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Abstract— The focus of this paper is the detection and
diagnosis of parameter faults in nonlinear systems. The novelty
of this contribution is that it handles the nonlinear fault
distribution function. Since such a fault distribution function
depends not only on the inputs and outputs of the system but
also on unmeasured states, it causes additional complexity in
fault estimation. The proposed diagnostic tool is based on the
adaptive observer technique. Under the Lipschitz condition,
a fault detection observer and adaptive diagnosis observer
are proposed. Then, relaxation of the Lipschitz requirement
is proposed and the necessary modification to the diagnostic
tool is presented. Finally, the example of a one-wheel model
with lumped friction is presented to illustrate the applicability
of the proposed diagnosis method.

I. INTRODUCTION

Fault detection and isolation (FDI) algorithms and their
applications to a wide range of industrial processes have
been the subject of intensive research over the past two
decades. Fruitful results can be found in several survey
papers [1], [2] and books [3], [4], [5]. In general, there are
several kinds of schemes for model-based FDI: observer
based, [6], [7], [8], parity space based, [9], [10], eigen-
structure assignment based [11] and parameter-identification
based [12]. In some cases, fault accommodation strategies
are needed, i.e. the control algorithm must be adapted based
on FDI to go on controlling the faulty system. In such cases,
it is important to carry out fault diagnosis/identification
in addition to detection. Recently, some results for fault
diagnosis/identification have been obtained; for example,
see [13], [14], [15], [16], [17] for techniques based on
adaptive or robust observers, and see [18], [19] for meth-
ods using learning approach. In this paper, detection and
diagnosis of parameter faults for nonlinear systems are
investigated using adaptive observers. Compared with [18],
[20] and our previous work presented in [16], the novelty
of this contribution is that we consider difficult cases where
the nonlinear fault distribution function depends not only
on the inputs and outputs but also on unmeasured states.
Furthermore, in order to expand the applicability of the
proposed method, we propose a relaxation of the Lipschitz
condition which is typically required (e.g., [21], [22], [16])
in FDI literature. This paper is organized as follows. Section
2 describes a class of nonlinear systems with parameter
fault and introduces some preliminaries. Under Lipschitz

condition, fault detection observer is proposed in section 3.
An adaptive diagnostic rule is designed in section 4. Dis-
cussion on relaxation of Lipschitz requirement is presented
in section 5. Results of applying our technique to a one-
wheel model with lumped friction are presented in section
6, followed by some concluding remarks in section 7.

II. NONLINEAR DYNAMIC MODEL

Consider the following nonlinear system

ẋ(t) = Ax(t) + g(u(t), y(t))

+ Bθ(t)f(u(t), y(t), x(t)) (1)
y(t) = Cx(t) (2)

where the state is x ∈ Rn, the input is u ∈ R
m, and

the output is y ∈ R
r. The pair (A, C) is observable. The

nonlinear term g(u(t), y(t)) depends on u(t) and y(t) which
are directly available. The f(u(t), y(t), x(t)) ∈ R

r is a
nonlinear vector function of u(t), y(t) and x(t). The θ(t) ∈
R is a parameter which changes unexpectedly when a fault
occurs. It is assumed that θ(t) is bounded, i.e., | θ(t) |≤ θ0.
In the fault-free case, we have θ(t) = θH , where θH is a
known scalar (subscript H stands for healthy case).

III. DETECTION OBSERVER DESIGN

Clearly, the goal of the detection observer is to generate
the fault indicators (residuals). The function of the detection
observer can be replaced by other techniques, for example,
using the plant model directly if the initial conditions
are known. Prior to fault detection observer design, the
following assumptions are made:
Assumption 1: There exists a known positive constant L0

such that for any norm bounded x1(t), x2(t) ∈ R
n, the

following inequality holds:

‖f(u(t), y(t), x1(t)) − f(u(t), y(t), x2(t))‖

≤ L0‖x1(t) − x2(t)‖ (3)

Remark 1: Assumption 1 is the known Lipschitz condition,
which is typically required in the literature on FDI for
nonlinear systems, e.g., [21], [22], [16]. The removal of
the Lipschitz condition for detection observer design will
be discussed later in the paper.



Assumption 2: C[sI − (A − KC)]−1B is strictly positive
real (SPR), where K ∈ R

n×r is chosen such that A−KC
is stable.
Remark 2: The SPR requirement in the above assumption
is equivalent to the following : For a given positive definite
matrix Q > 0 ∈ R

n×n, there exists matrices P = P T >
0 ∈ R

n×n and a scalar R such that

(A − KC)T P + P (A − KC) = −Q (4)
PB = CT R (5)

To detect the fault, the following observer is constructed:

˙̂x(t) = Ax̂(t) + g(u(t), y(t)) + BθHf(u(t), y(t), x̂(t))

+K(y(t) − ŷ(t)) (6)
ŷ(t) = Cx̂(t) (7)

where x̂(t) ∈ R
n is the state estimate. Since it has been

assumed that the pair (A, C) is observable, the observer
gain matrix K can be selected such that (A − KC) is a
stable matrix. Define

ex(t) = x(t) − x̂(t), ey(t) = y(t) − ŷ(t). (8)

Then the observation error and output error equations are
given by

ėx(t) = (A − KC)ex(t) + B[θ(t)f(u(t), y(t), x(t))

−θHf(u(t), y(t), x̂(t))] (9)
ey(t) = Cex(t) (10)

The convergence of the above observer is guaranteed by
the following theorem:
Theorem 1: Consider the system described by (1), (2) and
its observer described by (6), (7). Under Assumptions 1-2,
the observer is asymptotically convergent when no faults
occurs (θ(t) = θH) , i.e., limt→∞ ex(t) = 0 and thus
limt→∞ ey(t) = 0.
Proof: Consider the following Lyapunov function

V (t) = eT
x (t)Pex(t) (11)

where P is given by (4) and (5), Q is chosen such that
ρ1

4
= λmin(Q) − 2‖C‖· | R | θHL0 > 0.

Along the trajectory of the fault-free system (9), its deriva-
tive with respect to time is

V̇ (t) = eT
x (t)[P (A − KC) + (A − KC)T P ]ex(t)

+2eT
x (t)PBθH [f(u(t), y(t), x(t))

−f(u(t), y(t), x̂(t))] (12)

From (3), (4), and (5), one can further obtain that

V̇ (t) ≤ −eT
x (t)Qex(t)

+2‖ey‖· | R | θHL0‖ex‖ (13)
≤ −ρ1‖ex‖

2 ≤ 0

Thus limt→∞ ex(t) = 0 and limt→∞ ey(t) = 0. This
completes the proof.

The proposed method will be applicable under the as-
sumption that the observer can converge during the no-fault
period of the system operation. According to Theorem 1,
after the convergence of the observer, the fault detection
can be carried out as follows:

ey(t) = 0, no fault occurred
ey(t) 6= 0, fault has occurred.

}

(14)

The observer given by (6) and (7) is referred to as a
detection observer for the system described by (1) and (2)
under assumptions 1-2.

IV. FAULT DIAGNOSTIC OBSERVER DESIGN

To diagnose the fault after the alarm (14) has been
generated, the following observer is constructed:

˙̂x(t) = Ax̂(t) + g(u(t), y(t)) + Bθ̂(t)f(u(t), y(t), x̂(t))

+K(y(t) − ŷ(t)) (15)
ŷ(t) = Cx̂(t) (16)

where x̂(t) ∈ Rn is the observer state vector and θ̂(t) is
an estimate of θ(t). The value of θ̂(t) is set to θH until
a fault is detected. It is assumed that after a fault occurs,
θ(t) = θf = constant 6= θH , | θf |≤ θ0.

Denote

ex(t) = x(t)−x̂(t), ey(t) = y(t)−ŷ(t), eθ(t) = θf − θ̂(t).
(17)

then it can be obtained that

ėx(t) = (A − KC)ex(t) + B[θff(u(t), y(t), x(t))

−θ̂(t)f(u(t), y(t), x̂(t))] (18)
ey(t) = Cex(t) (19)

As a result, the purpose of fault diagnosis is to find a
diagnostic algorithm for θ̂(t) such that

lim
t→∞

ex(t) = 0, lim
t→∞

eθ(t) = 0. (20)

The following theorem produces a convergent adaptive
diagnostic algorithm for estimating the faulty parameter θf .
Theorem 2: Under the Assumptions 1-2, the observer de-
scribed by (15) and (16) and following diagnostic algorithm

dθ̂(t)

dt
= ΓfT (u(t), y(t), x̂(t))Rey(t) (21)

can realize limt→∞ ex(t) = 0 and a bounded eθ(t) ∈
L2. Furthermore, limt→∞ eθ(t) = 0 under a persistent
excitation, where R is given by (5), Γ > 0 is a weighting
scalar.
Proof: Consider the following Lyapunov function

V (t) = eT
x (t)Pex(t) + Γ−1e2

θ(t) (22)

From (18) and (21), its derivative with respect to time is

V̇ (t) = eT
x (t)[P (A − KC) + (A − KC)T P ]ex(t)

−2eθ(t)f
T (u(t), y(t), x̂(t))Rey(t)

+2eT
x (t)PB[θf f(u(t), y(t), x(t))

−θ̂(t)f(u(t), y(t), x̂(t))] (23)



According to Assumptions 1-2, one can further obtain that

V̇ (t)≤−eT
x (t)Qex(t) − 2eθ(t)f

T (u(t), y(t), x̂(t))Rey(t)

+2eT
x CT R{eθf(u, y, x̂)

+θf [f(u, y, x) − f(u, y, x̂)]}

≤−ρ2‖ex‖
2 ≤ 0 (24)

where ρ2

4
= λmin(Q)−2‖C‖· | R | θ0L0, | θf |≤ θ0, Q >

0 is chosen such that ρ2 > 0.
Inequality (24) implies the stability of the origin ex =
0, eθ = 0 and the uniform boundedness of ex and eθ with
ex ∈ L2. On the other hand, from (18), ėx is uniformly
bounded as well. According to Barbalat’s Lemma (see [23]),
one can get

lim
t→∞

ex(t) = 0 (25)

The persistent excitation condition means that there exist
two positive constants σ and t0 such that for all t the
following inequality holds

∫ t+t0
t fT (y(s), u(s), x(s))BT BfT (y(s), u(s), x(s)) ds

≥ σI (26)

Then from (18), (21), (25) and (26), one can conclude that
limt→∞ eθ(t) = 0. This completes the proof.
Remark 3: The choice/design of K, Q, P and R is sum-
marized as follows:
i) Since (A, C) is observable, the observer gain matrix K
is selected such that (A−KC) is stable and C[sI − (A−
KC)]−1B is strictly positive real (SPR).
ii) In Eq. (4), Q > 0 is chosen such that the above defined
ρ2 > 0.
iii) The existence of solutions P and R to Eqs. (4)-(5) can
be explained by Remark 2.

V. RELAXING THE LIPSCHITZ REQUIREMENT

In the above sections, fault detection and diagnosis ob-
servers have been designed under the Lipschitz condition
which does not always hold for practical systems. In this
section, we replace the Lipschitz requirement by the fol-
lowing, weaker condition:
Assumption 1’: There exists a positive function q(·) and a
positive scalar q0 such that the following inequality holds:

‖f(u(t), y(t), x(t))‖ ≤ q(‖x‖) ≤ q0 (27)

The focus of this section is to design an adaptive diagnostic
observer under Assumption 1’ instead of Assumption 1. The
detection observer can be designed similarly and is omitted.

To diagnose the fault after detection, the following ob-
server is constructed:

˙̂x(t)=Ax̂(t) + g(u(t), y(t))

+Bθ̂(t)f(u(t), y(t), x̂(t)) + K(y(t) − ŷ(t))

+Bsgn(R)[θ0(q0 + q(‖x‖))

×sgn(y(t) − ŷ(t))] (28)
ŷ(t)=Cx̂(t) (29)

where x̂(t) ∈ Rn is the observer state vector and θ̂(t) is
an estimate of θ(t), which is obtained by the diagnostic
algorithm (21).
Remark 4: From (28), it can be seen that the Lipschitz
condition can be relaxed at the cost of an additional term
in the diagnostic observer design.

Using the same notations of ex(t), ey(t) and eθ(t) as
in section 4, then the observation error and output error
equations can be described by

ėx(t)=(A − KC)ex(t)

+B[θff(u(t), y(t), x(t)) − θ̂(t)f(u(t), y(t), x̂(t))]

−Bsgn(R)[θ0(q0 + q(‖x‖))sgn(y(t) − ŷ(t))] (30)
ey(t)=Cex(t) (31)

Theorem 3: Under the Assumptions 1’ and Assumption 2,
the observer described by (28) and (29) and the diagnostic
algorithm described by (21) can realize limt→∞ ex(t) = 0
and a bounded eθ(t) ∈ L2. Furthermore, limt→∞ eθ(t) = 0
under persistent excitation conditions.
Proof: The proof of this theorem is similar to that of
Theorem 2 and is omitted here.
Remark 5: This work is an extension of that in [14] to Lip-
schitz and bounded nonlinear fault distribution functions.
Remark 6: It is worth pointing out that a similar issue
has been investigated by some researchers, for example, [7]
based on high-gain observer, [8] using differential geometric
theory, [19] via learning approach. The contribution of the
results obtained in this paper is that it not only enables
parameter fault detection, but also provides the estimation
of the fault which is required for fault accommodation.
Remark 7: From Theorems 2-3, it can be seen that exact
estimation of constant fault can be achieved by diagnostic
algorithm (21). However, assumption of constant fault does
not always hold for practical systems. If parameter faults are
time varying, a similar method as in [16] can be used to
guarantee convergence of fault estimation error to a residual
set.

VI. APPLICATION EXAMPLE: A ONE-WHEEL MODEL
WITH LUMPED FRICTION

To illustrate the effectiveness of the proposed technique
in this paper, let us consider a one-wheel model with the
lumped tire/road friction model as described in [24]:

mυ̇ = Fn(σ0z + σ1ż) + Fnσ2υr (32)
Jω̇ = −rFn(σ0z + σ1ż) − σωω + uτ (33)

ż = υr − θ
σ0 | υr |

g(υr)
z (34)

where g(υr) = µc+(µs−µc)e
−|υr/υs|

1/2

, σ0 is the normal-
ized rubber longitudinal lumped stiffness, σ1 the normalized
rubber longitudinal lumped damping, σ2 the normalized
viscous relative damping, σω the viscous rotational friction,
µc the normalized coulomb friction, µs the normalized
static friction, µc ≤ µs ∈ [0, 1], υs the Stribeck relative



velocity, υr = (rω − υ) the relative velocity, υ the linear
velocity, ω the angular velocity, Fn the normal force, z the
internal friction state. θ denotes the parameter related to
the unexpected changes in the road conditions, which can
be interpreted as being the coefficient of road adhesion. In
normal case, θ = 1. It is assumed that only ω is measurable.

By introducing the following transformation of coordi-
nates into the system described by (32)-(34):

ξ = rmυ + Jω (35)
η = Jω + rFnσ1z (36)

One can obtain

ξ̇ = −
Fnσ2

m
ξ + uτ

+(
JFnσ2

m
+ r2Fnσ2 − σω)ω (37)

η̇ = −
σ0

σ1

η + (J
σ0

σ1

− σω)ω + uτ (38)

ż = (rω − υ) − θσ0

| rω − υ |

g(υr)
z (39)

y =
1

J
(η − rFnσ1z) = ω (40)

By defining x =





ξ
η
z



 , u = uτ , y = ω, one can rewrite

the above system as state-space form

ẋ =





−Fnσ2

m 0 0
0 −σ0

σ1

0

− 1

rm 0 0



 x

+





0
0
−1



 θ
σ0 | rω − υ |

g(υr)
z +





1
1
0



 u

+





(JFnσ2

m + r2Fnσ2 − σω)
(J σ0

σ1

− σω)

r



 y (41)

y =





0
1/J

−rFnσ1/J





T

x (42)

As in [24], the following values of parameters for the wheel
are taken:

σ0 = 40(1/m), σ1 = 4.9487(s/m), σ2 = 0.0018(s/m);

µc = 0.5, µs = 0.9, υs = 12.5(m/s);

r = 0.25(m), m = 5(Kg);

J = 0.2344(Kgm2), Fn = 14(Kgm2/s2).

Using the above numerical values of parameters, the system
matrices in Eqs. (1) and (2) are:

A =





−0.0050 0 0
0 −8.0923 0

−0.80 0 0



 ;

B =





0
0
−1



 , C =





0
4.2662
73.8927





T

.

It is easy to see that rank[C CA CA2] = 3, thus (A, C)
is an observable pair.

f(u, y, x) =
σ0 | rω − υ |

g(υr)
z

≤
σ0

µc
| rω − υ | · | z |

≤
σ0

µc
(| ry | + | υ |)· | z |

≤
σ0

µc

[

(r +
J

rm
)ymax +

| ξ |

rm

]

· | z |

4
= q(‖x‖)

and that

f(u, y, x̂) ≤
σ0

µc

[

(r +
J

rm
)ymax +

| ξ̂ |

rm

]

· | ẑ |

4
= q(‖x̂‖)

However, it can be checked that f(u, y, x) in this exam-
ple does not satisfy Lipschitz condition (i.e., a Lipschitz
constant does not exist), thus those fault detection methods
subjected to such a condition can not be used for this
practical example.

The persistent excitation condition implies that the rela-
tive velocity υr = (rω−υ) should not tend to zero in order
for the estimated parameter to converge. This in turn implies
that the internal friction state z(t) will not asymptotically
converge to zero.

In the simulation, by choosing

K =





−0.1250
−0.2308
0.0661



 ;

Q =





0.0548 0.2738 9.0206
0.2738 38.1191 29.4727
9.0206 29.4727 576.3141



 ;

One obtains

P =





5.4797 −0.0305 0
−0.0305 2.51 4.2662

0 4.2662 73.8927



 , R = −1.

Assume that the parameter fault is created as follows:

θ(t) =

{

1; t < 4 (sec)
2.5; 4 ≤ t ≤ 10 (sec)

Thus it is verified that all the assumptions are satisfied in
this practical example. By taking the parameter Γ = 100
and the sampling period T = 0.01, the simulation results
are shown in Fig. 1 and Fig. 2. It can be seen that the
parameter fault is both detected and estimated quickly.



VII. CONCLUSIONS

In this paper, adaptive observer-based detection and diag-
nosis of parameter faults in a class of nonlinear systems with
nonlinear fault distribution is proposed. Adaptive observer
design for fault detection and diagnosis is presented, and
it is shown that the Lipschitz condition can be relaxed at
the cost of an additional term in the diagnostic observer
design. A one-wheel model with lumped friction is used as
the application example to verify the effectiveness of the
approach.
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Fig. 1. Detection signal: ‖ ey(t) ‖.
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Fig. 2. The parameter fault θ (dotted) and its estimation θ̂ (solid).


