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SUMMARY

In this paper, the leader-following consensus problem of uncertain high-order nonlinear multi-agent systems
on directed graph with a fixed topology is studied, where it is assumed that the relative states of a follower
and its neighbors are immeasurable and only the relative outputs are available. Nonlinear adaptive observers
are firstly proposed for each follower to estimate the states of it and its neighbors, and an observer-based
distributed adaptive control scheme is constructed to guarantee that all followers asymptotically synchronize
to a leader with tracking errors being semi-globally uniform ultimate bounded. Based on algebraic graph
theory and Lyapunov theory, the closed-loop system stability analysis is conducted. Finally, numerical
simulations are presented to illustrate the effectiveness and potential of the proposed new design techniques.
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1. INTRODUCTION

Leader-following consensus of multi-agent systems (MASs), as one of the distributed control
problems of MASs [1-20, 25-28, 30,31], has attracted extensive attention from the control
community for the last two decades. Based on the condition that the states of a follower and its
neighbors are assumed to be measurable, the distributed state-feedback controller is constructed
for each follower in communication network. However, in practical applications, the full states of
an agent and its neighbors can not always be observed by a follower, but only their outputs are
available. Hence, how to obtain the consensus only using the output information becomes more
practical and challenging, which motivates us for this work.

On the other hand, the observer-based control approach is a common and important approach in
the case where system states are not available [21-23]. In recent years, this approach has been
extended to MASs [16]. In [16], the synchronization of identical general linear systems on a
digraph was studied, and a framework for cooperative tracking control was proposed, including
full state feedback control, observer design and dynamic output feedback control. Very recently, the
robust cooperative tracking problem was investigated for nonlinear MASs with the bounded external
disturbances in [25] where two state observers were designed. However, the aforementioned works
only focused on second-order systems [25] or linear systems [16]. Recently, the distributed control
problem of high-order nonlinear MASs has attracted attention [30]. For high-order nonlinear multi-
agent systems, the design of distributed state observer and controller still is an open and important
problem, which is another motivation of this work.
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In this paper, we investigate the leader-following consensus control problem of uncertain
nonlinear high-order MASs on the directed graph with a fixed topology. Compared with existing
works, the novelty and significance of our work are as follows:

i) Compared with the results in [7, 10-13, 18], the relative states of a follower and its neighbors
considered in this paper are not measurable, but only the relative outputs are available. Besides, the
systems considered in this paper is high-order uncertain nonlinear systems;

ii) Different from [23], the design of the proposed distributed adaptive observer and controller
does not require the assumption that the upper bounds of actual and optimal approximation errors
should be known exactly. In addition, it is not necessary to know the upper bounds of the leader
node’s nonlinear dynamics, external disturbance, while these bounds are assumed to be known in
[7]; and

iii) In order to avoid the controller singularity problem, the stability analysis is performed in two
cases, and a novel adaptive distributed control scheme is proposed.

The rest of this note is organized as follows. In Section 2, basic graph theory and notations,
the problem formulation, and mathematical description of neural-networks (NNs) are introduced.
In Section 3, the main technical results of this note are given, which include the design of local
state observer for each follower, and distributed adaptive neural controllers. A numerical simulation
is presented in Section 4. These simulation results demonstrate the effectiveness of the proposed
technique. Finally, Section 5 draws the conclusion.

Notations: Throughout this note, R,Rn and Rn×m denote, respectively, the real numbers, the
real n-vectors and the real n×m matrices; | · | is the absolute value of a real number; || · || is the
Euclidean norm of a vector; || · ||F is the Frobenius norm of a matrix; tr{·} is the trace of a matrix;
σ(·) is the set of singular values of a matrix, with the maximum singular value σ̄(·) and the minimum
singular value σ(·); λ(·) is the set of eigenvalues of a matrix, with the smallest eigenvalue λmin(·)
and the largest eigenvalue λmax(·); matrix P > 0 (P ≥ 0) means P is positive definite (positive
semi-definite); I denotes the identity matrix with appropriate dimensions.

2. PRELIMINARIES AND COOPERATIVE TRACKING CONTROL FORMULATION

2.1. Basic Graph Theory and Notations

Consider a multi-agent system consisting of a leader and the followers. To solve the consensus
problem and describe the information exchange between agents, basic graph theory and some
notations are introduced as in [7].

G = (v,E) denotes a weighted graph, where v = (v1, · · · , vN ) is the nonempty set of
nodes/agents, E ⊆ v × v is the set of edges/arcs. (vi, vj) ∈ E means there is an edge from node i
to node j. Its weighted adjacency matrix A = [aij ] ∈ RN×N , and aij > 0 if (vj , vi) ∈ E; otherwise
aij = 0. Throughout this paper, it is assumed that aii = 0, the topology is fixed and G is a directed
graph. Define di =

∑N
j=1 aij as the weighted in-degree of node i and D = diag(d1, · · · , dN ) ∈

RN×N as in-degree matrix. The graph Laplacian matrix is L = [lij ] = D −A ∈ RN×N . Let 1 =

[1, · · · , 1]T ∈ RN×1; then L1 = 0. The set of neighbors of node i is denoted as Ni = {j|(vj , vi) ∈
E}. If node j is a neighbor of node i, then node i can get information from node j, not necessarily
vice versa for directed graph. [7]

2.2. Cooperative Tracking Problem

Consider N (N ≥ 2) agents with distinct dynamics. Dynamics of the kth agent is described in
Brunovsky form: 

ẋk,i = xk,i+1, i = 1, · · · , n− 1

ẋk,n = fk(x̄k) + uk + hk(x̄k, t)

yk = xk,1

(1)

where k = 1, · · · , N ; x̄k = [xk,1, · · · , xk,n]
T ∈ Rn and yk ∈ R denote the state vector and output

of node k, respectively; fk(x̄k) ∈ R is an unknown smooth function; uk ∈ R is the control
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input/protocol; and hk(x̄k, t) ∈ R is an external disturbance, which is unknown but bounded. In
this paper, it is assumed that x̄k is immeasurable and only yk is available.

Dynamics of the leader node, labeled 0, is described as :
ẋ0,i = x0,i+1, i = 1, · · · , n− 1

ẋ0,n = f0(x̄0, t)

y0 = x0,1

(2)

where x̄0 = [x0,1, · · · , x0,n]
T ∈ Rn and y0 ∈ R denote the state vector and output of leader node 0,

respectively; f0(x̄0, t) ∈ R is piecewise continuous in time t and locally Lipschitz in x̄0 for ∀t ≥ 0
and x̄0 ∈ Rn, and it is unknown for all follower nodes.

In the following, for notational simplicity, we use • to denote •(·). For example, hk is the
abbreviation of hk(x̄k, t).

Define
xi = [x1,i, · · · , xN,i]

T
, i = 1, · · · , n

f = [f1, · · · , fN ]
T
, u = [u1, · · · , uN ]

T
, h = [h1, · · · , hN ]

T

then the above agents’ dynamics can be re-written as:{
ẋi = xi+1, i = 1, · · · , n− 1

ẋn = f + u+ h
(3)

Define the ith order tracking error for node k as follows:

δk,i = xk,i − x0,i, i = 1, · · · , n (4)

Let δi = [δ1,i, · · · , δN,i]
T ∈ RN , i = 1, · · · , n, then

δi = xi − x0,i (5)

where x0,i = [x0,i, · · · , x0,i]
T ∈ RN .

For the kth node, the neighborhood synchronization error is defined as

ek,i =
∑

j∈Nk

akj(xj,i − xk,i) + bk(x0,i − xk,i) (6)

where i = 1, · · · , n, k = 1, · · · , N and bk ≥ 0 is the weight of edge from the leader node to node k
(k = 1, · · · , N ), bk > 0 if there is an edge from the leader node to node k, otherwise bk = 0.

Let

ei = [e1,i, · · · , eN,i]
T
, f

0
= [f0, · · · , f0]T ∈ RN , B = diag{b1, · · · , bN} ∈ RN×N

Similar to (3), the above tracking error can be re-written as follows:{
ėi = ei+1, i = 1, · · · , n− 1

ėn = −(L+B)(f + u+ h− f
0
)

(7)

Define the augmented graph as Ḡ = {v̄, Ē}, v̄ = {v0, v1, · · · , vN} and Ē ⊆ v̄ × v̄.
Note that, it is assumed that only relative output information can be used for the followers’

controllers design in this paper. Hence, state observers should be designed for each follower to
estimate the states of it and its neighbors. Correspondingly, the practical ith order tracking error and
neighborhood synchronization error can be described as follows:

δ̂k,i = x̂k,i − x̂0,i (8)

êk,i =
∑

j∈Nk

akj(x̂j,i − x̂k,i) + bk(x̂0,i − x̂k,i) (9)
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where x̂k,i is the estimate of xk,i, i = 1, · · · , n, k = 1, · · · , N .

Let δ̂i = [δ̂1,i, · · · , δ̂N,i]
T
∈ RN ,i = 1, · · · , n, then

δ̂i = x̂i − x̂0,i (10)

where x̂0,i = [x̂0,i, · · · , x̂0,i]
T ∈ RN .

The cooperative tracking control problem considered herein is as follows:
i) Adaptive nonlinear observers are constructed for each follower in graph Ḡ to estimate as

accurately as possible the states of it and its neighbors;
ii) Based on the estimated states, the corresponding distributed adaptive neural-networks-based

controllers are designed for all followers in the graph such that all followers synchronize as far as
possible a leader with tracking errors being semi-globally uniform ultimate bounded (SGUUB).

Since fk(x̄k) in (1) is unknown, neural networks (NNs) presented in [24] shall be used to
approximate it as

fk(x̄k) = W ∗T
k Sk(Z̄k) + εk(Z̄k)

where εk(Z̄k) denotes the optimal approximation error,

Z̄k = [zk,1, · · · , zk,pk
]T = [x̄T

k , 1]
T

Sk(Z̄k) = [sk,1(Z̄k), · · · , sk,NW (Z̄k)]
T

sk,i(Z̄k) = exp(−
∑pk

j=1 (zk,j − vk,i,j)
2

(ck,i)
2 )

pk is the dimension of Zk, ck,i > 0 is the width of the receptive field, and vk,i,j ∈ R, i =
1, 2, · · · , NW are the center of the Gaussian function, NW is the number of the NNs. The ideal
weight W ∗

k is defined as

W ∗
i = arg min

W∈ΩW

[ sup
z∈ΩZ

∣∣WT
k Sk(Z̄k)− fk(x̄k)

∣∣]
where ΩW = {Wk| ||Wk|| ≤ wm with a design parameter wm > 0, ΩZ denotes an enough large
compact set.

From the universal approximation results, we know, NNs can approximate any continuous
function to any accuracy on compact set ΩZ [24].

Define the actual approximate error as follows:

ωk(
ˆ̄Zk) = fk(x̄k)− ŴT

k Sk(
ˆ̄Zk)

where ˆ̄Zk = [ˆ̄xT
k , 1]

T , ˆ̄xk = [x̂k,1, · · · , x̂k,n]
T .

To design appropriate controllers for the followers, the following assumptions and lemmas are
given.

Assumption 1: The augmented graph Ḡ contains a spanning tree, where the leader node is the root
with no incoming edges from the follower nodes.

Assumption 2: There exists an unknown real constant Mf0 > 0 such that |f0(x̄0, t)| ≤ Mf0 .
Assumption 3: For each node k, there exists an unknown real constant Mk,h > 0 such that

|hk(x̄k, t)| ≤ Mk,h.
Assumption 4: There exist unknown real constants Mk,ε > 0 and Mk,ω > 0, k = 1, 2, · · · , N ,

such that |εk(Z̄k)| ≤ Mk,ε and |ωk(
ˆ̄Zk)| ≤ Mk,ω over a compact set.

Lemma 1 [30]: Suppose that Assumption 1 holds. Let

κ = [κ1, · · · , κN ]T = (L+B)−11,

q = [q1, · · · , qN ] = (L+B)
−11,
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P = diag{pi} = diag{κi

qi
},

Q = P (L+B) + (L+B)
T
P,

Then P > 0 and Q > 0.
Lemma 2 [7]: ||δi|| ≤ ||ei||/σ(L+B), i = 1, · · · , n, where σ(L+B) is a minimum singular value

of matrix L+B.
Remark 1: If the full sates of an agent and the nodes in its neighborhood are available, the control

objective is to design distributed state feedback controllers for all follower nodes in the graph such
that tracking error δi is SGUUB, for all i (i = 1, · · · , n). The detailed design can be seen in [7] and
[26].

3. MAIN RESULTS

3.1. Design of Local Observers

In order to design the observers, (1) can be re-written as:{
˙̄xk = (Ao +KC)x̄k +G(fk + uk + hk)

yk = Cx̄k

where

Ao =

−k1
... I

−kn 0 · · · 0

 , G =

0...
1

 , K =

k1...
kn

 , C = [1, 0, · · · , 0]

and ki ∈ R, i = 1, · · · , n, are chosen such that Ao is a strict Hurwitz matrix. Thus, given a matrix
Qo > 0, there exists a matrix Po = PT

o > 0 satisfying

PoAo +AT
oP o + PoGGTPo = −Qo (11)

The local observer for each follower k (i = 1, · · · , N) is designed in the following form:{
˙̄̂xk = Ao ˆ̄xk +Kyk +G(f̂k + uk)

ŷk = C ˆ̄xk

(12)

where ˆ̄xk = [x̂k,1, · · · , x̂k,n]
T is the state vector of the kth observer used to estimate the state of the

kth agent, f̂k = ŴT
k Sk(

ˆ̄Zk) is the estimate of unknown function fk.
Let us define the state estimation error ˜̄xk = x̄k − ˆ̄xk, the state estimation error dynamics can be

described as follow:
˙̄̃xk=Ao ˜̄xk+G(ωk + hk)

where ωk = fk − ŴT
k Sk(

ˆ̄Zk), ˆ̄Zk = [ˆ̄xT
k , 1]

T .
Define the following Lyapunov function

Vk,o = ˜̄xT
k Po ˜̄xk (13)

Differentiating Vk,o with respect to time t, one has

V̇k,o = ˜̄xT
k [PoAo +AT

oPo]˜̄xk+2˜̄xkPoG(ωk + hk)

≤ ˜̄xT
k (PoAo +AT

oPo + PoGGTPo)˜̄xk + (ωk + hk)
2

≤ −˜̄xT
kQo ˜̄xk +M2

k,ωh = −˜̄xT
kQo ˜̄xk + µk,ωh

(14)

where µk,ωh = M2
k,ωh is an unknown real constant, Mk,ωh = Mk,ω +Mk,h (|ωk| ≤ Mk,ω, |hk| ≤

Mk,h).
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Remark 2. Clearly, if µk,ωh = 0, the above error dynamics is stable. This fact will be shown in the
controller design. It is necessary to point out that, in [23], the term µk,ωh in (14) is assumed to be
known. In our work, such assumption is removed by using a suitable adaptive compensation term
defined later.

3.2. Design of Controllers and Stability Analysis

Starting with the design of the distributed adaptive controller, it is assumed that the state of the
leader can be accessed by its neighbors as in [16].

From the local observer (12), one has
˙̂xk,i = x̂k,i+1 + kiyk, i = 1, · · · , n− 1

˙̂xk,n = f̂k + uk + kiyk

ŷk = C ˆ̄xk

Define êi = [ê1,i, · · · , êN,i]
T , where êk,i, k = 1, · · · , N are defined in (9), then one has{
˙̂ei = êi+1 − (L+B)y, i = 1, · · · , n− 1

˙̂en = −(L+B)(f̂ + u− f
0
)

(15)

where y = [y1, · · · , yN ]T .
Define the filtered tracking error ŝk for the kth node as follows:

ŝk =
∑n−1

i=1
βk,iêk,i + êk,n (16)

where βk,i = Ci−1
n−1α

n−i
k , i = 1, · · · , n− 1, αk > 0 denotes a design parameter,

Ci−1
n−1 = (n− 1)(n− 2) · · · (n− i+ 1)/((i− 1)(i− 2) · · · 1)

Let
ˆ̄ek(t) = [êk,1(t), · · · , êk,n(t)]T

Lemma 3 [29]: Let ŝk be defined by (16), and then,
1) if ŝk = 0, then limt→∞ ˆ̄ek,1(t) = 0;
2) if |ŝk| ≤ ϵk, ˆ̄ek(0) ∈ Ωϵk , then ˆ̄ek(t) ∈ Ωϵk , ∀t ≥ 0;
3) if |ŝk| ≤ ϵk, ˆ̄ek(0) /∈ Ωϵk , then ∃Tk = (n− 1)/αk, ∋ ∀t ≥ Tk, ˆ̄ek(t) ∈ Ωϵk , where Ωϵk =

{ ˆ̄ek(t)
∣∣ |êk,i| ≤ 2(i−1)αi−n

k ϵk, i = 1, · · · , n, k = 1, 2, · · ·N , ϵk is a design parameter.
For simplification, let

β1,i = · · · = βN,i = λi, λn = 1, i = 1, · · · , n

then
ŝk = λ1êk,1 + · · ·+ λnêk,n

Let
ŝ = [ŝ1, · · · , ŝN ]

T

then it follows
ŝ = λ1ê1 + · · ·+ λnên

Further, one has
˙̂s =

∑n−1

i=1
λiêi+1 −

∑n−1

i=1
λi(L+B)y + ˙̂en

= γ −
∑n

i=1
λi(L+B)y − (L+B)(f̂ + u− f

0
)

(17)

where γ =
∑n−1

i=1 λiêi+1.
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Since
f̂k = fk − (fk − f̂k) = fk − ωk

one has
f̂ = f − (f − f̂) = W ∗TS + ε− ω

where
W ∗T = diag{W ∗T

1 , · · · ,W ∗T
N }, S = [ST

1 (Z̄1) · · · , ST
N (Z̄N )]

T

ε = [ε1, · · · , εN ]
T
, ω = [ω1, · · · , ωN ]T

Hence, (17) can be thus re-written as

˙̂s = γ −
∑n

i=1
λi(L+B)y − (L+B)(W ∗TS + ε− ω + u− f

0
)

Define

Vs =
∑N

k=1
Vk,o +

ŝTP ŝ

2

where P = PT and Vk,o are respectively defined as in Lemma 1 and (13), respectively.
Differentiating Vs with respect to time t, it yields

V̇s ≤−
∑N

k=1
˜̄xT
kQo ˜̄xk +

∑N

k=1
µk,ωh + ŝTPγ−

ŝTP
∑n

i=1
λi(L+B)y − ŝTP (D +B)W ∗TS−

ŝTP (D +B)(ε− ω − f
0
)− sTP (L+B)u+

ŝTPAW ∗TS + sTPA(ε− ω − f
0
)

(18)

Now, let us consider
∑N

k=1 µk,ωh in (18).
First, let us choose a design real constant ϖ > 0.
If ||s|| ≥

√
ϖ, then one has ∑N

k=1
µk,ωh =

∑N

k=1
||ŝ||2µk,ωh

||ŝ||2

≤
∑N

k=1
||ŝ||2µk,ωh

ϖ

=
∑N

k=1
ŝT ŝ

µk,ωh

ϖ

= ŝT∆sM̄µ

(19)

where k = 1, · · · , N ,

∆s = diag{(ŝ1), · · · , (ŝN )}, M̄µ = [M1,µ, · · · ,MN,µ]
T
, Mk,µ =

µk,ωh

ϖ

Since P > 0 and D +B > 0 are diagonal matrices, then

∑N

k=1
µk,ωh ≤ ŝTP (D +B)∆sM̄µ

σ(P )σ(D +B)

≤ g2
ŝTP (D +B)∆sM̄µ

σ(D +B)

where

g2 ≥ 1

σ(P )
(20)
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is a design parameter. Hence, (18) can be developed as follows:

V̇s ≤−
∑N

k=1
˜̄xT
kQo ˜̄xk + g2

ŝTP (D +B)∆sM̄µ

σ(D +B)
−

ŝTP
∑n

i=1
λi(L+B)y − ŝTP (D +B)W ∗TS−

ŝTP (D +B)(ε− ω − f
0
)− sTP (L+B)u+

ŝTPAW ∗TS + sTPA(ε− ω − f
0
) + ŝTPγ

(21)

In the following, define the notation: •̃ = • − •̂.
Let ŴT = diag{ŴT

1 , · · · , ŴT
N}, which denotes the estimate of W ∗T = diag{W ∗T

1 , · · · ,W ∗T
N }.

Define control law as follows:

u =


0, if ||ŝ|| <

√
ϖ;

(D +B)
−1

γ −
∑n

i=1
λiy − f̂ −∆s[

ˆ̄Mεωf+

g2
ˆ̄Mµ/(σ(D +B))]− g1ŝ, otherwise

(22)

where ϖ > 0 is a design parameter,

f̂ = [f̂1, · · · , f̂N ]
T
, f̂k = ŴT

k Sk(Z̄k)

f̂k and Ŵk are the estimates of fk and Wk, respectively; Z̄k = [x̄T
k , 1]

T ,

ˆ̄Mεωf = [M̂1,εωf , · · · , M̂N,εωf ]
T

M̂k,εωf is the estimate of Mk,εωf ,

Mk,εωf = Mk,ε +Mk,ω +Mf0 , k = 1, · · · , N

ˆ̄Mµ is the estimate of M̄µ, g1 > 0 and g2 are design parameters, which satisfies

g1σ(Q)

2
− (5r +

λ̄2

4rλ2 )σ̄(P )σ̄(A) > 0 (23)

where r > 0 is a parameter,

λ̄ = max{λ1, · · · , λn} and λ = min{λ1, · · · , λn}

Define the adaptive laws as follows:

˙̂
W =


ϑw, if ||Ŵ || < wm or || ˙̂W || = wm and ŴTϑw ≤ 0;

ϑw − ŴŴTϑw

||Ŵ ||2
, if ||Ŵ || = wm and ŴTϑw > 0

(24)

˙̄̂
Mεωf =



ϑεωf , if || ˆ̄Mεωf || < wεωf or || ˆ̄Mεωf || = wεωf

and ˆ̄Mεωfϑεωf ≤ 0;

ϑεωf −
ˆ̄Mεωf

ˆ̄MT
εωfϑεωf

|| ˆ̄Mεωf ||2
, if || ˆ̄Mεωf || = wεωf

and ˆ̄Mεωfϑεωf > 0

(25)

˙̄̂
Mµ =


ϑµ, if || ˆ̄Mµ|| < wµ or || ˆ̄Mµ|| = wµ and ˆ̄Mµϑµ ≤ 0;

ϑµ −
ˆ̄Mµ

ˆ̄MT
µ ϑµ

|| ˆ̄Mµ||2
, if || ˆ̄Mµ|| = wµ and ˆ̄Mµϑµ > 0

(26)
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where
ϑw = η1Sŝ

TP (D +B)− ηW Ŵ

ϑεωf = η2ŝ
TP (D +B)∆s − ηMdε

ˆ̄Mεωf

ϑµ =
η3g2ŝ

TP (D +B)∆s

σ(D +B)
− ηµ

ˆ̄Mµ

wm > 0, wεωf > 0, wµ > 0, ηW > 0, ηMdε > 0 and ηµ > 0 are design parameters.
The following theorem is presented to prove the stability of the closed-loop system.
Theorem 1: Consider distributed system (1) with leader node (2) under Assumptions 1-4, local

state observer (12), distributed control law (22) and adaptive laws (24)-(26), if there exist matrices
K, Po = PT

o > 0 and Qo > 0 satisfying (11) and design parameters g1, g2 and r are chosen such
that (20) and (23) hold, then one has the following results:

(i) The observation errors x̃k,i, k = 1, 2, · · · , N , i = 1, 2, · · · , n are semi-globally uniform
ultimate bounded and belong to an adjustable set Ωx̃; and

(ii) All followers in the graph synchronize to the leader node 0 with the tracking errors δk,i(t),
k = 1, 2, · · · , N , i = 1, · · · , n being semi-globally uniform ultimate bounded and belonging to an
adjustable set Ωδ, where

Ωx̃ =

{
x̃k,i | |x̃k,i| ≤

√
µ0

λ0λmin(P0)

}

Ωδ =

{
δk,i| |δk,i| ≤

√
N2(i−1)α

(i−n)
k

√
2µ0

λ0σ(P )

σ(L+B)
+

√
µ0

λ0λmin(P0)

}

where µ0 =
µ′
0

λ0
+ V (0), µ′

0 = µWM + µs,

µs =
σ̄(P )σ̄(A)

4r
(ST W̃W̃TS + M̄T

εωfM̄εωf + ˆ̄MT
εωf

ˆ̄Mεωf +
g22

ˆ̄MT
µ

ˆ̄Mµ

σ2(D +B)
)

µWM =
ηW
2η1

tr(W ∗TW ∗) +
ηMdε

2η2
M̄T

εωfM̄εωf +
ηµ
2η3

M̄T
µ M̄µ

λ0 = min{λmin(Qo)

λmax(Po)
,

1
2g1σ(Q)− (5r + 1

4r
λ̄2

λ2 )σ̄(P )σ̄(A)

σ̄(P )
,
ηW
2η1

,
ηMdε

2η2
,
ηµ
2η3

}

V (0) =
∑N

k=1
˜̄xT
k (0)P ˜̄xk(0) +

ŝT (0)P ŝ(0)

2
+

tr{W̃T (0)W̃ (0)}
2η1

+
˜̄MT
εωf (0)

˜̄Mεωf (0)

2η2
+

˜̄MT
µ (0) ˜̄Mµ(0)

2η3

Proof:
Noting that, the following development will be given for two cases.
Case 1. ||ŝ|| ≥

√
ϖ

Substituting the control law (22) into (21), one has

V̇s =− g1ŝ
TP (L+B)ŝ+ ŝTP (D +B)W̃TS+

ŝTP (D +B)∆s(
˜̄Mεωf +

g2
˜̄Mµ

σ(D +B)
) + ŝTPAW̃TS + ŝTPA(ε+ ω − f

0
)−

ŝTPA∆s(
ˆ̄Mεωf +

g2
ˆ̄Mµ

σ(D +B)
) + ŝTPA(D +B)

−1
γ −

∑N

k=1
˜̄xT
kQo ˜̄xk

Since

ŝTPAW̃TS ≤ σ̄(P )σ̄(A)rŝT ŝ+
σ̄(P )σ̄(A)

4r
ST W̃W̃TS
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ŝTPA(ε+ ω − f
0
) ≤ σ̄(P )σ̄(A)rŝT ŝ+

σ̄(P )σ̄(A)

4r
M̄T

εωfM̄εωf

− ŝTPA∆s(
ˆ̄Mεωf +

g2
ˆ̄Mµ

σ(D +B)
)

≤ 2σ̄(P )σ̄(A)rŝT ŝ+
σ̄(P )σ̄(A)

4r
( ˆ̄MT

εωf
ˆ̄Mεωf +

g22
ˆ̄MT
µ

ˆ̄Mµ

σ2(D +B)
)

ŝTPA(D +B)γ ≤ σ̄(P )σ̄(A)rŝT ŝ+
σ̄(P )σ̄(A)

4r
γT γ

one has
V̇s ≤− g1ŝ

TP (L+B)ŝ+ ŝTP (D +B)W̃TS+

ŝTP (D +B)∆s(
˜̄Mεωf + g2

˜̄Mµ/σ(D +B))+

5rσ̄(P )σ̄(A)ŝT ŝ+ (σ̄(P )σ̄(A)/(4r))(ST W̃W̃TS+

M̄T
εωfM̄εωf + ˆ̄MT

εωf
ˆ̄Mεωf+

g22
ˆ̄MT
µ

ˆ̄Mµ

σ2(D +B)
+

σ̄(P )σ̄(A)

4r
γT γ−∑N

k=1
˜̄xT
kQo ˜̄xk

Since

γ2
k =

∑n−1

i=1
λ2
i e

2
k,i+1 ≤ λ̄2

λ2 ŝ
2
k

we have

γT γ =
∑N

k=1
γ2
k ≤

∑N

k=1

λ̄2

λ2 ŝ
2
k =

λ̄2

λ2

∑N

k=1
ŝ2k =

λ̄2

λ2 ŝ
T ŝ

and
V̇s ≤− g1ŝ

TP (L+B)ŝ+ ŝTP (D +B)W̃TS+

ŝTP (D +B)∆s(
˜̄Mεωf +

g2
˜̄Mµ

σ(D +B)
)+

(5r +
λ̄2

4rλ2 )σ̄(P )σ̄(A)ŝT ŝ+ µs −
∑N

k=1
˜̄xT
kQo ˜̄xk

(27)

where

µs =
σ̄(P )σ̄(A)

4r
(ST W̃W̃TS + M̄T

εωfM̄εωf + ˆ̄MT
εωf

ˆ̄Mεωf +
g22

ˆ̄MT
µ

ˆ̄Mµ

σ2(D +B)
)

Define
V = Vs + VW

where

VW =
tr{W̃T W̃}

2η1
+

˜̄MT
εωf

˜̄Mεωf

2η2
+

˜̄MT
µ

˜̄Mµ

2η3
and ηl > 0, l = 1, 2, 3 are design parameters.

Differentiating V with respect to time t and considering (27), we have

V̇ ≤− g1ŝ
TP (L+B)ŝ+ (5r +

1

4r

λ̄2

λ2 )σ̄(P )σ̄(A)ŝT ŝ+

µs + ŝTP (D +B)W̃TS + ŝTP (D +B)∆s(
˜̄Mεωf+

g2
˜̄Mµ

σ(D +B)
)− 1

η1
tr{W̃T ˙̂

W} − 1

η2
˜̄MT
εωf

˙̄̂
Mεωf−

1

η3
˜̄MT
µ

˙̄̂
Mµ −

∑N

k=1
˜̄xT
kQo ˜̄xk

(28)
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Substituting adaptive laws (24)-(26) into (28), we have

V̇ ≤− g1ŝ
TP (L+B)ŝ+ (5r +

1

4r

λ̄2

λ2 )σ̄(P )σ̄(A)ŝT ŝ+

ηW
η1

tr(W̃T Ŵ ) +
ηMdε

η2
˜̄MT
εωf

ˆ̄Mεωf+

ηµ
η3

˜̄MT
µ

ˆ̄Mµ + µs −
∑N

k=1
˜̄xT
kQo ˜̄xk

Since

tr(W̃T Ŵ ) ≤ − tr(W̃T W̃ )

2
+

tr(W ∗TW ∗)

2

˜̄MT
εωf

ˆ̄Mεωf ≤ −
˜̄MT
εωf

˜̄Mεωf

2
+

M̄T
εωfM̄εωf

2

˜̄MT
µ

ˆ̄Mµ ≤ −
˜̄MT
µ

˜̄Mµ

2
+

M̄T
µ M̄µ

2

then we have

V̇ ≤− g1ŝ
TP (L+B)ŝ+ (5r +

1

4r

λ̄2

λ2 )σ̄(P )σ̄(A)ŝT ŝ−

ηW
2η1

tr(W̃T W̃ )− ηMdε

2η2
˜̄MT
εωf

˜̄Mεωf − ηµ
2η3

˜̄MT
µ

˜̄Mµ+

µs + µWM −
∑N

k=1
˜̄xT
kQo ˜̄xk

(29)

where
µWM =

ηW
2η1

tr(W ∗TW ∗) +
ηMdε

2η2
M̄T

εωfM̄εωf +
ηµ
2η3

M̄T
µ M̄µ

Let µ′
0 = µWM + µs and

λ0 = min{λmin(Qo)

λmax(Po)
,

1
2g1σ(Q)− (5r + 1

4r
λ̄2

λ2 )σ̄(P )σ̄(A)

σ̄(P )
,
ηW
2η1

,
ηMdε

2η2
,
ηµ
2η3

}

then one has
V̇ ≤ −λ0V + µ′

0

Further, we have

0 ≤ V (t) ≤ µ′
0

λ0
+ [V (0)− µ′

0

λ0
]e−λ0t ≤ µ0 (30)

where µ0 =
µ′
0

λ0
+ V (0).

Because
λmin(Po)˜̄x

T
k
˜̄xk ≤ Vk,o = ˜̄xT

k Po ˜̄xk ≤ V

one has

||˜̄xk|| ≤
√

µ0

λ0λmin(P0)

Since ˜̄xk = [x̃1,i, · · · , x̃N,i]
T , we have further

|x̃k,i| ≤
√

µ0/(λ0λmin(P0)) (31)

This means that the state estimation errors x̃k,i, k = 1, · · · , N , i = 1, · · · , n are SGUUB, belong to
set Ωx̃.

Since σ(P )||ŝ||2 ≤ 2Vs ≤ 2V , then ||ŝ|| ≤
√

2µ0

λ0σ(P ) . Further, one has

|ŝk| ≤
√

2µ0

λ0σ(P )
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Similarly, we have,

||W̃k|| ≤
√

2η1µ0

λ0
, |M̃k,εωf | ≤

√
2η2µ0

λ0
, |M̃k,µ| ≤

√
2η3µ0

λ0

This means that all signals in the closed-loop system are SGUUB.
In the following, we will show that the tracking error δk,i, k = 1, · · · , N , i = 1, · · · , n are

SGUUB.
Since |ŝk| ≤

√
2µ0

λ0σ(P ) , from Lemma 3, we have

|êk,i| ≤ 2(i−1)α
(i−n)
k

√
2µ0

λ0σ(P )

Since êi = [ê1,i, · · · , êN,i]
T , one has

||êi|| ≤
√
N2(i−1)α

(i−n)
k

√
2µ0

λ0σ(P )

Further, from Lemma 2, we have the following result:

||δ̂i|| ≤

√
N2(i−1)α

(i−n)
k

√
2µ0

λ0σ(P )

σ(L+B)
(32)

Since δi = xi − x0,i and δ̂i = x̂i − x0,i, one has δi = δ̂i + xi − x̂i = δ̂i + ˜̄xi and ||δi|| ≤ ||δ̂i||+
||˜̄xi||. Further, one has

||δi|| ≤

√
N2(i−1)α

(i−n)
k

√
2µ0

λ0σ(P )

σ(L+B)
+

√
µ0

λ0λmin(P0)

Since δi = [δ1,i, · · · , δN,i]
T , then

|δk,i| ≤

√
N2(i−1)α

(i−n)
k

√
2µ0

λ0σ(P )

σ(L+B)
+

√
µ0

λ0λmin(P0)
(33)

which means that the practical tracking error δk,i is SGUUB, belong to set Ωδ.
Case 2: ||ŝ|| <

√
ϖ

Since ŝ = [ŝ1, · · · , ŝN ]T , it follows ||ŝ|| <
√
ϖ that

||ŝk|| <
√
ϖ, for k = 1, 2 · · · , N

which implies that ŝk is SGUUB. Similar to the analysis in Case 1, we can obtain from Lemma 3
that, êk,i (i = 1, 2, · · · , n) is also SGUUB. Since êi = [ê1,i, · · · , êN,i]

T , we further obtain that ||êi||
is SGUUB. Furthermore, from Lemma 2, we finally obtain that δ̂k is SGUUB.

From the above analysis, we know, if ||ŝ|| <
√
ϖ and |ŝk| <

√
ϖ, then δk is bounded, which

means that the control objective has been achieved. This implies that no control action should be
taken for less power consumption.

From the analysis in Cases 1 and 2, it follows that, under distributed control laws (22) and adaptive
laws (24)-(26), both the observation errors and the tracking errors are SGUUB, which means the
consensus control objective defined in Section 2 has been obtained. This proof is completed.

Remark 3: Similar to [24], it is assumed that W ∗
k is bounded. From the adaptive law defined by

(24), Ŵk is bounded. Since W ∗
k and Ŵk are bounded, and Sk(Z̄k) ≤ 1, W̃TS is also bounded. From

Assumptions 2-4, i.e., εk, ωk and f0 are bounded, M̄εωf and Mµ thus are bounded. In addition, the
adaptive law defined by (25) ensures that ˆ̄Mεωf is also bounded. Furthermore, ˜̄Mεωf is bounded,
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too. Because W̃TS, M̄εωf and ˆ̄MT
εωf are bounded, if r > 0 is chosen to be sufficiently large, then

µs becomes sufficiently small. Similarly, since W ∗, M̄εωf and M̄µ are bounded. Hence, if ηW ,
ηMdε, ηµ, η1, η2 and η3 are chosen appropriately, then µWM can become small enough. Hence,
µ0 (= µs + µWM ) can become sufficiently small by choosing appropriately the above parameters,
which means all signals in the closed-loop system can converge to a sufficiently small neighborhood
of the origin, and implies that the control scheme presented in this paper can guarantee that the
underlying system has a desired control performance.

Remark 4: Recall (19). Clearly, singularity takes place at the point ||ŝ|| = 0, where the control
objective is supposed to be achieved. However, the main task in this paper is to design a
distributed controller for each follower such that it can asymptotically synchronize to a leader with
synchronizing errors being SGUUB. In addition, ŝ = 0 is difficult to obtain due to the external
disturbances. Hence, from a practical point of view, when ||ŝ|| ≤

√
ϖ, which implies |δk,i| is less

than another constant shown in (33), the control objective is supposed to be achieved. Therefore,
it is more practical that, once the system reaches its origin, no control action needs to be taken to
reduce power consumption.

4. SIMULATION RESULTS

Consider a 5-node digraph G and a leader node described in Figure 1, where the numbers on the
edge denote the weights between corresponding two nodes. The dynamics of the leader node is
described as follows: 

ẋ0,1(t) = x0,2(t)

ẋ0,2(t) = x0,3(t)

ẋ0,3(t) = −x0,2 − 2x0,3 + 3 sin(2t) + 6 cos(2t)−

(x0,1 + x0,2 − 1)
2
(x0,1 + 4x0,2 + 3x0,3 − 1)/3

The follower nodes are described by third-order nonlinear systems in the form of (1) with

ẋ1,3(t) = x1,2 sin(x1,1) + cos (x1,3)
2
+ u1 + h1

ẋ2,3(t) = −x2,1x2,2 + 0.01x2,1 − 0.01(x2,1)
2
+ u2 + h2

ẋ3,3(t) = x3,2 + sin(x3,3) + u3 + h3

ẋ4,3(t) = −3(x4,1 + x4,2 − 1)
2
(x4,1 + x4,2 + x4,3 − 1)−

x4,2 − x4,3 + 0.5 sin(2t) + cos(2t) + u4 + h4

ẋ5,3(t) = cos(x5,1) + u5 + d5

where the disturbance hk(k = 1, · · · , N) is random and bounded by |hk| ≤ 1. The initial states
are chosen as follows: x0 = [0, 0, 0]

T , x1 = [3,−3, 3]
T , x2 = [2,−2, 2]

T , x3 = [1,−1, 1]
T , x4 =

[−2, 2,−2]
T , x5 = [−3, 3,−3]

T , x̂1 = [3, 2.5,−2]
T , x̂2 = [2, 2,−1.5]

T , x̂3 = [1, 1.5,−1]
T , x̂4 =

[−2, 1,−0.5]
T , x̂5 = [−3, 0.5, 1]

T . The weight Ŵk ∈ R10, k = 1, · · · , 5 are taken randomly in
interval (0, 1]. The sample time 0.08s. From Figure 1, we know

A =


0 0 2 0 0
1 0 0 0 0
0 4 0 0 0
3 0 0 0 0
0 0 0 0 0

 , B =


5 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 5

 , D =


2 0 0 0 0
0 1 0 0 0
0 0 4 0 0
0 0 0 3 0
0 0 0 0 0



L =


2 0 −2 0 0
−1 1 0 0 0
0 −4 4 0 0
−3 0 0 3 0
0 0 0 0 0

 , L+B =


7 0 −2 0 0
−1 1 0 0 0
0 −4 4 0 0
−3 0 0 3 0
0 0 0 0 5
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Figure 1. Communication topology G

Then, we can obtain q, P and Q in Lemma 2.1,

q =


0.7000
1.7000
1.9500
1.0333
0.2000

 , P =


1.4286 0 0 0 0

0 0.5882 0 0 0
0 0 0.5128 0 0
0 0 0 0.9681 0
0 0 0 0 5.0000



Q =


20.0000 −0.5882 −2.8571 −2.9042 0
−0.5882 1.1765 −2.0513 0 0
−2.8571 −2.0513 4.1026 0 0
−2.9042 0 0 5.8083 0

0 0 0 0 50.0000


Further, we have the singular values of A, D +B, P and Q: the singular values of A: 4.0000,
3.1623, 2.0000, 0, 0; the singular values of D +B: 7, 5, 4, 3, 1; the singular values of P : 5.0000,
1.4286, 0.9681, 0.5882, 0.5128; and the singular values of Q: 50.0000, 21.0388, 5.5209, 4.5977,
0.0701. Hence, σ̄(P ) = 5.0000, σ(P ) = 0.5128, σ̄(Q) = 50.000, σ(Q) = 0.0701, σ̄(A) = 4.0000,
σ(D +B) = 1.0000.

In this simulation study, we choose the design parameters as follows: λ1 = 1, λ2 = 2, λ3 = 1,
η1 = η2 = η3 = 100, ηW = ηMdε = ηµ = 0.01, µs = µWM = 0.01. In addition, we set r = 100,
g1 = 4000 and g2 = 3, which guarantee (3.10) and (3.12) holds.

The simulation results are presented in Figures 2 and 3. From Figure 2, it can be seen that the
states of the observers can asymptotically converge to the actual states with bounded observation
errors. As shown in Figure 3, it is shown that, under the distributed control laws defined by (3.24),
tracking errors asymptotically converge to a small neighborhood of the origin and a desired tracking
control performance is obtained. The simulation results demonstrate the effectiveness of the adaptive
consensus control scheme proposed in this paper.

5. CONCLUSION

This paper investigates the leader-following consensus problem of uncertain high-order nonlinear
MASs on directed graph. Nonlinear adaptive observers are proposed for each follower in the
graph to estimate the relative states. Using the estimated states, observer-based distributed adaptive
controllers are designed to guarantee that all followers asymptotically synchronize a leader with
tracking errors being semi-globally uniform ultimate bounded.
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