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Observer-Based Fuzzy Control for Nonlinear

Networked Systems Under Unmeasurable Premise

Variables
Hongyi Li, Chengwei Wu, Shen Yin, Senior Member, IEEE and Hak-Keung Lam, Senior Member, IEEE

Abstract—The problem of fuzzy observer-based controller
design is investigated for nonlinear networked control systems
subject to imperfect communication links and parameter un-
certainties. The nonlinear networked control systems with pa-
rameter uncertainties are modeled through an interval type-2
(IT2) Takagi-Sugeno (T-S) model, in which the uncertainties
are handled via lower and upper membership functions. The
measurement loss occurs randomly both in the sensor-to-observer
and the controller-to-actuator communication links. Specially, a
novel data compensation strategy is adopted in the controller-to-
actuator channel. The observer is designed under the unmeasur-
able premise variables case, and then, the controller is designed
with the estimated states. Moreover, the existence conditions
for the controller can ensure that the resulting closed-loop
system is stochastically stable with the predefined disturbance
attenuation performance. Two examples are provided to illustrate
the effectiveness of the proposed method.

Index Terms—Fuzzy observer-based control; Nonlinear net-
worked control systems; IT2 T-S fuzzy model; Unmeasurable
premise variables.

I. INTRODUCTION

NETWORKED control systems (NCSs) consist of nu-

merous connected subsystems [1]–[3], which exchange

information through the communication network. The subsys-

tems are distributed geographically. Subsystems transmit data

via the communication network rather than the point-to-point

wire. NCSs have some advantages, such as low cost, ease

of maintenance, installation and flexibility. Meantime, some

network-induced problems, including data packet dropouts [4]

and network-induced delays [5] have been considered in the

network environment. Recently, some results about stability

and stabilization problems [6], [7], filter design problem [8],

fault detection problem [9] for NCSs have been reported in

the literatures.
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In practical systems, the state variables are usually un-

available, which makes it difficult to utilize them to stabilize

the unstable systems. Since the observer can estimate the

unmeasurable states effectively, it plays an important role in

designing the observer-based controller [10]–[15]. In order to

handle the nonlinearity of the system, Takagi-Sugeno (T-S)

fuzzy model was proposed in [16], which describes nonlinear

systems through a group of “IF-THEN” rules. It can approx-

imate any smooth nonlinear terms to any satisfying accuracy

via “blending” all sub-systems with membership functions

[17]. Based on the T-S fuzzy model approach, considerable re-

sults about the observer-based control for nonlinear NCSs have

been reported. To mention a few, the authors in [18] proposed

a sliding mode observer-based fault estimation approach for

a class of nonlinear NCSs subject to Markov transfer delays.

The authors in [19] investigated the observer-based controller

design for a class of NCSs with multiple packet losses. The

authors in [20] studied the observer-based control problem for

a class of discrete-time systems with random measurement loss

and multiplicative noises. The problem of output tracking for

NCSs subject to network-induced delays, packet disorder, and

packet dropout was investigated in [21]. The affine dynamic

systems with quantized measurements were stabilized based

on the observer in [22]. However, the membership functions

of the observer designed in the above literatures depended

on the state variables of the plant, which are not available in

practice. To some degree, it brings some difficulties to transmit

theoretical results into practical applications. Furthermore,

even the data packet dropouts model was established in the

above papers, the successive measurement loss case can not

be handled well, which may lead to the instability of the

controlled systems.

On the other hand, the uncertainties often exist in systems

since the external environment and system components may

change. Due to using the fixed grades of membership, the

type-1 T-S fuzzy model-based approach is not able to capture

the uncertainty effectively. The type-2 fuzzy set was proposed

to extend the type-1 fuzzy set theory [23]. Based on such

theory, the interval type-2 (IT2) fuzzy set was proposed to

decrease the computational complexity [24], [25]. In view

of the advantages of the IT2 fuzzy set theory, considerable

results have been reported, such as autonomous mobile robots

[26], adaptive filter design [27], controller design for delta

parallel robot [28] and modular and reconfigurable robots [29].

The authors in [30] combined the IT2 fuzzy set with the T-S

fuzzy model to deal with the IT2 controller design problem
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for nonlinear systems subject to parameter uncertainties, and

the lower and upper membership functions were introduced

to capture the uncertainties. By using the inverted pendulum

example, the effectiveness of the designed IT2 controller

was illustrated. To consider more uncertain information, the

footprint of uncertainty (FOU) was considered and an IT2

controller was designed to stabilize the nonlinear system in

the framework of the IT2 T-S fuzzy model [31]. Both state-

feedback and output-feedback control schemes were developed

on the basis of IT2 T-S fuzzy model in [32]. The authors in

[33] proposed an IT2 filter design method with D-stability

under a unified frame. Using IT2 T-S fuzzy model, the

problem of model reduction for nonlinear systems with D-

stability constraint was investigated in [34]. The IT2 controller

designed for NCSs with data packet loss was investigated

in [35]. The authors in [36] proposed an IT2 filter scheme

for nonlinear NCSs subject to data loss and uncertainties.

However, there exist few results concerning the observer-based

controller design under the unmeasurable premise variables for

NCSs based on the IT2 T-S fuzzy model, which motivates our

work.

The problem of IT2 observer-based control is investigated

for nonlinear NCSs under the unmeasurable premise variables

on the basis of the IT2 T-S fuzzy model in this paper. The con-

sidered nonlinear NCSs are subject to random measurement

loss and parameter uncertainties. The IT2 T-S fuzzy model is

used to model the nonlinear NCSs, capturing and expressing

the uncertainties via lower and upper membership functions.

The key contributions of this paper can be summarized as

follows. 1. The membership functions of the observer-based

controller to be designed depend on the states estimated by the

observer rather than those of the plant. 2. A novel data com-

pensation and regulation scheme is adopted, which facilitates

improving the system performance. 3. A novel observer-based

fuzzy controller is designed for nonlinear NSCs under un-

measurable premise variables. Finally, some simulation results

are provided to demonstrate the effectiveness of the method

proposed.

The remainder of the paper is organized as follows. Section

II describes the considered problem. The main results concern-

ing the controller design conditions are presented in Section

III. Simulation results are given to show the usefulness of

the proposed controller design strategy in Section IV. Finally,

Section V concludes the paper.

Notation: The notation utilized throughout this paper is

standard. The superscript “T ” denotes matrix transposition

and the identity matrix and zero matrix with compatible

dimensions are represented by I and 0, respectively. The

notation P > 0 (≥ 0) stands for that P is positive definite

(semi-definite). The notation ∥A∥ indicates the norm of a

matrix A and is defined by ∥A∥ =
√

tr (ATA). l2[0,∞) means

the space of square-integrable vector functions over [0,∞), Rn

describes the n-dimensional Euclidean space, Rm×n indicates

the set of all real matrices of dimension m×n, and ∥.∥2 shows

the usual l2[0,∞) norm. In the complex matrix, the symbol

(∗) is utilized to represent a symmetric term, and we utilize

diag{...} to describe the matrix with block diagonal structure.

In addition, E{x|y} and E{x} signifies expectation of x

conditional on y and expectation of x, respectively. Matrices

in this paper without dimensions explicitly stated, we assume

they have compatible dimensions.

Fig. 1. The block diagram of the closed-loop networked control system.

II. PROBLEM FORMULATION

Fig. 1 provides the prototype of the nonlinear NCSs consist-

ing of different modules. It can be seen that communication

networks are employed to transmit data packets since the

sensor, the controller and the actuator are assumed to be

distributed in different places.

A. IT2 T-S Model

This section starts with giving the nonlinear NCSs in the

framework of the IT2 T-S fuzzy model, in which the number

of fuzzy rules is r. The T-S model corresponding to the ith

rule is given as follows:

Plant Rule i: IF f1 (x(k)) is Mi1, and f2 (x(k)) is Mi2 and,

..., and fθ (x(k)) is Miθ, THEN

x (k + 1) = Aix (k) +Biu (k) + Eiw (k) ,

z (k) = C1ix (k) +Diu (k) + Fiw (k) ,

y (k) = C2ix (k) , i = 1, 2, ..., r, (1)

where Mip (i = 1, 2, ..., r, p = 1, 2, ..., θ) is the fuzzy set,

f (x(k)) = [f1 (x(k)) , f2 (x(k)) , ..., fθ (x(k))] stands for the

premise variable, x (k) ∈ Rnx is the state, y (k) ∈ Rny is

the measured output, z (k) ∈ Rnz is the controlled output,

u (k) ∈ Rnu is the control input and w (t) ∈ Rnw is the

disturbance input which belongs to l2 [0,∞). Ai, Bi, Ei,

C1i, Di, Fi and C2i are system matrices with appropriate

dimensions. The scalar r is the number of “IF-THEN” rules

of the system. The interval sets listed below present the firing

strength corresponding to the ith rule:

Wi(x(k)) = [mi(x(k)),mi(x(k))],

where

mi(x(k)) =

θ
∏

p=1

uMip
(fp(x(k))) ≥ 0,

mi(x(k)) =
θ
∏

p=1

uMip
(fp(x(k))) ≥ 0,

uMip
(fp(x(k))) ≥ uMip

(fp(x(k))) ≥ 0,

mi(x(k)) ≥ mi(x(k)) ≥ 0,
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uMip
(fp(x(k))), uMip

(fp(x(k))), mi(x(k)) and mi(x(k))
denote the lower membership functions, upper membership

functions, lower grades of membership and upper grades of

membership, respectively.

The dynamics of system (1) is inferred as follows:

x (k + 1) =
r

∑

i=1

mi (x(k)) [Aix (k) +Biu (k)

+Eiw (k)] ,

z (k) =
r

∑

i=1

mi (x(k)) [C1ix (k) +Diu (k)

+Fiw (k)] ,

y (k) =

r
∑

i=1

mi (x(k))C2ix (k) , (2)

where

mi (x(k)) =
φi (x (k))
r
∑

ϱ=1
φϱ (x (k))

≥ 0, (3)

φi (x (k)) = ai(x(k))mi(x(k)) + ai(x(k))mi(x(k)),

0 ≤ ai(x(k)) ≤ 1, 0 ≤ ai(x(k)) ≤ 1,
r

∑

i=1

mi (x(k)) = 1, ai(x(k)) + ai(x(k)) = 1 (4)

with ai(x(k)) and ai(x(k)) are nonlinear weighting functions

and mi (x(k)) is regarded as the grade of membership.

Remark 1: The coefficients ai(x(k)) and ai(x(k)) play an

important role in computing the actual membership functions

mi(x(k)). When the parameter perturbation occurs in the

system, the actual membership function could be adjusted

timely via them and membership functions with lower and

upper bounds. Both coefficients should be able to reflect

the change of the membership function resulted from the

uncertain parameters and regulate the actual membership func-

tion timely and exactly. However, an appropriate method to

determine them is still an open problem. In [30], the authors

have demonstrated that these coefficients are affected by the

uncertain parameters and a group of coefficients correspond

to a group of fixed values of uncertain parameters. These

weighting functions are assumed to be a function of states

and uncertainties in both [30] and [31].

B. Observer and Controller Design

In this paper, the observer shares the same membership

function expressions with the plant. However, the membership

functions of the observer depend on the estimated state vari-

ables instead of those of the plant. The details of the observer

are as follows:

Observer Rule j: IF f1 (x̌(k)) is Mj1, and f2 (x̌(k)) is Mj2

and, ..., and fθ (x̌(k)) is Mjθ, THEN

x̌ (k + 1) = Aj x̌ (k) +Bju (k) + Lj(ȳ (k)− y̌(k)),

y̌ (k) = C2j x̌ (k) , j = 1, 2, ..., r, (5)

where x̌ (k) ∈ Rnx denotes the state, ȳ (k) ∈ Rny and

y̌ (k) ∈ Rny denote the measured signal transmitted through

the communication network and the measured output, respec-

tively. Lj are observer gains with appropriate dimensions to

be determined. The dynamics fuzzy observer (5) is inferred as

follows:

x̌ (k + 1) =
r

∑

j=1

mj (x̌(k)) [Aj x̌ (k) +Bju (k)

+Lj(ȳ (k)− y̌(k))] ,

y̌ (k) =
r

∑

j=1

mj (x̌(k))C2j x̌ (k) . (6)

In order to design the controller more flexibly and decrease

the complexity of the controller design, it has its own

membership functions. Additionally, it uses the estimated

state variables in membership functions.

Controller Rule l : IF g1 (x̌(k))
is Nl1, and g2 (x̌(k)) is Nl2 and, ..., and gΨ̄ (x̌(k)) is

NlΨ̄,THEN

ǔ (k) = Klx̌ (k) , l = 1, 2, ..., r, (7)

where ǔ (k) ∈ Rnu is the output of the controller and Kl are

controller parameters to be determined. The following interval

sets describe the firing strength of the lth rule:

Ωl(x̌(k)) = [ωl(x̌(k)), ωl(x̌(k))],

where

ωl(x̌(k)) =

Ψ̄
∏

q=1

uNlq
(gq(x̌(k))) ≥ 0,

ωl(x̌(k)) =
Ψ̄
∏

q=1

uNlq
(gq(x̌(k))) ≥ 0,

uNlq
(gq(x̌(k))) ≥ uNlq

(gq(x̌(k))) ≥ 0,

ωl(x̌(k)) ≥ ωl(x̌(k)) ≥ 0,

uNlq
(gp(x̌(k))), uNlq

(gp(x̌(k))), ωl(x̌(k)) and ωl(x̌(k)) denotes

the lower membership functions, upper membership functions,

lower grades of membership and upper grades of membership,

respectively.

Then, the overall fuzzy controller is as follows:

ǔ (k) =
r

∑

l=1

ωl (x̌(k))Klx̌ (k) , (8)

where

ωl (x̌(k)) =
ϕl (x (k))

r
∑

ρ=1
ϕρ (x (k))

≥ 0, (9)

ϕl (x (k)) = bl(x̌(k))ωl(x̌(k)) + bl(x̌(k))ωl(x̌(k)),

0 ≤ bl(x̌(k)) ≤ 1, 0 ≤ bl(x̌(k)) ≤ 1,
r

∑

l=1

ωl (x̌(k)) = 1, bl(x̌(k)) + bl(x̌(k)) = 1, (10)

bl(x(k)) and bl(x(k)) are nonlinear functions and ωl (x(k)) is

regarded as the grade of membership.

It can be seen that the membership functions of the observer

and the controller use the estimated state x̌(k) rather than the
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state x(k) of the plant. It, to some degree, can result in less

conservative results.

Remark 2: In the IT2 controller model, the weighting

functions bl(x(k)) and bl(x(k)) could influence the stability

capacity. That was illustrated via simulation results in [31].

In order to enhance the stability capacity, they are defined as

nonlinear functions regard to state variables, which can ensure

them to be dynamic.

Remark 3: It is obvious that weighting functions in (3)

and (9) can present the uncertain membership functions. By

reconstructing the membership function with lower and upper

membership functions and corresponding weighting functions,

the information of parameter uncertainties can be captured.

C. Communication Channels

Due to the insertion of the communication network, the

measurement loss happens intermittently and unavoidably. For

the sensor-to- observer link and the controller-to-actuator link,

the following strategies are provided to model the phenomenon

of measurement loss.

ȳ (k) = α (k) y (k) ,

u (k) = β (k) ǔ (k) + (1− β (k))K̄lu(k − 1), (11)

in which α (k) and β (k) satisfy the Bernoulli stochastic

process. α (k) and β (k) describe the imperfect sensor-to-

observer link and the imperfect controller-to-actuator link,

respectively. An assumption concerning α (k) and β (k) is as

follows:

Prob {α (k)} =

{

E {α (k)} = ᾱ, α (k) = 1,
1− ᾱ, α (k) = 0,

Prob {β (k)} =

{

E {β (k)} = β̄, β (k) = 1,
1− β̄, β (k) = 0.

Remark 4: As can be seen from (11), the data loss model

for the controller-to-actuator channel has two main functions.

One is that the last time constant data packet transmitted

successfully can be used as the present input to stabilize

the plant when data packet dropouts occur randomly. It can

compensate the lost data by itself rather than the external input.

The other is that the gains K̄l can regulate the compensation

data when the measurement loss occurs successively. It can

update the data timely and decrease the unstable source. When

K̄l = 0, (11) can reduce to the model we have used in

our previous work [35]. When K̄l = I , it can reduce to

the model used in [19]. In [37], the state used in controller

is an estimated value instead of the real one when the data

packets are transmitted successfully, which is different from

the model used in this paper. In [38], [39], the Markov chains

were introduced to model the imperfect communication links,

accounting late arrival packets and obtaining nice results.

Define the estimation error as e(k) = x (k)−x̌ (k). Accord-

ing to (2), (6) and (8), the closed-loop system is represented

as

x (k + 1) =
r

∑

i=1

r
∑

l=1

mi (x(k))ωl (x̌(k))

× [(Ai + β (k)BiKl)x (k)

+ (1− β (k))BiK̄lu (k − 1)

− β (k)BiKle(k) + Eiw (k)] , (12)

x̌ (k + 1) =
r

∑

j=1

r
∑

l=1

mj (x̌(k))ωl (x̌(k))

× [(Aj + β (k)BjKl + α (k)LjC2i

−LjC2j)x̌ (k) + α (k)LjC2ie(k)

+ (1− β (k))BiK̄lu (k − 1)
]

, (13)

e(k + 1) = x (k + 1)− x̌ (k + 1)

=
r

∑

i=1

r
∑

j=1

r
∑

l=1

mi (x(k))mj (x̌(k))ωl (x̌(k))

× [(Ai −Aj + β (k) (Bi −Bj)Kl − Lj

× (α (k)C2i − C2j) x̌ (k) + (Ai − α (k)LjC2i) e(k)

+ (1− β (k)) (Bi −Bj) K̄lu(k − 1)

+Eiw (k)] . (14)

Then, the augumented system for (13) and (14) is as follows:

ξ(k + 1) =
r

∑

i=1

r
∑

j=1

r
∑

l=1

mi (x(k))mj (x̌(k))ωl (x̌(k))

×
[

(A1ijl +A2ijl)ξ(k) + Ēiw(k)
]

z (k) =
r

∑

i=1

r
∑

l=1

mi (x(k))ωl (x̌(k))

[(C1il + C2il) ξ(k) + Fiw(k)] , (15)

where

ξ(k) =
[

x̌T (k) eT (k) uT (k − 1)
]T

,

Ēi =
[

0 ET
i 0

]T
,

A1ijl =





Θ1ijl ᾱLjC2i (1− β̄)BjK̄l

Θ2ijl Ai − ᾱLjC2i

(

1− β̄
)

B̄ijK̄l

β̄Kl 0 (1− β̄)K̄l



 ,

A2ijl =





Θ3ijl α̃ (k)LjC2i −β̃ (k)BjK̄l

Θ4ijl −α̃ (k)LjC2i −β̃ (k) B̄ijK̄l

β̃ (k)Kl 0 −β̃ (k) K̄l



 ,

B̄ij = Bi −Bj ,

Θ1jl = Aj + β̄BjKl + Lj (ᾱC2i − C2j) ,

Θ2ijl = Ai −Aj + β̄(Bi −Bj)Kl − Lj(ᾱC2i − C2j),

Θ3ijl = β̃ (k)BjKl + α̃ (k)LjC2i,

Θ4ijl = β̃ (k) (Bi −Bj)Kl − α̃ (k)LjC2i,

C1il =
[

C1i + β̄DiKl C1i (1− β̄)DiK̄l

]

,

C2il =
[

β̃ (k)DiKl 0 −β̃ (k)DiK̄l

]

.

It is obvious that

E {α̃ (k)} = 0, E {α̃(k)α̃(k)} = ᾱ (1− ᾱ) ,

E
{

β̃ (k)
}

= 0, E
{

β̃(k)β̃(k)
}

= β̄
(

1− β̄
)

.
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In order to develop the main results, the following definition

is introduced.

Definition 1. [37] For any initial condition ξ(0),
when w (k) ≡ 0, the system (15) is stochastically

stable if there exist a matrix W > 0 such that

E

{

∞
∑

k=0

|ξ(k)|2 |ξ(0)

}

< ξT (0)Wξ(0).

The purpose of this paper is to design the observer-based

controller for nonlinear NCSs satisfying the following two

conditions.

1) The system in (15) is stochastically stable,

2) Under zero initial condition, with a given positive scalar γ,

the controlled output z (k) satisfies

E







√

√

√

√

∞
∑

k=0

zT (k) z(k)







≤ γ ∥w∥2 . (16)

III. MAIN RESULTS

In this section, the sufficient stability conditions and

observer-based controller design conditions are obtained in

the following theorem, and the conditions can guarantee the

closed-system to be stochastically stable with the the given

disturbance attenuation level.

Theorem 1: With the given scalar γ, matrices Kl, K̄l and

Lj (l, j = 1, 2, ..., r) and ωl (x̌(k))− σlml (x̌(k)) > 0 (σl >

0), the closed-loop system (15) is stochastically stable with

the predefined disturbance attenuation performance, if there

exist symmetric matrix P > 0 and matrix G with appropriate

dimensions satisfying the following inequalities

Λ̄ijl + Λ̄ilj − 2G < 0, j ≤ l, (17)

σlΛ̄ijl + σjΛ̄ilj − σlG− σjG+ 2G < 0, j ≤ l, (18)

where

Λ̄ijl = Λijl +Φil, Φil =

[

Πil CT
1ilFi

∗ FT
i Fi − γ2I

]

,

Λijl =

[

Θ̄1ijl AT
1ijlP

−1Ēi

∗ ĒT
i P

−1Ēi

]

,

C̄2il =
[

tDiKl 0 −tDiK̄l

]

,

Ā2ijl =





tBjKl + fLjC fLjC2i −tBjK̄l

Θ̄2ijl −fLjC2i −tB̄ijK̄l

tKl 0 −tK̄l



 ,

Θ̄1ijl = AT
1ijlP

−1A1ijl + ĀT
2ijlP

−1Ā2ijl − P−1,

Θ̄2ijl = tB̄ijKl − fLjC2i, f =
√

ᾱ (1− ᾱ),

Πil = CT
1ilC1il + C̄T

2ilC̄2il, t =
√

β̄
(

1− β̄
)

.

Proof: Before proceeding further, the following common

quadratic Lyapunov function for system (15) is introduced.

V (k) = ξT (k)P−1ξ (k) ,

where P is a symmetric positive definite matrix to be deter-

mined. Define ηT (k) =
[

ξT (k) wT (k)
]

.

Then, we get

∆V (k) ≤ E







r
∑

i=1

r
∑

j=1

r
∑

l=1

mi (x(k))mj (x̌(k))ωl (x̌(k))

×
[

(A1ijl +A2ijl) ξ (k) + Ēiw(k)
]T

P−1

×
[

(A1ijl +A2ijl) ξ (k) + Ēiw(k)
]}

−ξT (k)P−1ξ (k)

=

r
∑

i=1

r
∑

j=1

r
∑

l=1

mi (x(k))mj (x̌(k))ωl (x̌(k))

×ηT (k)Λijlη(k). (19)

To obtain less conservative results, a slack matrix is intro-

duced with the following expression

r
∑

i=1

r
∑

j=1

r
∑

l=1

mi (x(k))mj (x̌(k))

×[(ml (x̌(k))− ωl (x̌(k)))G] = 0

Substituting (20) into (19), we can get

∆V (k) ≤
r

∑

i=1

r
∑

j=1

r
∑

l=1

mi (x(k))mj (x̌(k))

×ηT (k) [ωl (x̌(k)) Λijl + (ml (x̌(k))

−ωl (x̌(k)))G] η(k)

=
r

∑

i=1

r
∑

j=1

r
∑

l=1

mi (x(k))mj (x̌(k)) η
T (k)

× [ml(x̌(k)) (σlΛijl − σlG+G)

+ (ωl (x̌(k))− σlml (x̌(k))) (Λijl −G)] η(k).

When w(k) = 0, according to (17) and (18), we can get ̥ <

0, where

̥ =
r

∑

i=1

r
∑

j=1

r
∑

l=1

mi (x(k))mj (x̌(k))
[

(σlΘ̄1ijl − σlG1

+G1) + (ωl (x̌(k))− σlml (x̌(k)))
(

Θ̄1ijl −G1

)]

,

and G1 is the upper-left block of G, that is, G =
[

G1 G2

∗ G3

]

.

Then, we can get

E
{

ξT (k + 1)P−1ξ (k + 1)
}

− ξT (k)P−1ξ (k)

≤ −λmin (−̥) ξT (k) ξ (k) .

Computing the mathematical expectation for both sides

and summing up the both sides of the inequality from k =
0, 1, ..., c with any c ≥ 1, we get

E
{

ξT (c+ 1)P−1ξ (c+ 1)
}

− ξT (0)P−1ξ (0)

≤ −λmin (−̥)E

{

c
∑

k=0

|ξ (k)|2
}

,
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which yields

E

{

c
∑

k=0

|ξ (k)|2
}

≤ (λmin (−̥))
−1 {

ξT (0)P−1ξ (0)

− E
{

ξT (c+ 1)P−1ξ (c+ 1)
}}

≤ (λmin (−̥))
−1

ξT (0)P−1ξ (0) ,

where ξ (0) is the initial condition. When c = 1, ...,∞,

considering E
{

ξT (∞)Pξ (∞)
}

≥ 0, we have

E

{

c
∑

k=0

|ξ (k)|2
}

≤ (λmin (−̥))
−1

ξT (0)P−1ξ (0)

= ξT (0)Wξ (0) ,

in which

W , (λmin (−̥))
−1

P−1,

which means W > 0. Thus, according to Definition 1, the

resulting closed-loop system in (15) is stochastically stable.

In the following part, disturbance rejection performance of

the closed-loop fuzzy system in (15) will be considered. Under

the zero initial condition, introduce the following performance

index.

J , E {V (k + 1) |η (k)} − V (k)

+E
{

zT (k) z (k) |η (k)
}

− γ2wT (k)w (k) .

Then, we get

J = E
{

zT (k) z (k) |η (k)
}

− γ2wT (k)w (k) + ∆V (k)

≤ E

{

r
∑

i=1

r
∑

l=1

mi(x(k))ωl (x̌(k)) [(C1il + C2il) ξ(k)

+ Fiw(k)]
T
[(C1il + C2il) ξ(k) + Fiw(k)]

}

−γ2wT (k)w (k) + ∆V (k)

=
r

∑

i=1

r
∑

j=1

r
∑

l=1

mi(x(k))mj(x̌(k))η
T (k) [ml(x̌(k))

×
(

σlΛ̄ijl − σlG+G
)

+ (ωl (x̌(k))

− σlml(x̌(k)))
(

Λ̄ijl −G
)]

η(k)

=
1

2

r
∑

i=1

r
∑

j=1

r
∑

l=1

mi(x(k))mj(x̌(k))η
T (k) {ml(x̌(k))

×
(

σlΛ̄ijl + σjΛ̄ilj − σlG− σjG+ 2G
)

+(ωl (x̌(k))− σlml(x̌(k)))

×
(

Λ̄ijl + Λ̄ilj − 2G
)}

η(k). (20)

According to (17) and (18), one can have

E
{

zT (k) z (k)
}

− γ2wT (k)w (k) + ∆V (k) ≤ 0,

which suggests J ≤ 0. Then, we can obtain

E
{

√

∑∞
k=0 z

2 (k)
}

≤ γ ∥w∥2, and the proof of Theorem 1

is completed.

The conditions in Theorem 1 are coupled, which makes it

difficult to design the observer and the controller. Next, the

congruence transformation and singular value decomposition

are utilized to obtained the desired conditions. Here, the output

matrices C2i (i = 1, 2, ..., r) are chosen as a common one

(i.e., C2i = C) with the constraint of full row rank. Based

on this constraint, it facilitates designing the observer and the

controller, which can be seen in the proof of Theorem 2,

Theorem 2: Under ωl (x̌(k)) − σlml (x̌(k)) > 0 (σl > 0),
the closed-loop fuzzy system in (15) is stochastically stable

and satisfies the predefined disturbance attenuation perfor-

mance γ, if there exist symmetric matrix P > 0 and matrices

Y11 > 0, Y12 > 0, Y13 > 0, Y2 > 0, Ḡς (ς = 1, 2, ..., 9), G10,

L̄j > 0, K̃l, Ǩl satisfying the following conditions:

[

2P̃ Υijl +Υilj

∗ 2Ξ̄

]

< 0, j ≤ l, (21)

[

2P̃
√
σlΥijl +

√
σjΥilj

∗ Ξ

]

< 0, j ≤ l, (22)

where

P̃ = diag {−P,−P,−I,−I} ,
Y = diag {Y1, Y1, Y2} ,

Υijl =

[

ÃT
1ijl ÃT

2ijl C̃T
1il C̃T

2il

ĒT
i 0 FT

i 0

]T

,

P =





P1 P2 P3

∗ P4 P5

∗ ∗ P6



 ,

Ã1ijl =





Θ̃1jl ᾱĽjJ
T
3 (1− β̄)BjǨl

Θ̃2ijl AiY1 − ᾱĽjJ
T
3 (1− β̄)B̄ijǨl

β̄K̃l 0 (1− β̄)Ǩl



 ,

Ã2ijl =





tBjK̃l + fĽjJ
T
3 fĽjJ

T
3 −tBjǨl

Θ̃3ijl −fĽjJ
T
3 −tB̄ijǨl

tK̃l 0 −tǨl



 ,

C̃1il =
[

C1iY1 + β̄DiK̃l C1iY1 (1− β̄)DiǨl

]

,

C̃2il =
[

tDiK̃l 0 −tDiǨl

]

,

Θ̃1jl = AjY1 + β̄BjK̃l + Ľj(ᾱJ
T
3 − JT

3 ),

Θ̃2ijl = AiY1 −AjY1 + β̄B̄ijK̃l − Ľj(ᾱJ
T
3 − JT

3 ),

Θ̃3ijl = t(Bi −Bj)K̃l − fĽjJ
T
3 ,

Ľj =
[

L̄j 0
]

, Y1 = J3

[

J−1
2 JT

1 Y11 0
Y12 Y13

]

JT
3 ,

Ξ =









Ξ1 Ξ2 Ξ3 Ξ4

∗ Ξ5 Ξ6 Ξ7

∗ ∗ Ξ8 Ξ9

∗ ∗ ∗ Ξ10









,

Ξ̄ =









Ξ̄1 Ξ̄2 Ξ̄3 Ξ̄4

∗ Ξ̄5 Ξ̄6 Ξ̄7

∗ ∗ Ξ̄8 Ξ̄9

∗ ∗ ∗ Ξ̄10









,

Ξ1 = 2
(

P1 − Y1 − Y T
1

)

− σlḠ1 − σjḠ1 + 2Ḡ1,

Ξ2 = 2P2 − σlḠ2 − σjḠ2 + 2Ḡ2,

Ξ3 = 2P3 − σlḠ3 − σjḠ3 + 2Ḡ3,

Ξ4 = −σlḠ4 − σjḠ4 + 2Ḡ4,

Ξ5 = 2
(

P4 − Y1 − Y T
1

)

− σlḠ5 − σjḠ5 + 2Ḡ5,

Ξ6 = 2P5 − σlḠ6 − σjḠ6 + 2Ḡ6,

Ξ7 = −σlḠ7 − σjḠ7 + 2Ḡ7,
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Ξ8 = 2(P6 − Y2 − Y T
2 )− σlḠ8 − σjḠ8 + 2Ḡ8,

Ξ9 = −σlḠ9 − σjḠ9 + 2Ḡ9,

Ξ10 = −2γ2I − σlG10 − σjG10 + 2G10,

Ξ̄1 = P1 − Y1 − Y T
1 − Ḡ1,

Ξ̄2 = P2 − Ḡ2, Ξ̄3 = P3 − Ḡ3,

Ξ̄4 = −Ḡ4,

Ξ̄5 =
(

P4 − Y1 − Y T
1

)

− Ḡ5, Ξ̄6 = P5 − Ḡ6,

Ξ̄7 = −Ḡ7, Ξ̄8 = P6 − Y2 − Y T
2 − Ḡ8,

Ξ̄9 = −Ḡ9, Ξ̄10 = −γ2I −G10,

J1, J2 and J3 are obtained via the singular value decompo-

sition of the output matrix C, that is, C = J1
[

J2 0
]

JT
3

with J1J
T
1 = I and J3J

T
3 = I. The observer, controller and

compensator gains can be obtained as follows:

Lj = L̄jY
−1
11 , Kl = K̃lY

−1
1 , K̄l = ǨlY

−1
2 .

Proof: If there exist a nonsigular matrix Y , the following

inequality holds

(P − Y )TP−1(P − Y ) ≥ 0,

which yiels

P − Y − Y T ≥ −Y TP−1Y.

Thus, according to (21), the following inequality holds
[

2P̃ Υijl +Υilj

∗ 2Ξ̆

]

< 0, (23)

where

Ξ̆ =









Ξ̆1 Ξ̆2 Ξ̆3 Ξ̆4

∗ Ξ̆5 Ξ̆6 Ξ̆7

∗ ∗ Ξ̆8 Ξ̆9

∗ ∗ ∗ Ξ̆10









,

Ξ̆1 = −Y T
1 P−1

1 Y1 − Ḡ1, Ξ̆2 = −Y T
1 P−1

2 Y1 − Ḡ2,

Ξ̆3 = −Y T
1 P−1

3 Y2 − Ḡ3, Ξ̆4 = Ξ̄4,

Ξ̆5 = −Y T
1 P−1

4 Y1 − Ḡ5, Ξ̆6 = −Y T
1 P−1

5 Y2 − Ḡ6,

Ξ̆7 = Ξ̄7, Ξ̆8 = −Y T
2 P−1

6 Y2 − Ḡ8,

Ξ̆9 = Ξ̄9, Ξ̆10 = Ξ̄10.

Define

Ḡ1 = Y T
1 G1Y1, Ḡ2 = Y T

1 G2Y1, Ḡ3 = Y T
1 G3Y2,

Ḡ4 = Y T
1 G4, Ḡ5 = Y T

1 G5Y1, Ḡ6 = Y T
1 G6Y2,

Ḡ7 = Y T
1 G7, Ḡ8 = Y T

2 G8Y2, Ḡ9 = Y T
2 G9,

G =









G1 G2 G3 G4

∗ G5 G6 G7

∗ ∗ G8 G9

∗ ∗ ∗ G10









. (24)

Pre- and post-multiplying (23) by diag
{

I, I, I, I, Y −T , I
}

and

its transpose and considering (24), the inequality (17) can be

obtained. Similarly, the inequality (18) is obtained from (22).

The proof is completed.

Remark 5: The congruence transformation and singular

value decomposition techniques are utilized to obtain Theorem

2. Besides, the cone complementarity linearization technique

TABLE I
MEMBERSHIP FUNCTIONS

WITH LOWER AND UPPER BOUNDS OF THE PLANT

Lower bounds

u
M11

(x1(k)) = 1− e−
x2
1(k)

1.2

u
M12

(x1(k)) = 1− uM11 (x1(k))

Upper bounds

uM11 (x1(k)) = 1− 0.23e−
x2
1(k)

1.2

uM12 (x1(k)) = 1− u
M11

(x1(k))

also can be used to developed the conditions to design the

controller. The authors in [19] have pointed out the drawbacks

and advantages. Recently, the problem of observer-based slid-

ing model control for the system subject to the actuator fault,

input disturbances and sensor fault was investigated in [40].

The authors employed the descriptor operator to assemble the

state, disturbance and fault into the state of the new system and

nice criteria were obtained. Such idea can be used to design

the observer-based controller for the system with the actuator

fault, input disturbances and sensor fault in the IT2 T-S fuzzy

model framework.

IV. SIMULATION RESULTS

In this section, the effectiveness of the observer-based

controller design method is demonstrated via two numerical

examples. First, we consider the following numerical example.

Example 1: Consider the following discrete-time T-S fuzzy

model of the form (1):

Plant Rule i : IF f(x(k)) is Mi, THEN

x (k + 1) = Aix (k) +Biu (k) + Eiw (k) ,

z (k) = Cix (k) +Diu (k) + Fiw (k) , i = 1, 2,

y(k) = Cx(k),

where

A1 =

[

0.7238 0.4972
0.5148 0.0877

]

, B1 =

[

0.0504
0.1042

]

,

A2 =

[

0.9652 0.0969
0.4813 0.0027

]

, B2 =

[

0.0684
0.0643

]

,

E1 =

[

0.0005
0.0124

]

, E2 =

[

0.0011
0.0031

]

,

C1 =
[

−0.0749 −0.0830
]

, D1 = −0.0188,

C2 =
[

−0.1052 −0.0532
]

, D2 = −0.0425,

F1 = −0.0172, F2 = −0.0080,

C =
[

−0.1187 0
]

.

Remark 6: As we have stated above, the uncertainties can

be captured and expressed via the membership functions with

lower and upper bounds, and thus, there exist few uncertainties

in the given system matrices. More details are provided in

Example 2.

Table I and Table II provide the membership functions with

lower and upper bounds of the plant and those of the controller,

respectively.
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TABLE II
MEMBERSHIP FUNCTIONS

WITH LOWER AND UPPER BOUNDS OF THE CONTROLLER

Lower bounds Upper bounds

u
N11

(x̌1(k)) = e−
x̌2
1(k)

0.35 uN11
(x̌1(k)) = u

N11
(x̌1(k))

u
N12

(x̌1(k)) = 1− u
N11

(x̌1(k)) uN12 (x̌1(k)) = u
N12

(x̌1(k))

To ensure ωl (x̌(k)) − σlml (x̌(k)) > 0 (l = 1, 2), we

define σ1 = 0.3 and σ2 = 0.2. For demonstration, the initial

condition and external disturbance are given as follows:

x(0) =
[

0.5 0
]T

, x̌(0) =
[

0 0
]T

,

w (k) = e−0.1k cos(2k).

Fig. 2 plots the state responses of the open-loop system, from

which we can see that the system is instable without consid-

ering the controller. Next, the effectiveness of the controller

designed in this paper is demonstrated.
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x1(k)
x2(k)

Fig. 2. State responses of the open-loop system

Applying Theorem 2 with γ = 0.35 and ᾱ = β̄ = 0.8, the

observer, controller and compensation gains can be computed

as follows:

L1 =
[

−2.3112 −2.1052
]T

,

L2 =
[

−1.4308 −1.4523
]T

,

K1 =
[

−3.1263 0.5134
]

,

K2 =
[

−2.3665 0.7762
]

,

K̄1 = 0.0020, K̄2 = 0.0038.

Fig. 3 depicts the phenomena of stochastic measurement loss

with the probabilities ᾱ = β̄ = 0.8. Therein, the probability

can be determined through a prior experience. Fig. 4 and Fig.

5 plot the state estimation for unmeasurable state variables

of the plant, respectively. It can be seen that the closed-loop

system can be stabilized with the designed controller and the

designed observer also can estimate the unmeasurable states

effectively. In addition, Fig. 6 and Fig. 7 are provided to

show the responses of the input u(k) and the controller output

z(k), respectively. Fig. 8 plots the practical response of the

disturbance attenuation performance, which illustrates that the

practical response is far less than the predefined level (i.e.,

0.35).
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Fig. 3. Data packet loss with the probability ᾱ = β̄ = 0.8
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Fig. 4. State responses of x1(k) and x̌1(k)

When K̄l = I , there exist no feasible solutions to obtain

the observer, controller and compensator gains to stabilize the

system, which can demonstrate that it is necessary to adopt

the compensation scheme proposed in this paper when NCSs

are modeled. Additionally, in [37], the comparisons of K̄l = I

and K̄l = 0 have been carried out, and the advantages of the

compensation strategy (i.e., K̄l = I) over the common one

(i.e., K̄l = 0) have been demonstrated through the disturbance

attenuation level.

Example 2: To further illustrate the effectiveness of the

proposed control scheme, a single-link rigid robot system well
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Fig. 5. State responses of x2(k) and x̌2(k)
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Fig. 6. Response of u(k)
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Fig. 7. Response of z(k)

studied in [41] is considered. It is governed by the following

equation.

J V̈ = − (0.5mgl +Mgl) sin (V) + u,

where

J = Ml2 +
1

3
ml2,

and J denotes the moment of inertia, V ∈ [0 π
2 ] stands for

the joint rotation angle, m = 1.5 kg presents the mass of the
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Fig. 8. Response of

√ ∑
∞

k=0
zT (k)z(k)

∑
∞

k=0
wT (k)w(k)

load, g = 9.8 m/s2 is the gravity coefficient and M = 3 kg

means the mass of the rigid link.

Considering uncertainties existing in systems, there exist

two main methods to obtain the IT2 T-S fuzzy model. One

is in [30], [31] and [35] and the other is in [42]. The former

starts with giving the range of uncertain parameters, and then

the maximum and minimum values of nonlinear characteristics

with parameter uncertainties are calculated. According to the

approach in [43], membership functions can be obtained.

Then, lower and upper ones are computed with uncertain

information. Based on the above information, an IT2 T-S fuzzy

model is obtained. The latter is similar to traditional type-

1 T-S fuzzy model. To begin with, it neglects the uncertain

parameters and model nonlinear systems with the approach in

[43]. Then, the uncertain parameters are considered and the

range of perturbation is given. Based on the given parameter

perturbation, we define lower and upper membership func-

tions. Next, we use the latter to handle the uncertain single-

link rigid robot system. The detailed steps are as follows:

Step 1. Construct the T-S fuzzy model with sampling time

T = 0.04 neglecting uncertainties through defining x (k) =
[

xT
1 (k) xT

2 (k)
]T

=
[

VT V̇T
]T

.

Plant Rule 1 : IF x1(k) is about 0, THEN

x (k + 1) = A1x (k) +B1u (k) ,

Plant Rule 2 : IF x1(k) is about π
2 , THEN

x (k + 1) = A2x (k) +B2u (k) ,

where

A1 =

[

0 1
−(0.5mgl+Mgl)

J 0

]

, B1 =

[

0
1
J

]

,

A2 =

[

0 1
−2(0.5mgl+Mgl)

Jπ
0

]

, B2 =

[

0
1
J

]

.

Step 2. Determine membership functions without uncertainties.

f1 = 1− 2|x1(k)|
π

, and f2 = 1− f1.

Step 3. Consider perturbation in J up and down 20%. Lower

and upper membership functions are as follows: m1 = 0.8−
1.6|x1(k)|

π
, m̄1 = 1 − 1.6|x1(k)|

π
, m2 = 1 − m̄1, and m̄2 =

1−m1.

In this example, membership functions of the controller are

defined as same as those in Example 1. Fig. 9 plots lower and

upper membership functions. Obviously, uncertain J can be

repressed through lower and upper membership functions with

corresponding weighting coefficients. With sampling period

T = 0.04, we can get

A1 =

[

0.9832 0.0398
−0.8353 0.9832

]

, B1 =

[

0.0009
0.0455

]

,

A2 =

[

0.9893 0.0399
−0.5329 0.9893

]

, B2 =

[

0.0009
0.0456

]

.
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Fig. 9. Lower and upper membership functions

Other relative matrices are given as follows:

E1 =

[

0.0202
−0.0004

]

, E2 =

[

0.0100
−0.0076

]

,

C =
[

0 1
]

, C1 =
[

0.0060 0.0212
]

,

C2 =
[

0.0131 −0.0070
]

,

D1 = −0.0102, D2 = 0.0005,

F1 = −0.0024, F2 = −0.0006.

Applying Theorem 2, and giving γ = 1.35, the observer,

controller and compensator gains can be computed as follows:

L1 =
[

0.0048 0.2882
]T

,

L2 =
[

0.0051 0.2742
]T

,

K1 =
[

−2.7521 −5.3111
]

,

K2 =
[

−1.6277 −4.8504
]

,

K̄1 = 0.1502, K̄2 = 0.2064.

Other parameters and conditions without detailed definition

are same to those in Example 1. For simulation, the initial con-

ditions are given as x(0) =
[

π
6 0

]

and x̌(0) =
[

0 0
]

.

Figs. 10-13 demonstrate the simulation results for the single-

link rigid robot system with uncertainties, from which we can

see that the proposed control approach is effective.
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Fig. 10. Trajectories of x1(k) and x2(k)

0 10 20 30 40 50 60 70 80 90 100
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time(k)

M
ea
su
re
m
en
t

 

 

x1(k)
x̌1(k)

Fig. 11. Trajectories of x1(k) and x̌1(k)
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V. CONCLUSIONS

In this paper, the problem of the observer-based controller

design for a class of nonlinear NCSs subject to data loss

and parameter uncertainties and unmeasurable states has been

investigated in the framework of the IT2 T-S fuzzy model.

By using the IT2 T-S fuzzy model, the nonlinear NCSs with

uncertainties were established, in which the uncertainties are

captured and expressed via the lower and upper membership

functions and relative weighting coefficients. By designing

the observer, the unmeasurable states were estimated and
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used to design the observer and the controller. A novel data

loss model was considered to compensate and regulate the

lost data effectively and facilitate maintaining the system

stability. Using a slack matrix, less conservative results are

obtained. Moreover, conditions are developed to design the

IT2 observer-based controller ensuring the closed-loop system

to be stochastically stable with disturbance attenuation per-

formance. Finally, two illustrative examples are provided to

demonstrate the effectiveness of the method proposed in this

paper.
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