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SUMMARY

In this paper, the leader-following consensus problem of uncertain high-order nonlinear multi-agent systems
on directed graph with a fixed topology is studied, where it is assumed that the relative states of a follower
and its neighbors are immeasurable and only the relative outputs are available. Nonlinear adaptive observers
are firstly proposed for each follower to estimate the states of it and its neighbors, and an observer-based
distributed adaptive control scheme is constructed to guarantee that all followers asymptotically synchronize
to a leader with tracking errors being semi-globally uniform ultimate bounded. Based on algebraic graph
theory and Lyapunov theory, the closed-loop system stability analysis is conducted. Finally, numerical
simulations are presented to illustrate the effectiveness and potential of the proposed new design techniques.
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1. INTRODUCTION

Leader-following consensus of multi-agent systems (MASs), as one of the distributed control
problems of MASs [1-20, 25-28, 30,31], has attracted extensive attention from the control
community for the last two decades. Based on the condition that the states of a follower and its
neighbors are assumed to be measurable, the distributed state-feedback controller is constructed
for each follower in communication network. However, in practical applications, the full states of
an agent and its neighbors can not always be observed by a follower, but only their outputs are
available. Hence, how to obtain the consensus only using the output information becomes more
practical and challenging, which motivates us for this work.

On the other hand, the observer-based control approach is a common and important approach in
the case where system states are not available [21-23]. In recent years, this approach has been
extended to MASs [16]. In [16], the synchronization of identical general linear systems on a
digraph was studied, and a framework for cooperative tracking control was proposed, including
full state feedback control, observer design and dynamic output feedback control. Very recently, the
robust cooperative tracking problem was investigated for nonlinear MASs with the bounded external
disturbances in [25] where two state observers were designed. However, the aforementioned works
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In this paper, we investigate the leader-following consensus control problem of uncertain
nonlinear high-order MASs on the directed graph with a fixed topology. Compared with existing
works, the novelty and significance of our work are as follows:

1) Compared with the results in [7, 10-13, 18], the relative states of a follower and its neighbors
considered in this paper are not measurable, but only the relative outputs are available. Besides, the
systems considered in this paper is high-order uncertain nonlinear systems;

ii) Different from [23], the design of the proposed distributed adaptive observer and controller
does not require the assumption that the upper bounds of actual and optimal approximation errors
should be known exactly. In addition, it is not necessary to know the upper bounds of the leader
node’s nonlinear dynamics, external disturbance, while these bounds are assumed to be known in
[7]; and

iii) In order to avoid the controller singularity problem, the stability analysis is performed in two
cases, and a novel adaptive distributed control scheme is proposed.

The rest of this note is organized as follows. In Section 2, basic graph theory and notations,
the problem formulation, and mathematical description of neural-networks (NNs) are introduced.
In Section 3, the main technical results of this note are given, which include the design of local
state observer for each follower, and distributed adaptive neural controllers. A numerical simulation
is presented in Section 4. These simulation results demonstrate the effectiveness of the proposed
technique. Finally, Section 5 draws the conclusion.

Notations: Throughout this note, R, R™ and R™*™ denote, respectively, the real numbers, the
real n-vectors and the real n x m matrices; | - | is the absolute value of a real number; || - || is the
Euclidean norm of a vector; || - || is the Frobenius norm of a matrix; ¢tr{-} is the trace of a matrix;
o(+) is the set of singular values of a matrix, with the maximum singular value 5(-) and the minimum
singular value o(-); A(+) is the set of eigenvalues of a matrix, with the smallest eigenvalue A (+)
and the largest eigenvalue A,.x(+); matrix P > 0 (P > 0) means P is positive definite (positive
semi-definite); I denotes the identity matrix with appropriate dimensions.

2. PRELIMINARIES AND COOPERATIVE TRACKING CONTROL FORMULATION

2.1. Basic Graph Theory and Notations

Consider a multi-agent system consisting of a leader and the followers. To solve the consensus
problem and describe the information exchange between agents, basic graph theory and some
notations are introduced as in [7].

G = (v, E) denotes a weighted graph, where v = (vy,---,vy) is the nonempty set of
nodes/agents, E C v X v is the set of edges/arcs. (v;,v;) € E means there is an edge from node ¢
to node j. Its weighted adjacency matrix A = [a;;] € RNV >N, and a;; > 0if (vj,v;) € E; otherwise
ai; = 0. Throughout this paper, it is assumed that a;; = 0, the topology is fixed and G is a directed
graph. Define d; = EN a;; as the weighted in-degree of node i and D = diag(d;,--- ,dn) €

j=1
RN*N"gs in-degree matrix. The graph Laplacian matrix is L = [l;;] =D — A€ RN*N  Let 1 =
[1,++=51]" € RN*1; then L1 = 0. The set of neighbors of node i is denoted as \; = {7l(vj,v;) €
E}. If node j is a neighbor of node i, then node ¢ can get information from node j, not necessarily

vice versa for directed graph. [7]

2.2. Cooperative Tracking Problem

Consider N (N > 2) agents with distinct dynamics. Dynamics of the kth agent is described in
Brunovsky form:

Thi = Thiv1, 1=1,---,n—1
T = fr(Tr) +ur + hi(Tr, t) (1
Y = Tk,

where k=1,--- | N; T, = [xg1, - ,xk,n]T € R™ and y;, € R denote the state vector and output

of node k, respectively; fx(Zx) € R is an unknown smooth function; uy € R is the control
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input/protocol; and hy(Zj,t) € R is an external disturbance, which is unknown but bounded. In
this paper, it is assumed that T is immeasurable and only yy, is available.
Dynamics of the leader node, labeled 0, is described as :

To; = Tot1, t=1,---,n—1
T0,n = fo(Zo,1) (2)
Yo = Zo,1

where o = [zo,1," - , xo,n]T € R™ and yo € R denote the state vector and output of leader node 0,

respectively; fo(Zo,t) € R is piecewise continuous in time ¢ and locally Lipschitz in z for V¢ > 0
and Tg € R™, and it is unknown for all follower nodes.
In the following, for notational simplicity, we use e to denote e(-). For example, hy is the
abbreviation of hy(Zy, t).
Define
T
Ty = [xl,iy"' 7mN,i] , 1= 17 , N

f:[f17"' afN]Ta u = [Ula"' 7UJN]T; h:[hlv 7hN]T

then the above agents’ dynamics can be re-written as:

jfi:xi—i-ly ’L:]., ,nfl
{ . (3)
Define the ith order tracking error for node % as follows:
Oki = Ty — Tog,t =1,---,m “4)
Letd; = [51}1‘7 s ,(SN)i]T S RN, i=1,---,n, then
0; = x; — Lo 4 (5)
where £O,i = [1‘071', s ,$0J}T S RN.
For the kth node, the neighborhood synchronization error is defined as
ki = Zje]\/k ar;(zj; — Th;) + bp(zo,; — g i) (6)
whereds = 1,--- ,;n, k=1,--- | N and b > 0 is the weight of edge from the leader node to node k
(k=1,---,N), b > 0 if there is an edge from the leader node to node k, otherwise by, = 0.
Let
€; = [el,i; e 76N,’L'}T7 iO = [an T 7f0]T € RN? B = diag{blv e abN} € RNXN
Similar to (3), the above tracking error can be re-written as follows:
éi:ei-i-lv /L:lavn*l (7)
én=—(L+B)(f+uth—f)

Define the augmented graph as G = {9, E}, v = {vo, v1,- -+ ,on} and E C ¥ X 0.

Note that, it is assumed that only relative output information can be used for the followers’
controllers design in this paper. Hence, state observers should be designed for each follower to
estimate the states of it and its neighbors. Correspondingly, the practical ith order tracking error and
neighborhood synchronization error can be described as follows:

Ok,i = Th,i — To,s (8)
€k = 0k (55 — Tri) + 0k(Z0,s — Th s 9
ki ZjENk k]( ) k:,z) + k( 0,2 k,z) ( )
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where £, ; is the estimate of z ;, 7 =1,--- ,n,k=1,--- | N.
N N .~ T
Let §; = [(51’1',"' 75N,i} €RN,i:1,"' ,n, then
i =& — &g, (10)
~ A A T N
where Lo, = [1‘071', s ,l‘oﬂ € RY.

The cooperative tracking control problem considered herein is as follows:

i) Adaptive nonlinear observers are constructed for each follower in graph G to estimate as
accurately as possible the states of it and its neighbors;

ii) Based on the estimated states, the corresponding distributed adaptive neural-networks-based
controllers are designed for all followers in the graph such that all followers synchronize as far as
possible a leader with tracking errors being semi-globally uniform ultimate bounded (SGUUB).

Since fx(Zr) in (1) is unknown, neural networks (NNs) presented in [24] shall be used to
approximate it as

fr(@) = Wil S(Zy) + ex(Zi)

where ¢4, (Z},) denotes the optimal approximation error,
Zk = [Zk,la e 7zk,pk}T = [fzv 1]T
= = = 1T
Si(Zr) = [sk,1(Zk), -+ k8w (Zi))]

Dk 2
_ 1 \(Rk,j — VUk,ij
Sk’i(Zk) :exp(_ijl ( J Z])

)

(ki)
pr, is the dimension of Zj, c; > 0 is the width of the receptive field, and v;;; € R, ¢ =
1,2,--- , Ny are the center of the Gaussian function, Ny, is the number of the NNs. The ideal

weight W} is defined as

* . T = _
Wi = arg min [Zi%pz \WiESk(Zr) — fr(@n)]]

where Qu = {Wy| |[Wi|| < wy, with a design parameter w,, > 0, Q7 denotes an enough large
compact set.

From the universal approximation results, we know, NNs can approximate any continuous
function to any accuracy on compact set {1 [24].

Define the actual approximate error as follows:

wi(Z) = fu(@r) — Wil Si(Z)

where Zk = [,%g, 1}T, .’i‘k = [-'i'k,h s ,f?k’n]T.

To design appropriate controllers for the followers, the following assumptions and lemmas are
given.

Assumption 1: The augmented graph G contains a spanning tree, where the leader node is the root
with no incoming edges from the follower nodes.

Assumption 2: There exists an unknown real constant My, > 0 such that | fo(Zo,t)| < Mjy,.

Assumption 3: For each node k, there exists an unknown real constant My, > 0 such that
|Pe(@g, t)| < My p.

Assumption 4: There exist unknown real constants My . >0 and My, >0, k=1,2,--- | N,
such that |5 (Zy,)| < My, . and |wg(Zk)| < My, over a compact set.

Lemma 1 [30]: Suppose that Assumption 1 holds. Let

R = ["ilf" a’iN]T - (L+B)_1la
q= [qlf" »QN} - (L+B)_1l7
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P = diag{p;} = dz‘ag{ﬁ},
qi

Q=P(L+B)+(L+B)"P,

Then P > 0 and @ > 0.

Lemma 2 [7: ||6;]| < ||eill/a(L + B),i=1,--- ,n,where o(L + B) is a minimum singular value
of matrix L + B.

Remark 1: If the full sates of an agent and the nodes in its neighborhood are available, the control
objective is to design distributed state feedback controllers for all follower nodes in the graph such
that tracking error §; is SGUUB, for all ¢ (i = 1,- - - ,n). The detailed design can be seen in [7] and
[26].

3. MAIN RESULTS

3.1. Design of Local Observers

In order to design the observers, (1) can be re-written as:

{a'ck = (Ao + KC)Zj, + G(fr + ur + hi)

yr = CTy,
where
—k1 0 k1
Ao=1 I ,G=|:|,K=|:|,C=[10,---,0]
-k, O -+ 0 1 kn
and k; € R, i =1,--- ,n, are chosen such that A, is a strict Hurwitz matrix. Thus, given a matrix

Q, > 0, there exists a matrix P, = POT > 0 satisfying

P, A, + AT P, + P,GGTP, = —-Q, (11)
The local observer for each follower k (i = 1,--- , N) is designed in the following form:
{xk :A?fk‘FKyk“v‘G(fk‘f'uk) 12)
Uk = Cy,
where 7;, = [Era, -, :ic;fm]T is the state vector of the kth observer used to estimate the state of the

kth agent, f, = W.'Sy.(Zy) is the estimate of unknown function fy.
Let us define the state estimation error Zj, = Z — 2, the state estimation error dynamics can be
described as follow: )
§k=AO§:k+G(wk + hk)
where WE = fk — WES}C(Z]C), Zk = [ig, l]T
Define the following Lyapunov function

Vio = T1 Py, (13)
Differentiating V, , with respect to time ¢, one has
[P,A, + AT P,) #1422, P, G (wy, + hy)
(P,Ao + AT o Py + PoGGT Po)iy, + (wi + hi)” (14)

<
=T =~ 2 =T =~
< - QoTr + Mk,wh = —Zy QoTr + Mk, wh

where pi; wn = le wn is an unknown real constant, Mj, ., = My, + My (Jwi| < M, |hi] <
M. ).
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6 P. SHI, Q. K. SHEN

Remark 2. Clearly, if pu1, .., = 0, the above error dynamics is stable. This fact will be shown in the
controller design. It is necessary to point out that, in [23], the term ju, ., in (14) is assumed to be
known. In our work, such assumption is removed by using a suitable adaptive compensation term
defined later.

3.2. Design of Controllers and Stability Analysis

Starting with the design of the distributed adaptive controller, it is assumed that the state of the
leader can be accessed by its neighbors as in [16].
From the local observer (12), one has

Bhi = Erip1 +kigr,i=1,-- ,n -1
Ehm = fr + up + kiye
gr = Ciy,
Define é; = [é14, - ,éNﬂ']T, where éj;, k =1,--- , N are defined in (9), then one has
éi:éi 1—(L+B y,i=1,---,n—1
= B) )
wherey = [y1,--- ,yn]|T.
Define the filtered tracking error S for the kth node as follows:
n—1
S = Zi:l Br,iCk,i + €k.n (16)
where 3 ; = Cfl__llaz_i,i =1,---,n—1,a, > 0 denotes a design parameter,

Cil=(mn—-1)n—2)-(n—i+1)/((i-1)(i-2)---1)
Let
En(t) = [ra(t), - enn(t)”

Lemma 3 [29]: Let §j, be defined by (16), and then,

1) if 3 = 0, then lim;_, o€ 1(t) = 0;

2) if |§k‘ < ég, ék(O) € €, , then ék(t) € Q,,Vt>0;

3) if |§k| < ¢eg, ék(O) ¢ Q,, then IT}, = (n—1)/ag, >Vt > Ty, ék(t) €, , where ., =
{en()] eri| <207 Vaj e, i=1,--+ ,n,k=1,2,--- N, ¢ is a design parameter.

For simplification, let

Bri=-=Bni= X, \p=1,i=1--,n
then
Sp=Mér1+ + A\lpn
Let

then it follows

Further, one has

A7)
=7 =3 ML+ By~ (L4 B +u- f,)
where v = 27" M.
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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INT. J. ROBUST. NONLINEAR CONTROL 7

Since X X
fo=Ffo—(fuo — fr) = fro —wi
one has
f=f=(=-H=w'S+e-w
where

W*T = diag{Wl*Tv"' 7WJ>:/T}7 S = [S?(Zl) aSIY\}(ZN)]T
= [Ela"' 75N]Ta w = [w17"' 7WN]T

Hence, (17) can be thus re-written as
A n ) _ *T _ _
S—’y—zizl)\z(L—i—B)y (L+B)(W"S+e-—w+u—f))

Define

N §Tps
Vs = Zk:l Vk’o + 2

where P = PT and V}, are respectively defined as in Lemma 1 and (13), respectively.
Differentiating V; with respect to time ¢, it yields

. N .. N T
Ve <— Zk:l 2y, Qoy + Zk:1 Wi wh + 87 Py—
T oy _ T «T q_
3 PZHMLMB)y P(D+ B)W*TS (18)
8'P(D+B)(e —w— f,) = s" P(L + B)u+
TPAW TS + sTPA(e —w - f)
Now, let us consider Efj:l Hkwh i (18).

First, let us choose a design real constant w > 0.
If ||s|| > /o, then one has

N N
_ ~112 Mk ,wh
Zk:l Hk,wh = Zk:l HSH H‘§H2
N
~ M. wh
< 2 Mk,
< Zk:l |15 = (19)
N
_ Z §T§Hk,wh
k=1 w
=3TAM,
where k =1,--- , N,
lffk,wh

AS = dlag{('gl)a Tty (‘§N)}5 Mlt = [ML/M e 7MN7/L}T7 Mkvl‘/ -

Since P > 0 and D + B > 0 are diagonal matrices, then

ZN - $TP(D + B)AsM,
k=1 M =5 (P)a(D + B)
§TP(D + B)A M,

= o(D + B)

where .
> — 20

922 0P (20)
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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8 P. SHI, Q. K. SHEN

is a design parameter. Hence, (18) can be developed as follows:

$TP(D + B)AM, B
a(D+ B)

§Tp Z’_il N(L + B)y — 8P(D + BYW*TS—

. N ~
Vo<=) @ Qoin + g

(21)
s'P(D+B)(e —w— fo) — s"P(L + B)u+
§'PAW TS + s"PA(e —w— )+ 5" Py
In the following, define the notation: @ = e —e.
Let WT = diag{W{,--- , Wk}, which denotes the estimate of W*T = diag{W;T,---  W;T}.
Define control law as follows:
0, if I8l < Voms
1 n ~ ~
u={ D+B) 'y =3 Ny~ AMeost (22)
g2M . /(a(D + B))] — g13, otherwise
where @ > 0 is a design parameter,
~ ~ ~ T A ~ _
f = [fla"' 7.fN] ) fk = W]?Sk(Zk)
fr and W), are the estimates of f, and Wy, respectively; Zj, = [zl 1]T,
~ . - T
Mswf = [Ml,swf; T aMN,swf]
Mk,gwf is the estimate of My, .., ¢,
Mk,swf = Mk,s + Mk,w —|—Mf0, k= 17' e ,N
M .. 18 the estimate of M,,, g1 > 0 and g» are design parameters, which satisfies
910(Q) Ao
—(r+ a(P)a(A) >0 23
) Ot a)e(P)aA) @)
where > 0 is a parameter,
A=max{\;, -+, A\, }and A = min{A\;, -, A\, }
Define the adaptive laws as follows:
D, if [|W]| < wp or ||W|| = wy and W9, < 0;
W= WivTe ) ) (24)
Uy — Aizw, if |W]| = wp, and W, > 0
Wl
Dewfy if [Mewl] < Wews or || Mewyl| = wews
and ]\?waﬁswf <05
]\Zewf: ]\?wf]\?{, ﬁwf ~ (25)
ﬁewf - 5$—e)”25’ lf HMawa = Wewf
(1M ewoyl|
and Mewfﬂwf >0
By if |IM]] < w, or ||M, ]| = wy and M9, < 0;
M}A = MMZ\?E&H . S kS (26)
U, — ———————, if |[|[M,|| = w, and M9, >0
(1M ]2
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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INT. J. ROBUST. NONLINEAR CONTROL 9

where R
=mSs'P(D+ B) —nqwW

ﬁawf = 772§TP(D + B)AS - nMdeﬂawf

T
n3g25" P(D + B)Aq 2
—n,M
Q(D‘i’B) 77# 12

W > 0, Wer > 0, wy, > 0, nw > 0, Nagge > 0 and 1, > 0 are design parameters.

The following theorem is presented to prove the stability of the closed-loop system.

Theorem 1: Consider distributed system (1) with leader node (2) under Assumptions 1-4, local
state observer (12), distributed control law (22) and adaptive laws (24)-(26), if there exist matrices
K, P,= POT > 0 and @, > 0 satisfying (11) and design parameters g, go and r are chosen such
that (20) and (23) hold, then one has the following results:

(i) The observation errors Zy;, k=1,2,---,N, i=1,2,---,n are semi-globally uniform
ultimate bounded and belong to an adjustable set €2;; and

(i) All followers in the graph synchronize to the leader node O with the tracking errors dy ;(¢),
k=1,2,--- ,N,i=1,---  n being semi-globally uniform ultimate bounded and belonging to an
adjustable set (25, where

Qz = {fk,i
20

(i—1) , (i—n)
Qs = { Okil [0k,s] < VN Doy RooP) Ho }
" e Q(L + B) A0)\7“m'n(P0)

where g = ’/\L—g +V(0), y = pwar + fbs,

9, =

~ Ho
Tei| < 4| ————=
| h | >\0)\min(P0) }

g3 My M,

0(P)o(A) o Tg o ifT
s = S S Zusw [\4 /\4 cw
12 Ar ( + ewf f+ ewf f+ 2(l)+ B))

nw N "M de Y My 37T 77
= Wy wTw M2 M., ML,
MW M o 7( )+ 2 cwf + oy e M
A . {Amin(Qo) %glg(Q) (5T + %%) (P)a(A) nw  NMde My }
= min ) Y ) Y o
0 Amax(Po) ( ) 27}1 2?72 2
N - 5T(0)P3(0)
V() =) #{(0)Pz(0) + 7+

(W OW©O) A?i,fmm?wf(m M (0)M,,(0)
2’[71 2772 2773

Proof:
Noting that, the following development will be given for two cases.
Case 1. ||5|| > V&
Substituting the control law (22) into (21), one has
V,=— 8" P(L+ B)s+ §"P(D + B)WT 5+

= M
STP(D + B)A (Mo + —228 ) L sTPAWTS + 5T PA -
§"P(D+ B)A4( f+g(D+B)) WS+ (e+w—1f,)

. M _ N oo
STPAA (Mapy + =221 ) £ 5TPAD + B) 'y = " 5 Qui

o(D + B)
Since A
R = _ _ . 0(P)o ~ =
s'PAWTS < 5(P)a(A)rsTs + %STWWTS
T
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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10 P. SHI, Q. K. SHEN

one has )
Vi< —q8TP(L+B)s+5"P(D+ BWTS+
§TP(D + B)Ay(Mews + g2M,,/a(D + B))+
515 (P)a(A)sT's + (a(P)a(A)/(4r))(STWWT S+
Mg;;stwf +waM5wf+
Q%MEMM +5(P)5(A) T,
a?(D + B) T
N

~T ~
T T
2o T Qo

Since _
1 A

2 n- )\2 2

e < —§

Tk E i1 kitl = 2%k

we have - -
N N ) 2
T  _ 2 A2 2
7= Zk:l Tk S Zk:l ?Sk )\2 Zk 1 S =
and ) 3
Vi< —q8"P(L+ B)s+5TP(D+ B)WTS+

T Y ﬂ
STPD 4 B)A(Mews + 5 )+ 27)

2?2 T N
Gr+ —5)a(P)a(A)8 8+ ps =Y T Qo

where A a
A gg MEMH

a(P)o(A) o7 T T 17 T
a e My Meos &+ MewpMewr + arp B))

Define
V=Vs+ Vi
where .
t’I"{WTW} waMewf MEMN
Vw = +
2m 2n2 2n3

andn; > 0,1 = 1,2, 3 are design parameters.
Differentiating V' with respect to time ¢ and considering (27), we have

. 1 )2
V<—gs" P(L+B)s+(5r+4 ;)’(P)&(A)ng_,_

js + 8TP(D + B)WTS + §TP(D + B)As(ﬁswﬁ
- (28)
g2 M, TV
o2 = M _
g(D—i—B)) tT{W } wf ewf

1 = 2 ~ =~
%MMTMM — Zk:l .’L‘%Qoﬂﬁk
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Substituting adaptive laws (24)-(26) into (28), we have
Y2

V <—g18TP(L+ B)3+ (5r + S )o(P)a(A)sT s+

M (W) 4 L NI N+

m 2
Ny = A N ~
MMy =3 FEQoE
Since N .
. tr(W+ W tr(W*" W+
() < - L) i )
2 2
~ Ey ]\?T ]\:4 MT M
ML, Meyp < — WfQ =l wag !
rp o MiM, | MM,
poH = 2 2

then we have -
- 1A
V <—g8TP(L+ B)s+ (57 + EP)&(P)&(A)éTé—

nw T M de = My 35T 3
—tr(W* W ML M wf — MT M (29)
2m ( )~ 2y el el T g nt
N = =
bs + pwnr — Zk:l Ih Qo
where nw T Nmd Um
= Ztr(WH W ML M., VIT M
ILLWM 2771 {r( )+ 277 wa f + 27,]3 14 I
Let 11, = piw s + prs and
_ B
A . {)\min(Qo) %glg(Q) - (5T + ﬁ%)U(P)O—(A) nw  NMde 77,u }
= min ) — — [P Y
0 >\max( o) U(P) 2771 2772 277
then one has
V< =XV + [Lg
Further, we have
o Né Aot
0 < V() <52+ [V(0) = e ™" < po (30)
Ao Ao
where po = ’;—é +V(0).
Because
)\mm(P )*%g*%k S Vk,o - i‘zpo-%k S v
one has
= Ho
Trl| <
Since T = [T14,- -+ ,2n.]T, we have further
(31

1Z1.4) < vV 10/ (MNoAmin(Po))

This means that the state estimation errors Z;, k =1,--- ,N,i=1,--- ,n are SGUUB, belong to

set Q.
Since o(P)||3||> < 2V, < 2V, then |[5]| < 4/ 2“(0 ;- Further, one has

. 2o
<
8l < Ao (P)
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Similarly, we have,

~ 2 ~ 2 - 2
||Wk” S "71“07 |Mk,ewf| S 772M0a |Mk,u| S 310
Ao Ao Ao

This means that all signals in the closed-loop system are SGUUB.

In the following, we will show that the tracking error 0 ;, k=1,---,N, i=1,---,n are
SGUUB.
Sinee |5 | < )\02;‘(013), from Lemma 3, we have
5 i— i— 240
| < 9G—1) (i=n)
|61€,’L| = Qg )\OQ(P)

. N R . T
Since é; = [é14,- -+ ,én,] ,one has

5 i— i—n 2110
Al < VN2 i)
||€||_ Qg )\OQ(P)

Further; from Lemma 2, we have the following result:

i— i—n 2
VA D
o(L+ B)

110:]] < 32)

Since 0= z; — z,; and 5; = & — Zg;» one has §; = S; +x; —&; = 6; +7; and [10:]] < ||(§1H +
||Z;||. Further, one has

i— (i-n) [ 2
[16:]] < Rk v \/
’ )\0 min PO

o(L+ B)
Since 6; = [61,4,-++ ,0n.4]T, then

240
Xoa(P)

Q(L + B) \//\OAmin(PO)

which means that the practical tracking error d, ; is SGUUB, belong to set {2s.

Case 2: ||§]]| < V&
Since § = [41,---, &n]7, it follows ||3|| < /= that

|01 < (33)

||§k||<\/5, for k=1,2--- N

which implies that $; is SGUUB. Similar to the analysis in Case 1, we can obtain from Lemma 3
that, éx; (i = 1,2,--- ,n) is also SGUUB. Since é; = [é1,4,- - ,én |’ , we further obtain that ||¢;||
is SGUUB. Furthermore, from Lemma 2, we finally obtain that 31@ is SGUUB.

From the above analysis, we know, if ||§|| < /@ and |$;| < /@, then J; is bounded, which
means that the control objective has been achieved. This implies that no control action should be
taken for less power consumption.

From the analysis in Cases 1 and 2, it follows that, under distributed control laws (22) and adaptive
laws (24)-(26), both the observation errors and the tracking errors are SGUUB, which means the
consensus control objective defined in Section 2 has been obtained. This proof is completed.

Remark 3: Similar to [24], it is assumed that W} is bounded. From the adaptive law defined by
(24), Wk is bounded. Since W)} and Wk are bounded, and Sk(Zk) < 1, WTS is also bounded. From
Assumptions 2-4, i.e., ), wy and fq are bounded M., 7 and M, thus are bounded. In addition, the

adaptive law defined by (25) ensures that M cwf 15 also bounded. Furthermore, M cwf 1S bounded,
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too. Because W7'S, M., ; and MZ, s are bounded, if 7 > 0 is chosen to be sufficiently large, then
1ts becomes sufficiently small. Similarly, since W*, M., ¢ and M# are bounded. Hence, if ny,
NMde» Tu> M1, M2 and 73 are chosen appropriately, then s can become small enough. Hence,
o (= s + pwar) can become sufficiently small by choosing appropriately the above parameters,
which means all signals in the closed-loop system can converge to a sufficiently small neighborhood
of the origin, and implies that the control scheme presented in this paper can guarantee that the
underlying system has a desired control performance.

Remark 4: Recall (19). Clearly, singularity takes place at the point ||§|| = 0, where the control
objective is supposed to be achieved. However, the main task in this paper is to design a
distributed controller for each follower such that it can asymptotically synchronize to a leader with
synchronizing errors being SGUUB. In addition, § = 0 is difficult to obtain due to the external
disturbances. Hence, from a practical point of view, when ||3|| < y/w, which implies |dy ;| is less
than another constant shown in (33), the control objective is supposed to be achieved. Therefore,
it is more practical that, once the system reaches its origin, no control action needs to be taken to
reduce power consumption.

4. SIMULATION RESULTS

Consider a 5-node digraph G and a leader node described in Figure 1, where the numbers on the
edge denote the weights between corresponding two nodes. The dynamics of the leader node is
described as follows:

0,1 (t) = wo2(t)
d0,2(t) = wo3(1)
%0,3(t) = —x0,2 — 20,3 + 3sin(2t) 4 6 cos(2t)—
(20,1 + T2 — 1)*(wo,1 + 4mo2 + 3z03 — 1)/3

The follower nodes are described by third-order nonlinear systems in the form of (1) with

.1.7173(25) = Il,g Sin($171) -+ cos (I173)2 “+ U1 —+ h1

i93(t) = =212 + 0.01z9,1 — 0.01(z2,1)> + uz + ho

&33(t) = w32 + sin(xsz) + us + hs

B43(t) = —=3(wa + 242 — 1)2(564,1 +xa0+a43—1)—

Za,9 — a3+ 0.55in(2t) + cos(2t) + usg + ha

T53(t) = cos(xs,1) + us + ds
where the disturbance hy(k =1,---,N) is random and bounded by |h;| < 1. The initial states
are chosen as follows: 2o = [0,0,0]", 21 = [3,-3,3]", 2o = [2,-2,2]", 25 = [1,-1,1]", 24 =
(2,2, -2]", x5 =[-3,3,-3]", &1 =[3,2.5,-2]", &2 =[2,2,-1.5]", &3 =[1,1.5,-1]", &4 =
[—2,1,-0.5]", &5 = [-3,0.5,1]". The weight W, € R®, k=1,--- .5 are taken randomly in
interval (0, 1]. The sample time 0.08s. From Figure 1, we know

0 0 2 00 5 0 0 0 O 2 0 0 0O
10 0 0 O 0 0 00O 01 000
A=10 4 0 0 0|,B=1]0 0 O 0 O0|,D=(0 0 4 0 O
300 00 0 00 0O 00 0 30
0 00 0O 0 00 0 5 00 00O
2 0 -2 00 7T 0 -2 00
-1 1 0 0 0 -1 1 0 0 0
L=|0 -4 4 0 O0|,L+B=|0 -4 4 0 0
-3 0 0 3 0 -3 0 0 3 0
0o 0 0 0 O 0o 0 0 0 5
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2015)
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3 2 \Cjb
Figure 1. Communication topology G

Then, we can obtain ¢, P and @ in Lemma 2.1,

0.7000 1.4286 0 0 0 0
1.7000 0 0.5882 0 0 0
g=119500|, P= 0 0 0.5128 0 0
1.0333 0 0 0 0.9681 0
0.2000 0 0 0 0 5.0000
20.0000 —0.5882 —2.8571 —2.9042 0
—0.5882 1.1765 —2.0513 0 0
Q= [—2.8571 —2.0513 4.1026 0 0
—2.9042 0 0 5.8083 0
0 0 0 0 50.0000

Further, we have the singular values of A, D + B, P and Q: the singular values of A: 4.0000,
3.1623, 2.0000, 0, 0; the singular values of D + B: 7, 5, 4, 3, 1; the singular values of P: 5.0000,
1.4286, 0.9681, 0.5882, 0.5128; and the singular values of (): 50.0000, 21.0388, 5.5209, 4.5977,
0.0701. Hence, 5(P) = 5.0000, o(P) = 0.5128, 5(Q) = 50.000, o(Q) = 0.0701, 5(A) = 4.0000,
a(D + B) = 1.0000.

In this simulation study, we choose the design parameters as follows: \y =1, Ay =2, A3 =1,
m =12 =n3 = 100, nw = Nmae = 1 = 0.01, py = pway = 0.01. In addition, we set r = 100,
g1 = 4000 and g5 = 3, which guarantee (3.10) and (3.12) holds.

The simulation results are presented in Figures 2 and 3. From Figure 2, it can be seen that the
states of the observers can asymptotically converge to the actual states with bounded observation
errors. As shown in Figure 3, it is shown that, under the distributed control laws defined by (3.24),
tracking errors asymptotically converge to a small neighborhood of the origin and a desired tracking
control performance is obtained. The simulation results demonstrate the effectiveness of the adaptive
consensus control scheme proposed in this paper.

5. CONCLUSION

This paper investigates the leader-following consensus problem of uncertain high-order nonlinear
MASSs on directed graph. Nonlinear adaptive observers are proposed for each follower in the
graph to estimate the relative states. Using the estimated states, observer-based distributed adaptive
controllers are designed to guarantee that all followers asymptotically synchronize a leader with
tracking errors being semi-globally uniform ultimate bounded.
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= = = Observeration error of x, N el Observeration error of X2/ = = = Observeration error of x,,
S Observeration error of x, | "] Observeration error of x,, ol Observeration error of x,,
/= = Observeration error of x,_| += = Observeration error of x,,, /= = Observeration error of x,,
; Observeration error of x_ ||
—e— Observeration error of x,, 15| =——a— veration error of Xg, —e— Observeration error of x, |
15 T
10 T
50 7
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4 w -10 ‘
0 5 10 0 5 10
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Figure 2. The time profiles of the observation errors
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