ey(t) = Cpe(t) ∈ R
p and e(t) = xp(t)− xo(t) ∈ R

n. Note that the error dynamics e

between the plant and he observer states is still governed by (3), the error dynamics εeq between the observer

state xo and its equilibrium xo,eq is affected by the sampled-data implementation of the control input u. Thus,

the closed-loop system can be re-written as:

{

ε̇eq(t) = (Ap +BpKc)εeq(t)+Bpδ(t)−Koey(t),
ė(t) = (Ap +KoCp)e(t),

(10)
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where we use the same formulation as in [23] to define δ(t)

δ(t) = Kc(εeq(tk)− εeq(t)).

The variable δ(t) can be seen as a measure of the difference between the continuous-time and the sam-

pled control input. Note that δ(t) depends only on the observer variables and is therefore available at the

controller node. The sensor and controller are supposed to be in different nodes of the network as depicted

in Figure 1, the SW block representing the event-triggered sampling strategy.

Plant ObserverK

K
r

y(t) x (t)

x (t )

c

o

k

u(t )k

r

o

SW

N
e
tw
o
rk

Figure 1: Observer based controller.

2.3 Problem Statement

In this paper, we are interested in the event-triggered implementation of the controller represented by (2).

This means that an event generator algorithm is included in the controller to decide whether or not the

control input has to be updated. The basic idea is therefore to decide when to sample based on the available

information. Following the event-triggered control strategy proposed in [24, 25], the sampling instants are

determined from the following logic:

tk+1 = min{t ≥ tk +T, s.t. f (δ(t),ya(t))≥ 0}. (11)

where ya represents the vector of available information to the controller (which corresponds in our case

to ya(t) = [εeq(t)
′,ey(t)

′]′ and the function f : R
m ×R

(n+p) → R has to be defined efficiently such that

the asymptotic stability of the closed-loop system (10) under the event-triggered rule described in (11) is

ensured.

The logic in (11) means that the next sampling time will occur at least T time units ahead the last one.

In this case, T is the minimal dwell-time, which will be instrumental to prevent Zeno solutions. Moreover,

note that for t ≥ tk +T the control will not be updated until f (δ(t),ya(t))≥ 0.

3 Event-triggered Strategy Design

The main objective of this work is to devise an event-triggered strategy to sample and to update the control

signal applied to the plant based solely on available signals, that is, using only the available signals u(t),xo(t)
and yp(t). In view of (11), this corresponds basically to design T and f in order to ensure the asymptotic

stability of the sampled-data system (9).

5



3.1 Preliminary result

Let us first present a general formulation, inspired from [24], [25] and on which the main result of the

event-triggered strategy developed below is based. Consider a generic linear system






ẋ(t) = Ax(t)+BKy(tk), ∀t ∈ [tk , tk+1),
y(t) = Cx(t),
u(t) = Ky(t)

(12)

where x ∈R
nA , u∈R

nB and y∈R
nC represent the state, the input and the output of system (12) and where the

matrices A,B,C and K have appropriate dimensions and are such that A+BKC is Hurwitz. The following

theorem constitutes the first contribution of the paper. It states a Lyapunov-based condition to ensure the

asymptotic stability of the closed-loop system (12) under an event-triggering strategy and to prevent Zeno

phenomena.

Theorem 1 Consider a positive scalar T , a function f : RnB ×R
nC → R and the triggering rule

tk+1 = min{t ≥ tk +T, s.t. f (K(y(tk)− y(t)),y(t))≥ 0}. (13)

Consider a positive definite function V (x), for which there exist two positive scalars ε1 and ε2 such that

ε1 ‖ x ‖2≤V (x)≤ ε2 ‖ x ‖2
. (14)

Assume that the function V (x) satisfies:

V̇ (x(t))− f (K(y(tk)− y(t)),y(t)) < 0, ∀t ∈ [tk +T , tk+1) ∀k ∈ N, (15)

and

∆VT (x) =V (x(tk +T ))−V (x(tk)) < 0, ∀k ∈ N. (16)

Then, system (12) with the triggering rule (13) is asymptotically stable and the inter-sampling intervals are

lower bounded by T .

Proof. Let us split the stability analysis in two intervals, namely [tk , tk +T ] and [tk +T, tk+1). From

(16), the function V (x) satisfies

V (x(tk +T ))<V (x(tk)), ∀k ∈ N. (17)

Consider now the interval [tk +T, tk+1). From (13) and the use of S-procedure, one obtains (15). Then,

we conclude that V̇ (x(t))< 0 and therefore

V (x(t))<V (x(tk +T )), ∀t ∈ [tk +T, tk+1), ∀k ∈ N. (18)

Hence, from (17) and (18), we conclude that V (x(tk+1))<V (x(tk)). Moreover, since system (12) is lin-

ear and since the function V (x) satisfies (14), there exists a positive scalar β such that maxt∈[tk, tk+T ]V (x(t))≤
βV (x(tk)), for all k ∈ N. Hence, associating this property to relations (13) and (15), i.e. to the fact that

V̇ (x)< 0 on the interval [tk +T , tk+1), prevents the trajectories of the system from blowing up in between

every two events. Therefore, asymptotic stability is ensured and a lower bound on the inter-sampling times

is given by T by using similar arguments to Lemma 1 in [24].

Remark 1 The event-triggered rule (13) allows to avoid Zeno behavior since the inter-sampling times are

lower bounded by the positive scalar T .

Note that Theorem 1 does not induce real conservatism in the sense that if the continuous-time condition

(15) holds then it is always possible to find a small enough T such that conditions (15)-(16) are verified at

the same time.
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3.2 Event-triggered strategy

Following the conditions presented in Theorem 1 by considering nA = n, nB = m, nC = n+ p and a quadratic

function f , a way to design the event-triggered rule using only the available signals is stated below.

Theorem 2 For given controller and observer gains Kc and Ko and a positive scalar T > 0, suppose that

there exist symmetric positive definite matrices Pε, P, Pe, Qε and Qδ of appropriate dimensions such that the

following matrix inequalities

Φ1 =













He{Pε(Ap +BpKc)} (Ap +BpKc)
′P−PεKoCp +P(Ap +KoCp) PεBp

∗ He{Pe(Ap +KoCp)−P′KoCp} P′Bp

∗ ∗ −Qδ









I 0

0 C′
p

0 0





∗ −Qε









< 0,

(19)

Φ2 =





−
[

Pε P

P′ Pe

]

Λ(T )′
[

Pε P

P′ Pe

]

∗ −
[

Pε P

P′ Pe

]



< 0, (20)

are verified with

Λ(T ) = e

([

Ap −KoCp

0 Ap+KoCp

]

T

)

+
∫ T

0
e

([

Ap −KoCp

0 Ap+KoCp

]

s

)

ds

[

BpKc 0

0 0

]

.

Then, the event-triggered sampling rule defined by

tk+1 = min

{

t ≥ tk +T, s.t. δ(t)′Qδδ(t)−

[

εeq(t)
ey(t)

]′

Q−1
ε

[

εeq(t)
ey(t)

]

≥ 0

}

(21)

is such that the origin of system (10) is globally asymptotically stable and, consequently, the output vectors

yp and yo of both the plant and the observer converge to the reference signal r. Furthermore, the inter-

sampling times are lower bounded by T .

Proof. Consider the Lyapunov candidate function for system (10) given by

V (εeq(t),e(t)) =

[

εeq(t)
e(t)

]′[
Pε P

P′ Pe

][

εeq(t)
e(t)

]

,

where the matrix
[

Pε P

P′ Pe

]

is positive definite, which is ensured by the satisfaction of (20). The goal of

this proof is to show that the LMI conditions (19) and (20) are sufficient conditions for the satisfaction of

inequalities (15) and (16) of Theorem 1 respectively. Consider the time-derivative of V along the trajectories

of system (10), for any t ∈ [tk +T, tk+1). The following expression is obtained :

V̇ (εeq(t),e(t))−δ(t)′Qδδ(t)+

[

εeq(t)
ey(t)

]′

Q−1
ε

[

εeq(t)
ey(t)

]

=





εeq(t)
e(t)

δ





′

M





εeq(t)
e(t)

δ





−δ(t)′Qδδ(t)+

[

εeq(t)
ey(t)

]′

Q−1
ε

[

εeq(t)
ey(t)

]

,

with

M =





He{Pε(Ap +BpKc)} (Ap +BpKc)
′P−PεKoCp +P(Ap +KoCp) PεBp

∗ He{Pe(Ap +KoCp)−P′KoCp} P′Bp

∗ ∗ 0
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Setting ey(t) =Cpe(t) in the previous equation leads to

V̇ (εeq(t),e(t))−δ(t)′Qδδ(t)+

[

εeq(t)
ey(t)

]′

Q−1
ε

[

εeq(t)
ey(t)

]

=





εeq(t)
e(t)
δ(t)





′

Φ0





εeq(t)
e(t)
δ(t)



 ,

with

Φ0 = M−diag(0,0,Qδ)+





I 0

0 C′
p

0 0



Q−1
ε





I 0

0 C′
p

0 0





′

.

Therefore, by applying the Schur complement to Φ0 one obtains Φ1. If the LMI condition (19),

i.e. Φ1 < 0, is satisfied, then the condition (15) of Theorem 1 with f
(

δ(t),
[

εeq(t)

ey(t)

])

= δ(t)′Qδδ(t)−
[

εeq(t)

ey(t)

]′
Q−1

ε

[

εeq(t)

ey(t)

]

is also satisfied. In order to prove that conditions (16) holds, note that solving the

linear differential equation (10) over the interval [tk, tk +T ] yields

[

εeq(tk +T )
e(tk +T )

]

= Λ(T )

[

εeq(tk)
e(tk)

]

. (22)

Hence, condition (16) becomes

∆VT (εeq,e) = V (εeq(tk +T ),e(tk +T ))−V (εeq(tk),e(tk))

=

[

εeq(tk)
e(tk)

]′(

Λ(T )′
[

Pε P

P′ Pe

]

Λ(T )−

[

Pε P

P′ Pe

])[

εeq(tk)
e(tk)

]

.

Applying the Schur complement, it can be seen that the condition Φ2 < 0 ensures the satisfaction of

(16). The proof is then concluded by virtue of Theorem 1. We can conclude that the solutions to system (10)

converges asymptotically to 0, meaning that the plant output yp converges asymptotically to the reference

r. Moreover, the event-triggered strategy (21) implicitly ensures that the length between two successive

sampling instants is lower bounded by T .

From the conditions of Theorem 2, it is important to observe that the lower bound on the inter-sampling

times is directly obtained via the satisfaction of (20) without the need of additional calculations as required

in [24]. Furthermore, one also gets the guarantee that
[

Pε P

P′ Pe

]

defines a quadratic Lyapunov function for the

discrete-time system. Theorem 2 is then the second contribution of the paper.

Note that T appears as a tuning parameter of the event-triggered problem. Contrary to most of the

approaches developed in the literature, where the dwell-time T is computed a posteriori. Moreover, for a

sufficiently small T there will exist a solution to conditions (19)-(20). However if T is too small the number

of control updates (events) tends to be larger as illustrated in Section 6. On the other hand, if T is too large,

the conditions may be not feasible. Furthermore, a large T can lead to a significant performance degradation

(when compared to the one obtained with a continuous-time implementation). This trade-off should be

considered when choosing T .

4 Event-triggered control co-design

Based on the stability condition obtained in Theorem 2, the following constructive theorem provides condi-

tions for the co-design of event-triggered control, that is for designing both the controller gain Kc and the

matrices Qδ and Qε defining the triggering rule.
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Theorem 3 Given an observer gain Ko and a parameter T > 0, suppose that there exist positive definite

symmetric matrices Wε, Pe, Qε and Qδ and a matrix Fc of appropriate dimensions such that the following

matrix inequalities

Ψ1 =













He{ApWε +BpFc)} −KoCp Bp

∗ He{Pe(Ap +KoCp)} 0

∗ ∗ −Qδ









Wε 0

0 C′
p

0 0





∗ −Qε









< 0, (23)

Ψ2 =





−
[

Wε 0
0 Pe

] [

Wε 0
0 Pe

]

Λ1(T )
′+

[

Fc 0
]′

Λ2(T )
′
[

I 0
0 Pe

]

∗ −
[

Wε 0
0 Pe

]



< 0, (24)

are verified with

Λ1(T ) = e

([

Ap −KoCp

0 Ap+KoCp

]

T

)

, Λ2(T ) =
∫ T

0
e

([

Ap −KoCp

0 Ap+KoCp

]

s

)

ds

[

Bp

0

]

.

Then, the controller gain Kc = FcW
−1
ε and the event-triggered sampling rule defined by

tk+1 = min

{

t ≥ tk +T, s.t. δ(t)′Qδδ(t)−
[

εeq(t)

ey(t)

]′
Q−1

ε

[

εeq(t)

ey(t)

]

≥ 0

}

(25)

is such that the origin is asymptotically stable for system (10) and, consequently, the output vectors of both

the plant and the observer converge to the reference signal r. Furthermore, the inter-sampling times are

lower bounded by T .

Proof. Based on Theorem 1, by considering P = P′ = 0, Wε = P−1
ε and Fc = KcWε, then pre- and

post-multiplying by diag(Wε; I; I; I) it follows that condition Φ1 < 0 is equivalent to the condition Ψ1 < 0.

Furthermore, pre- and post-multiplying Φ2 by the matrix diag(Wε, I,Wε, I) ensures that Φ2 < 0 is equivalent

to Ψ2 < 0.

Remark 2 While Theorem 2 only provides the triggering rule for prescribed controller and observer gains,

Kc and Ko and a positive scalar T , Theorem 3 provides both the triggering rule and the controller gain

Kc for given a given observer gain Ko and a given T > 0. Then the conditions of Theorem 3 provide an

event-triggered control co-design. Theorem 3 constitutes the third contribution of the paper. The design

of the controller Kc could be completed by adding some performance constraints as, for example, LQ-

performance, H2, H∞ performance or by considering some pole placement constraints to satisfy some rate

of convergence requirement of the closed-loop system.

5 Optimization of the event-triggered strategies

It can be checked that the conditions in Theorem 2 are LMIs provided that Kc, Ko and T are fixed, as

classically in an emulation context. In order to choose Kc and Ko classical design technique, possibly

adding performance criteria, can be used. It is important to note that provided that matrices Ap +BpKc and

Ap+KoCp are Hurwitz, there always exists a small enough positive scalar T such that the LMIs of Theorem

2 are feasible. Similarly, conditions of Theorem 3 are linear as soon as Ko and T are given. The choice of

the observer gain is done such that Ap +KoCp is Hurwitz with fast enough eigenvalues. Then, in order to

optimize the selection of the event-triggered parameters, we can consider the following convex optimization

problems:
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• Event-triggered rule design (Theorem 2). For given controller and observer gains Kc and Ko and a

positive scalar T > 0:

min
Pε,P,Pe,Qε,Qδ

trace(Qδ)+ trace(Qε)

s.t. (19), (20).
(26)

• Event-triggered control co-design (Theorem 3). For given observer gain Ko and a positive scalar

T > 0:
min

Wε,Pe,Qε,Qδ,Fc

trace(Qδ)+ trace(Qε)

s.t. (23), (24), Wε > 0, Pe > 0.
(27)

The dwell-time T being also a design parameter, whose role is connected to the expected average sampling

rate of the event triggered implementation one can seek for minimizing its value through problems (26)

or (27) by iteratively increasing T and testing LMI conditions. Note that convex optimization problems

proposed are aimed at reducing as much as possible the occurrences of sampling. This aspect is illustrated

in the next section.

6 Numerical example

The considered example is inspired by the model of a magnetic levitation system as mentioned. These

systems can be found in important applications such as precision bearing and transportation systems (see, for

example, the Feedback Levitation System (http://www.feedback-instruments.com/)). The system suspends a

small metal ball by means of an electromagnetic field generated by an electromagnet. The linearized model

for this system can be written as:

mẍ = k1x+ k2i

where i is the coil current, x is the ball vertical position, m is the ball mass [10]. In the paper we have chosen

reasonable values at x = 0 for the parameters m, k1 and k2 in order to obtain the data Ap, Bp and Cp defining

the plant (1). as follows:

Ap =

[

0 1

4 0

]

, Bp =

[

1

0

]

, Cp =
[

1 0
]

, r = 5. (28)

Note that the open-loop system is unstable since has a pole in the right hand side of the complex plane.

We only address the problem of the design of both the controller gain Kc and the event-triggering rules

through the matrices Qδ and Qσ, as presented in Theorem 3.

Two observer gains Ko are considered:

Ko1 =
[

−3.5 −7
]′
, and Ko2 =

[

−42 −444
]′
. (29)

These two observer gains have been selected to show the influence of the observer gain on the event-

triggered control. Indeed while the first gain leads to eigenvalues of Ap +KoCp equal to −1.5,−2 , the

second gain leads to eigenvalues equal to −20,−22.

Then, we apply Theorem 3 and the optimization problem (27) for several values of design parameter T .

Figure 2 depicts six simulations showing, for each of them, the time evolution of the state of the plant and

the observer, of a timer τ := t − tk representing when the control input is updated and of the control signal

obtained considering the initial conditions xp(0) = [−5 0]′, xo(0) = [0 0]′. We have considered here three

values for the design parameter T : T = 0.2,0.4 and 0.8.
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T Ko Kc Qδ Q−1
ε

0.2 Ko1 [−11.9240 −7.0307] 0.6484

[

4.201 0.302 −0.143

0.302 3.519 −0.202

−0.143 −0.202 4.665

]

0.4 Ko1 [−6.2664 −3.1687] 1.7767

[

2.929 0.282 −0.0067

0.282 3.366 −0.0007

−0.067 −0.007 0.3720

]

0.8 Ko1 [−5.4479 −2.7445] 1.623

[

2.595 −0.885 −0.032

−0.885 4.052 −0.018

−0.032 −0.018 6.446

]

0.2 Ko2 [−11.4222 −6.9135] 0.7464

[

4.001 0.342 −0.002

0.342 3.353 −0.006

−0.002 −0.0006 4.396

]

0.4 Ko2 [−7.3796 −3.9756] 1.1649

[

3.337 −0.038 −0.004

−0.038 3.176 −0.003

−0.004 −0.003 4.048

]

0.8 Ko2 [−5.0127 −2.5115] 9.3231

[

2.413 0.010 −0.002

0.010 3.081 −0.001

−0.002 −0.001 3.517

]

Table 1: Table showing controller gains and the event-triggered rule parameters Qδ and Qε for several values

of T and of the observer gain Ko.

Table 1 summarizes the solution Kc, Qδ and Qε obtained for each value of T and for each observer gain

considered.

It is worth mentioning that the design parameter T corresponds to a guaranteed dwell-time for the event-

triggered control system. Indeed, it can be seen in Figure 2, that the “peaks” of the timer are always greater

than the corresponding value of T .

For both observer gains, the influence of T directly appears in the number of control updates, Nu, ob-

tained during the 10s-simulations. Increasing T leads to a notable reduction of Nu, for this particular initial

condition. Nevertheless, increasing T also affects the performances of the responses. Indeed it can be seen

that the simulation obtained with T = 0.2 converges more quickly than for T = 0.4 or 0.8. Moreover for

large values of T (here 0.8), the response oscillates around the reference signal r = 5. The same behavior

can also be observed for other initial conditions.

We also note that selecting the largest value for T may recover a periodic implementation. Indeed, this

is due to the fact that at time tk +T , triggering rule f is already positive, which does not allow enlarging

the sampling interval. Therefore, the triggering rule only resumes to a periodic implementation of period

T . This remark highlights the tradeoff between the reduction of the number of control updates between

periodic and event-triggered implementations.

Comparing now the effects of considering “slow” and “fast” observer gains, Figure 2 also shows that

employing “fast” observer gains help reducing the number of control updates Nu. This is an expected result

since the triggering rule (25) depends explicitly on the estimation error ey.

7 Conclusion

This paper presented a systematic method for designing event-triggering strategies considering observer-

based controllers. The event-triggering design method is based on Lyapunov arguments and uses only

information on available signals. Hence, since a Lyapunov-based approach is considered, stability under the

event-triggered sampling strategy is formally guaranteed. The proposed implementation is parameterized

by a dwell-time T , which prevents the Zeno phenomenon occurrence.

Considering an emulation approach (i.e. the state feedback and observer gains is a priori given), design
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Figure 2: Evolution of the plant and observer states with the reference r (top), the timer t − tk (middle) and

the control input u (bottom) for T = 0.2,0.4 and 0.8.

procedure consists in fixing, first, the design parameter T and then solving a convex optimization problem

to determine, in a systematic way, the parameters of the event-triggering rule aiming at reducing as much as

possible the occurrences of sampling. It is also shown that the conditions can be adapted for a co-design of

the estimated state-feedback gain and the event-triggering rules parameters.

The work proposed lets the room for future developments. In particular, the co-design not only of the

state feedback gain but also of the observer gain is an open problem. One of the difficulties in this case is

the non-convexity of condition (24) if Ko is a free variable. One direction to overcome this problem is the

application of the results proposed in [7, 8] about the equivalence of an inequality such as (20) (containing

a matrix exponential) to an inequality where the argument of the exponential matrix appears linearly. The
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drawback in this case is that this equivalent inequality has infinite dimension, since one of the decision

variables depends on the time between two impulses (events). At the expense of a substantially numerical

complexity increasing, this can be overcome (for instance) by using polynomial matrices and applying Sum

of Squares techniques. Note also that to apply this technique, a maximal bound on the dwell-time must be

considered. On the other hand, there is another difficulty that prevents so far to obtain convex conditions

for the synthesis of Ko. It should be observed that due to the the cross product PeKo, it is not possible to

make convex (23) if Ko and Pe are decision variables. An ad hoc way to overcome this would be to apply

some iterative algorithm. Another open issue regards the extension of the approach to cope with the perfect

(or almost perfect) tracking of non constant signals (such as periodic ones, for instance). This problem

seems more involved in the context of event-triggered control, since the reference would also be sampled

aperiodically.
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