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Abstract: This paper deals with the model reference tracking control problem of linear systems based
on the observer for Markov jump systems with unknown transition rates. The main contributions are
as follows: Firstly, we designed a descriptor observer for a given model by the matrix transformation.
Then, a tracking control law composed of a feedforward compensator and feedback control law was
designed by calculating variations based on the designed observer. The feedback part can stabilize
the system. The feedforward part is the complete parametric feedforward tracking compensator. The
two parts can be solved separately, and a controller that can make the system stable is proposed
under the condition that transition rates are partially unknown through the Lyapunov stability theory.
The feedforward parametric solution is given by the generalized Sylvester equation. The algorithm
and criteria are proved by several examples and compared with the existing conclusions.

Keywords: Markov jump system; linear observer; unknown transition rates; model reference
adaptive control

1. Introduction

Markov jump systems are composed of a series of continuous time or discrete time
subsystems, and the jump between the modes is determined by the Markov chain. Many
practical stochastic mutation systems can be modeled using Markov jump systems. Thus,
the jump systems have been extensively studied and many useful results have been ob-
tained. The stochastic stability of a Markov jump system was proposed by Yuandong Ji
and Howard Jay Chizeck [1]. Many researchers have discussed the problems surrounding
stochastic stability and stochastic admissibility for Markov jump systems, such as stability
for discrete-time systems [2–4]. For continuous-time systems, Boukas solved stability and
stabilization problems [5]; the stability of singular hybrid systems was discussed in [6] and a
nonlinear Markov system was discussed in [7–9]. On the other hand, a model reference
adaptive control (MRAC) constructs a reference model to characterize the desired control
performance of a closed-loop system [10], which has been widely used in the industry
and theoretical control. The authors of [11] designed a tracking controller for the switched
systems based on a reference model. There are some applications used in different fields
of MRAC, such as economics [12], vehicles [13,14], sleep monitoring [15], polysolenoid
linear motors [16], and the visual servo system [17]. In [18], the model reference control
problem for the Markov system was first discussed. However, the model reference controls
for Markov jump systems with circular or elliptical orbits, such as satellites, did not appear
until 2017 (in [19]). However, he does not take the incompleteness of the state and unknown
transition rates (TRs) into consideration. In practical engineering, the state of the system is
difficult to obtain. Thus, the observer that obtains the system state by the output is also
widely used in the control field for a traditional system, e.g., the traditional Luenberger
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observer [20–23] or the robust observer [24,25]. In [26], a novel robust observer was de-
signed, moreover, some sliding observers were reviewed in [27,28]. For Markov systems,
observers were designed, such as a proportional integral observer [29], whose performance
is excellent but does not fit high-order systems. Wu studied the state estimation and sliding
mode control of the Markov jump system [30] and the mode-dependent observer [31] for
the discrete Markov system. Yang designed an observer for Markov jump systems [32],
which can directly obtain the state estimation without any supplementary design. In this
paper, the state was obtained by a series of transformations.

Many studies are based on the condition that the transition matrix is completely
known. In engineering, some values of transition matrices are hard to obtain, while some
are completely inaccessible. Thus, the unknown part of the transition matrix comes into
view, e.g., the information is incomplete in Markov chains or games [33–35], and the TRs
are partially unknown [36–40]. In [38], the author assumed that the lower bound of the
unknown self-transition rate was known and successfully solved the stability problem.
However, in practical applications, the above conditions are difficult to meet. In 2014, Kao
attempted to solve the problem of a completely unknown situation of the self-transition rate
in [41], but the proof process was wrong. In [42], Park proposed sufficient and necessary
conditions for the resolution with partly unknown transition rates. However, the author
just set up a new function that was still a sufficient condition. 2021, In [43], the author
solved the H∞ filtering of a discrete Markov jump system with unknown transition rates,
where the self-transition rate could be absolutely unknown. However, the self-transition
rate of a discrete jump system is positive, while the self-transition rate of a continuous jump
system is negative, so the above method does not apply to the continuous system.

Although there are many studies on the control problem of a Markov jump system,
very few studies have investigated the problem of the model reference tracking control
of a Markov jump system. Because different reference models correspond to completely
different algorithms, it is difficult to guarantee the tracking effects of different models.
The model reference tracking problem is much more complicated than the analysis or
stability of Markov jump systems only. Partly unknown transition rates and state incom-
pleteness are still open issues. Therefore, this motivated us to address this problem subject
to partially unknown TRs based on the observer.

In this paper, we studied the observer-based model reference tracking control along
with partly unknown transition rates. Firstly, an observer was designed for a given system
by a descriptor augmentation transformation. Then the controller was designed by using
the properties of the observer and variational methods, which consist of two parts: a
feedback controller and feedforward compensator. We propose sufficient conditions for the
stochastic stability of the system under the condition where the self-transition rate can be
completely unknown; moreover, the parametric solution of the feedback controller is given
using the above condition. Finally, the parametric solution of the feedforward compensator
is given using the generalized Sylvester equation. The feasibility of the above theorem and
algorithm is proved via several numerical examples in the last part.

The notations adopted in this paper are standard. Rn is the n-dimensional real Eu-
clidean space. Rm×n is the normed linear space of all m by n real matrices. ‖x‖ represent
the Euclidean norm of Rn or the operator norm of Rm×n. AT is the transpose of a matrix (or
vector) A. A < (≤)0 mean A is a negative(semi-) definite symmetric matrix. In symmetric
block matrices, we use “∗” as an ellipsis for the terms induced by symmetry, diag{· · · } for
a block-diagonal matrix, and sym(X) = X + XT .

2. Problem Description and Preliminaries

Consider the continuous-time Markov jump system. The model of the system is
defined by the following differential equations:{

ẋ(t) = A(γt)x(t) + B(γt)u(t),
y(t) = C(γt)x(t),

(1)
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where A(γt), B(γt) and C(γt) are the parameter matrices of the system. x(t) ∈ Rn,
u(t) ∈ Rm, y(t) ∈ Rd are the state vector, input vector, and output vector, respectively.
{γt, t > 0} is the Markov process that represents the jump mode of system (1), which takes
values in a finite set U = {1, 2, · · · , N}. Moreover, the transition probability matrix Π is
given by:

Pr{γt+∆ = j | γt = i} =
{

πij∆ + o(∆), i 6= j,
1 + πij∆ + o(∆), i = j,

(2)

where ∆ > 0. lim
∆→0

o(∆)
∆

= 0, πij > 0, ∀i 6= j. Denote the transition rate from i to j and

πii = −∑
j 6=i

πij for i, j. When transition rates are partly unknown, the transition matrix can

be described as follows:

Π =


π11 ? · · · π1N

? π22 · · · π2N
...

...
. . .

...
πN1 ? · · · πNN

, (3)

where the “?” denotes the unknown transition rates. To facilitate the future discussion, for
all i ∈ N, the set U(i) denotes U(i) = U(i)

k ∪U(i)
uk

U(i)
k = {j|πij is known for every j ∈ U}, (4)

U(i)
uk = {j|πij is unknown for every j ∈ U}. (5)

Moreover, if U(i)
uk 6= ∅. It is further described as U(i)

k =
{

ki
1, ki

2, · · · ki
m
}

. Where ki
j

represent the jth bounded-known element with the index ki
j in the ith row of Π. Denote

Ai, Bi, and Ci to replace A(γt), B(γt), and C(γt), when γt = i.

Definition 1 ([44]). The closed loop system ẋ(t) = Aix(t) + Biu(t) with u(t) = 0 is stochas-
tically stable (SS) if for every initial condition x(0) = x0 and γ(0) = γ0 the following holds

E{
∫ ∞

t0

‖x(t)‖2dt|x0, γ0} < ∞. (6)

E represents the mathematical expectation operator. This paper researches the model
reference tracking control problem for continuous-time systems with a circular-like or-
bit. Without losing generality, the reference signal can be generated by the following
reference model: {

ẋm(t) = Am(γt)xm(t),
ym(t) = Cm(γt)xm(t).

(7)

where xm(t) ∈ Rn1 , ym(t) ∈ Rn2 are the state vector and output vector of the reference
mode. Am and Cm are the known matrices with appropriate dimensions. The purpose is to
design a controller that can make the output y(t) track the reference model’s output ym(t)
in the meaning square:

E{
∫ ∞

t0

‖y(t)− ym(t)‖2dt|x0, γ0} < ∞. (8)

For arbitrary initial values x0, γ0, and xm0 . The following problem needs to be done
to realize the purpose of the paper. For systems (1) and (7), a controller is designed in the
form of

u(t) = Kix(t) + Kmixm(t). (9)
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Using this algorithm, the closed-loop system can be stochastic stable and y(t) can track
ym(t) in the meaning square.

3. Observer and Control Law Design
3.1. Observer Design

In order to apply a generalized augmented transform to the system. First, we must
define the following variables and augmented matrices.

x̄(t) =
[

x(t)
0p

]
, Āi =

[
Ai 0n×p

0p×n −Ip

]
, Ē =

[
In 0n×p

0p×n 0p

]
B̄i =

[
Bi
0

]
, C̄i =

[
Ci Ip

]
,

Based on the definitions above, the descriptor system can be constructed as:{
Ē ˙̄x(t) = Āi x̄(t) + B̄iu(t),

y(t) = C̄i x̄(t),
(10)

where Ē ∈ R(n+p)×(n+p), Āi ∈ R(n+p)×(n+p), B̄i ∈ R(n+p)×m, C̄i ∈ Rp×(n+p).
Let C̄⊥i be an orthogonal matrix of C̄i, which means C̄iC̄⊥i = 0. We define a coordinate

transformation matrix

T̄i =

[ (
C̄⊥i
)T

C̄i

]
=

[
T̄i1 T̄i2
T̄i3 T̄i4

]
∈ R(n+p)×(n+p), (11)

where T̄i1 ∈ Rn×n, T̄i2 ∈ Rn×p, T̄i3 ∈ Rp×n, T̄i4 ∈ Rp×p.

T̄−1
i = X̄i =

[
C̄⊥i

((
C̄⊥i
)T

C̄⊥i

)−1
C̄T

i

(
C̄iC̄T

i

)−1
]

. (12)

We can easily obtain C̄iT̄−1
i =

[
0p×n Ip

]
. For convenience, we denote T̄−1

i as

T̄−1
i =

[
R̄i1 R̄i2
R̄i3 R̄i4

]
∈ R(n+p)×(n+p), (13)

where R̄i1 ∈ Rn×n, R̄i2 ∈ Rn×p, R̄i3 ∈ Rp×n, R̄i4 ∈ Rp×p with x̄(1)(t) = T̄i x̄(t)Ē(1)
i

˙̄x(1)(t) = Ā(1)
i x̄(1)(t) + B̄iu(t),

y(t) = C̄i
(1)x(t) = x̄(1)2 (t),

(14)

where x̄(1)(t) =
[

x̄1
(1)(t) x̄2

(1)(t)
]T

, Āi
(1)

= ĀiT−1
i , Ē(1)

i = ĒiT−1
i , C̄i

(1)
= C̄iT−1

i =[
0p×n Ip

]
. Further, we use M̄i =

[
R̄i1 R̄i2

]
, obviously, Ē(1)

i =
[

M̄i 0p×(n+p)

]T

We define a new matrix as follows:

H̄−1
i =

[
R̄i1 R̄i2
0̄p×n Īp

]
. (15)

We rank(H̄−1
i ) =n+p, multiplying H̄i on both sides of (14):Ē(2)

i
˙̄x(1)(t) = Ā(2)

i x̄(1)(t) + B̄(2)
i u(t),

y(t) = x̄(1)2 (t).
(16)

It can be seen that Ē(2)
i = H̄i Ē

(1)
i ,Ā(2)

i = H̄i Ā
(1)
i ,B̄(2)

i = H̄i B̄i further denote H̄i as:

H̄i = [H̄i1 H̄i2], (17)
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where H̄i1 ∈ R(n+p)×n, H̄i2 ∈ R(n+p)×p we can further derived as H̄i1M̄i + H̄i2C̄(1)
i = In+p,

thus we have:
H̄i1M̄i = In+p − H̄i2C̄(1)

i . (18)

By decomposing H̄i2 =

[
H̄i21
H̄i22

]
, Equation (17) can be rewritten as:

H̄i1M̄i =

[
In −H̄i21
0 Ip − H̄i22

]
. (19)

Then we derive:

Ē(2)
i = H̄−1

i Ē(1)
i = H̄i = [H̄i1 H̄i2]

[
M̄i 0p×(n+p)

]T
=

[
In −H̄i21
0 Ip − H̄i22

]
. (20)

Similarly, use the decomposing that Ā(2)
i = H̄i Ā

(1)
i =

[
Ā(2)

i11 Ā(2)
i12

Ā(2)
i21 Ā(2)

i22

]
,

B̄(2)
i = H̄i B̄i =

[
B̄(2)

i1
B̄(2)

i2

]
obtain the following equation:

ẋ(1)1 (t)−H̄i21 ẋ(1)2 (t) = Ā(2)
i11 x̄(1)1 (t) + Ā(2)

i12 x̄(1)2 (t) + B̄(2)
i1 u(t). (21)

The reduced linear observer is designed as follows, based on the above:

ˆ̄x(1)1 (t) = z(t) + H̄i21y(t),

˙̇z(t) = Ā(2)
i11z(t) + B̄(2)

i1 u(t) +
(

Ā(2)
i11 H̄i21 + Ā(2)

i12

)
y(t),

ˆ̄x(t) = T̄−1
i

[
ˆ̄x(1)1 (t)
y(t)

]
,

x̂(t) = R̄i1 ˆ̄x(1)1 (t) + R̄i2y(t).

(22)

In the above equation, ˆ̄x(t) ∈ R(n+p) and ˆ̄x(1)1 (t) ∈ Rn are the estimations of x̄(t) and
x̄(1)(t). z(t) is the intermediate variable.

Lemma 1. By the process above, we have the following equations:
(1)AiR̄i1 = R̄i1 Ā(2)

i11 + R̄i2 Ā(2)
i21 , (2)Ā(2)

i21 = −R̄i3,
(3)R̄i1 Ā(2)

i12 − R̄i2R̄i4 − AiR̄i2 = 0, (4)R̄i2 + R̄i1H̄i21 = 0,
(5)R̄i1B̄(2)

i1 = Bi, (6)R̄i3̂̄x(1)1 (t) + R̄i4y(t) = 0.

The proof of Lemma 1 is shown in Appendix A.

3.2. Control Law Design

According to Section 2, in order to design a feedback controller and feedforward
compensator, the existence conditions of the controllers should be determined first. The fol-
lowing theorem gives the existing conditions of the controller.

Theorem 1. The problem has a solution if the system is SS and matrices exist, Gi ∈ Rn×n1 ,
and Hi ∈ Rm×n2 , satisfying the following equations:{

Ġi = AiGi + Bi Hi − Gi Am,
0 = CiGi − Cm.

(23)
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Proof of Theorem 1. Let 
δx̂(t) = x̂(t)− Gixm(t),
δu(t) = u(t)− Hixm(t),
δy(t) = y(t)− ym(t).

(24)

After, we take the derivatives on both sides of the first expression, and we obtain the
following equation:

δ ˙̂x(t) = ˙̂x(t)− Gi ẋm(t)− Ġixm(t)

We substitute ˙̂x(t) to the original formula:

= R̄i1 ˙̄x(1)1 (t) + R̄i2ẏ(t)− Gi Amxm(t)− Ġixm(t)

We substitute ˙̄x(1)1 (t) by (22) in the above equation:

= R̄i1( ˙̄z(t) + H̄i21ẏ(t)) + R̄i2ẏ(t)− Gi Amxm(t)− Ġixm(t)

Similarly, we substitute ˙̄z(t) from the above equation:

=R̄i1

(
Ā(2)

i11z(t) + B̄(2)
i1 u(t) +

(
Ā(2)

i12 + Ā(2)
i11 H̄i21

)
y(t) + H̄i21ẏ(t)

)
+ R̄i2ẏ(t)− Gi Amxm(t)

− Ġixm(t)

=R̄i1 Ā(2)
i11z(t) +

(
R̄i1 Ā(2)

i12 + R̄i1 Ā(2)
i11 H̄i21

)
y(t) + R̄i1B̄(2)

i1 (u(t)− Hixm(t))

+ R̄i1H̄i21ẏ(t) + R̄i2ẏ(t)− Gi Amxm(t)− Ġixm(t) + R̄i1B̄(2)
i1 Hixm(t)

By (22), we can conclude that z(t) = ˆ̄x(1)1 (t)− H̄i21y(t), which means equation above is:

=R̄i1 Ā(2)
i11

(
ˆ̄x(1)1 (t)− H̄i21y(t)

)
+
(

R̄i1 Ā(2)
i12 + R̄i1 Ā(2)

i11 H̄i21

)
y(t)

+ (R̄i2 + R̄i1H̄i21)ẏ(t)−
(
Gi Am + Ġi + Bi Hi

)
xm(t) + R̄i1B̄(2)

i1 (u(t)− Hixm(t))

By (4) and (5) in Lemma 1 and Equation (23), and the equation above, we have:

= R̄i1 Ā(2)
i11

ˆ̄x(1)1 (t) + R̄i1 Ā(2)
i12y(t) + Biδu(t)−

(
Gi Am + Ġi

)
xm(t)

By (1) of Lemma 1, R̄i1 Ā(2)
i11 = AiR̄i1 − R̄i2 Ā(2)

i21 . Combined with (2) in Lemma 1,

R̄i1 Ā(2)
i11 = AiR̄i1 + R̄i2R̄i3, we plug into the above equation

=(AiR̄i1 + R̄i2R̄i3) ˆ̄x(1)1 (t) + R̄i1 Ā(2)
i12y(t) + Biδu(t)−

(
Gi Am + Ġi

)
xm(t)

=Aiδx̂(t) + R̄i2R̄i3 ˆ̄x(1)1 (t)− AiR̄i2y(t) + R̄i1 Ā(2)
i12y(t) + Biδu(t)

−
(
Gi Am + Ġi − AiGi

)
xm(t)

=Aiδx̂(t) + R̄i2

(
R̄i3 ˆ̄x(1)1 (t) + R̄i4y(t)

)
+
(

R̄i1 Ā(2)
i12 − AiR̄i2 − R̄i2R̄i4

)
y(t) + Biδu(t)

−
(
Gi Am + Ġi − AiGi

)
xm(t)

By Theorem 1 and Equations (3) and (6) in Lemma 1, we are able to show that:{
δẋ(t) = Aiδx(t) + Biδu(t),
δy(t) = Ciδx̂(t) + (CiGi − Cm)xm(t) = Ciδx̂(t).

(25)
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Clearly, system (23) and system (1) have the same structures and, hence, the state
feedback control law u(t) = Kix(t), which can stabilize system (1), and the state feedback
δu(t) = Kiδx(t) can also stabilize system (21), which is to say that the system{

δẋ(t) = [Ai + BiKi]δx(t),
y(t) = Ciδx(t).

(26)

is stochastically stable; thus, (6) holds, and then (22) and (24). The controller can be
rewritten as

u(t) = Kix(t) + [Hi − KiGi]xm(t) (27)

combined with (24). The following can be obtained Kmi = Hi − KiGi. Next, we design the
state feedback controller and the feedforward tracking compensator.

4. Parameter Solutions

The above theorem gives the existence conditions of the controller. In this section, we
will solve the feedback controller and the feedforward compensator, respectively.

4.1. State Feedback Control Law Design

From (25) and (26), the state feedback control law Ki involves making the system SS.
In the following theorem, based on the stability theory and LMI method, we propose a
sufficient condition for SS of the system when the transition rates are partially unknown,
and the parameter solution of the controller can be derived from the above condition.

Theorem 2. System (1) with u(t) = Kix(t) and partly unknown TRs is stochastically stable if there
exists a set of symmetric and positive-definite matrices Xi, and a set of matrices Yi, i ∈ U(i), satisfying:[

εi
1k Ωi

1k
∗ ∆i

1k

]
< 0, ∀i ∈ U(i)

k . (28)

[
εi

2k Ωi
2k

∗ ∆i
2k

]
< 0, ∀i ∈ U(i)

uk . (29)

[
AiXi + Xi AT

i Xi
∗ Xj

]
< 0, ∀i ∈ U(i)

k , j 6= i. (30)

AiXi + Xi AT
i + Xi ≥ 0, ∀i ∈ U(i)

uk . (31)

Moreover, if the above inequations are solvable, the controller gain can be computed from the
relation Ki = YiX−1

i , where

εi
1k =

1 + ∑
j∈U(i)

k

πij

(AiXi + Xi AT
i
)
+ πiiXi + YT

i BT
i + BiYi.

Ωi
1k =

[√
π1,li

1
Xi,

√
π1,li

2
Xi, · · · ,

√
π1,li

m−1
Xi

]
.

∆i
1k = diag

(
−Xli

1,, −Xli
2
, · · · , −Xli

m−1

)
.

εi
2k =

1 + ∑
j∈U(i)

k

πij

(AiXi + Xi AT
i
)
+ YT

i BT
i + BiYi.

Ωi
2k =

[√
π1,ki

1
Xi,

√
π1,ki

2
Xi, · · · ,√π1,ki

m
Xi

]
.

∆i
2k = diag

(
−Xki

1,, −Xki
2
, · · · , −Xki

m

)
.
{

li
1, li

2, · · · li
m−1

}
=
{

ki
1, ki

2, · · · ki
m
}
\{i}.

To prove Theorem 2, we first introduce the following lemma.
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Lemma 2 ([44]). The unforced system (1) (u(t) = 0) is SS if and only if there exists a set of
symmetric and positive-definite matrices Xi, i ∈ U, satisfying:

AT
i Pi + Pi Ai +

N

∑
j=1

πijPj < 0 (32)

Lemma 2 shows the SS of the Markov jump systems. System (1) with u(t) = Kix(t)
can be rewritten as ẋ(t) = (Ai + BiKi)x(t). It can be concluded from Lemma 2 that the SS
condition of the system with the feedback controller can be obtained simply by replacing
Ai with Ai + BiKi.

Proof of Theorem 2. Consider two cases: i ∈ U(i)
k and i ∈ U(i)

uk .

Case 1: i ∈ U(i)
k .

Since
N
∑

j=1
πij = 0, the SS inequality of the system with u(t) = Kix(t) can be rewritten as:

(Ai + BiKi)
T Pi + Pi(Ai + BiKi) +

N

∑
j=1

πijPj +
N

∑
j=1

πij

(
AT

i Pi + Pi Ai

)
< 0 (33)

Denote

θi =AT
i Pi + KT

i BT
i Pi + PiBiKi + Pi Ai + πiiPi + ∑

j∈U(i)
k ,j 6=i

πijPj + ∑
j∈U(i)

uk

πijPj

+
N

∑
j=1

πij

(
AT

i Pi + Pi Ai

)
. (34)

θi =

1 + ∑
j∈U(i)

k

πij

(AT
i Pi + Pi Ai

)
+ πiiPi + ∑

j∈U(i)
k ,j 6=i

πijPj

+ ∑
j∈U(i)

uk .

πij

(
Pj + AT

i Xi + Pi Ai

)
+ KT

i BT
i Pi + PiBiKi. (35)

Thus, θi < 0 can be guaranteed by
1 + ∑

j∈U(i)
k

πij

(AT
i Pi + Pi Ai

)
+ KT

i BT
i Pi + PiBiKi + πiiPi + ∑

j∈U(i)
k .

πijPj < 0,

Pj + AT
i Pi + Pi Ai ≤ 0.

(36)

Multiply Xi = P−1
i on both sides of (36), which hold by using (28) and (30) through

the Schur complement.
Case 2: i ∈ U(i)

uk Similarly, we denote

ϕi =AT
i Pi + Pi Ai + KT

i BT
i Pi + PiBiKi + πiiPi + ∑

j∈U(i)
k

πijPj + ∑
j∈U(i)

uk ,j 6=i

πijPj

+
N

∑
j=1

πij

(
AT

i Pi + Pi Ai

)
. (37)
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ϕi =

1 + ∑
j∈U(i)

πij

(AT
i Pi + Pi Ai

)
+ πii

(
AT

i Pi + Pi Ai + Pi

)
+ ∑

j∈U(i)
k

πijPj

+ ∑
j∈U(i)

uk.,j 6=i

πij

(
Pj + AT

i Pi + Pi Ai

)
+ KT

i BT
i Pi + PiBiKi. (38)

Thus, ϕi < 0 can be guaranteed by

1 + ∑
j∈U(i)

k

πij

(AT
i Pi + Pi Ai

)
+ ∑

j∈U(i)
k

πijPj + KT
i BT

i Pi + PiBiKi < 0,

AT
i Pi + Pi Ai + Pi ≥ 0,

Pj + AT
i Pi + Pi Ai ≤ 0.

(39)

We multiply Xi = P−1
i on both sides of (39) Thus, ϕi < 0 can be guaranteed by

(29)–(31) by using the Schur complement.

Note that the controller derived from Theorem 2 can stochastically stabilize system (1).

4.2. Feedforward Control Law Design

Since Kmi = Hi − KiGi, and Ki can be obtained by Section 4.1. The key to solving the
feedforward compensator is to find matrices Gi and Hi satisfied (23). According to the
generalized Sylvester equation, the matrix in the form of (23) has a complete parametric
solution, which can be solved by the following Lemmas.

Lemma 3 ([45]). If the matrix pair
[
(sI − Ai)

(
I − C−i Ci

)
, Bi
]

is controllable, there exists a
unimodular matrix Vi(s) ∈ R(n+r)×(n+r), satisfying[

(sI − Ai)
(

I − C−i Ci
)

Bi
]
Vi(s) = [∆ 0]. (40)

where C−i is the generalized inverse matrix of matrix Ci, such that CiC−i Cm = Cm. ∆ is a diagonal
matrix and satisfies det(∆) 6= 0. We partition the unimodular matrix Vi(s) as:

Vi(s) =
[

Ui(s) Li(s)
Qi(s) Di(s)

]
. (41)

Ui(s),Li(s),Qi(s),Di(s) can be written in the following form:

Ui(s) =
α

∑
j=0

Ujsj, Uj ∈ Rn×n,

Li(s) =
α

∑
j=0

Ljsj, Lj ∈ Rn×r,

Qi(s) =
α

∑
j=0

Qjsj, Qj ∈ Rr×n,

Di(s) =
α

∑
j=0

Djsj, Dj ∈ Rr×r.

(42)

Lemma 4 ([19]). Four polynomial matrices Uj, Lj, Qj, and Dj are as above. If the matrix pair[
(sI − Ai)

(
I − C−i Ci

)
, Bi
]

is controllable, the parameter solutions of Gi, Hi can be obtained as follows:

Gi =
(

I − C−i Ci
) α

∑
j=0

[
LijZi + Uij(AiC−Cm − C−Cm Am)

]
Aj

m + C−Cm. (43)

Hi =
α

∑
j=0

[
DijZi + Qij(AiC−Cm − C−1Cm Am)

]
Aj

m. (44)
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where Zi is an arbitrary parameter matrix, which represents the degree of freedom with ap-
propriate dimensions in the solution. In the calculation, we judge whether the matrix pair[
(sI − Ai)

(
I − C−i Ci

)
, Bi
]

is controllable. If it is controllable, we decompose the matrix according
to Lemma 3, and then solve Gi and Hi through Lemma 4.

4.3. Algorithm for Solving the Controller

Given the reference model coefficient matrices Am, Cm, and Ai, Bi, Ci for every
i = 1, 2, . . . , N, and the transition probability matrix Π, then the following algorithm
can be presented as follow:

1. According to Theorem 2, compute the state feedback gain matrix.
2. Judge whether the matrix pair

[
(sI − Ai)

(
I − C−i Ci

)
, Bi
]

is controllable. If it is con-
trollable, solve Lemma 3, and go on to the next step; otherwise, the feedforward
compensator does not exist.

3. Compute Gi and Hi based on Lemma 4, then compute the gain matrix of the feedfor-
ward compensator.

5. Numerical Example

Several examples are presented to explain the feasibility of the algorithm.

Example 1. Consider plant (1) and give the system parameters in the following form to illustrate
the effectiveness of our results.

A1 =


−9.9477 −0.7476 0.2632 5.0337
52.1659 2.7452 5.5532 −24.4221
26.0922 2.6363 −4.1975 −19.2774

0 0 1 0

, B1 =


0 0
0 1
1 0
0 0

,

A2 =


−4.5010 −0.7102 0.3011 5.0005

52 2.9021 5.5504 −24
20.0028 2.6 −4.1905 −17.2203

0 0 1 −2

, B2 =


0.2 0.15
3.5 −7.6
−6 4.5
0 0

,

C1 =

 −0.01 0 0 0
0 −0.01 0 0
0 0 0 −0.01

, C2 =

 −0.01 0 0 0
0 −0.01 0 0
0 0 0 0

. The control input

u(t) = −[cos(t); cos(t)]T . The transition rate matrix Π is chosen in
[
−0.6 0.6
−0.8 0.8

]
and the

transition rate is shown in Figure 1. Following the observer design process, the simulation results
are presented in Figure 2 with the initial value x(0) = [1;−2;−1; 0]T . Figure 2a–d are the
trajectories of the system states and their estimated states. It can be seen that the achieved observer
performance is ideal. From the error image—after about 1.6 s, the error between the estimated value
and the actual value is very small. However, the matrix

[
(sI − A2)

(
I − C−2 C2

)
, B2
]

is not a full
rank. So this model is unable to complete the model reference tracking control; whatever the reference
model is, the controller does not exist. This example shows that the effect of the observer is ideal,
but the algorithm is not suitable for all systems.

0 5 10 15

t/s

0.5

1

1.5

2

2.5

M
o

d
e

Figure 1. Transition rates.
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(a) x1 and x̂1 (b) x2 and x̂2

(c) x3 and x̂3 (d) x4 and x̂4

Figure 2. Results of the observer under initial conditions [1,−2, 1, 0].

Example 2. Consider the following satellite tracking system with three modes.

A1 =



0 0 0 0.94786 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1.6829793× 10−8 0 0 0 1.45842× 10−4 0
0 0 0 −1.45842× 10−4 0 0
0 0 −5.31747× 10−9 0 0 0

,

A2 =



0 0 0 1.24649664327 0 0
0 0 0 0 0.886083509114 0
0 0 0 0 0 0.1

1.2797796× 10−8 0 0 0 1.45842× 10−4 0
0 0 0 −1.45842× 10−4 0 0
0 0 −5.31747× 10−9 0 0 0

,

A3 =



0 0 0 1.015383053256841 0 0
0 0 0 0 1.1889863481182 0
0 0 0 0 0 0.1

1.5710731× 10−8 0 0 0 1.45842× 10−4 0
0 0 0 −1.45842× 10−4 0 0
0 0 −5.31747× 10−9 0 0 0

,

B1 =



0 0 0
0 0 0
0 0 0

0.8 0 0
0 1 0
0 0 1

, B2 =



0 0 0
0 0 0
0 0 0
1 0 0
0 0.8 0
0 0 1

, B3 =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 0.8

, C1 = C2 = C3 =
[

I3 0
]

where the transition rate Π =

 ? ? 0.6
0.5 −0.8 0.3
? ? −0.8

. The matrices Am and Cm in the reference model

are designed as Am =

 0 ω1 0
−ω1 0 0

0 0 −2

, Cm =I3.ω1 = 0.008π. xm0 = [100/
√

2; 100/
√

2; 0]. If the

output of the satellite model can track the circular signal generated by the reference model, the orbiting motion
can be completed. Set the simulation time at 5000 s.
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After computations by the LMI Toolbox in Matlab,

K1 =

 −0.0045365 0.0007 −0.0004 −0.0306 0.0122 −0.0081
0.002321 −0.0034 0.001 0.0169 −0.0646 0.0124
−0.0015825 0.001 −0.0026 −0.0112 0.0124 −0.0542

.

K2 =

 −0.003449668335 0.00101570562 −0.006 −0.039 0.0104 −0.0073
0.001524272055 −0.00372425394 0.008 0.0213 −0.0623 0.0079
−0.001203372675 0.00124141798 −0.0026 −0.0127 0.0143 −0.055

.

K3 =

 −0.004234855 0.00067284204 −0.005 −0.0331 0.012 −0.0074
0.00216667 −0.00285957867 0.011 0.0198 −0.0648 0.014
−0.001280305 0.00067284204 −0.0025 −0.0152 0.0075 −0.0522

.

Km1 =

 0.0004 0.0001 −0.0154
−0.0039 0.0023 0.0238
0.0018 −0.0007 3.8942

. Km2 =

 0.0033 0 −0.0135
−0.0035 0.0022 0.015
0.0019 −0.0008 3.8927

.

Km3 =

 0.004 0 0.014
−0.0039 0.0017 0.0269
0.0015 −0.0004 3.8981

.

The trajectory of the system under initial conditions x0 = [−400;−300;−100; 0; 0; 0] is shown in Figure 3.
The trajectory of the system and position error between the system and model is shown in Figure 4. As can be seen
from the Figure 4, the error between the system and the reference model is about 0.5 m after 400 s. In addition, it
can be seen from Figure 3 that the system trajectory perfectly tracks the reference model, and the reason for the
errors is that, to a certain extent, the system lags in the phase. The controller in [5] is selected as the contrast test.
Since this control law is based on the completely known transition rates, we may as well set the known transition
rate matrix to obtain the results as shown in Figure 5. We can see that the system error is about 10 times in this
paper after almost 500 s. owever, using the method in Fu’s doctoral thesis, we can see that the system error is
about 10 m after almost 500 s. The figure is omitted here due to page limitations. It can be seen that although the
transition rates are partly unknown in this paper, the results are better. Figure 6 is the trajectory of the system
based on the observer. The observer-based system tracking control can also meet the conditions. The trajectory
without a feedforward compensator is shown in Figure 7, which embodies the superiority of the algorithm compared
with the feedforward compensator only. This example verifies the tracking performance of the algorithm, and the
effects are ideal in the observer-based case.

Figure 3. Trajectory.
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Figure 4. Error between the system and model.

Figure 5. Contrast test.

Figure 6. Trajectory based on the observer.
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Figure 7. Trajectory without the feedforward compensator.

6. Conclusions

In this paper, the observer-based model reference tracking control problem with
partly unknown TRs was studied. For a given system, a descriptor observer was de-
signed by the matrix transformation, which solved the estimation problem. A tracking
controller composed of a state feedback controller and the feedforward of the state of the
model that has a complete parametric form was designed for the given reference model.
The parametric solution of the controller was given by analyzing the stochastic stability
of the system with transition rates partly unknown, and the self-transition rate of the
system can be unknown. A parametric method was established for the feedforward
part of the tracking problem based on the theory of the generalized Sylvester equations.
The performance of the observer, the stability of the control system, and the tracking
effect were verified by several numerical examples. It has fewer errors compared to the
existing conclusions.
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Appendix A

Proof of Lemma 1. Define the following matrices:
(1)AiR̄i1 = R̄i1 Ā(2)

i11 + R̄i2 Ā(2)
i21 , (2)AiR̄i2 = R̄i1 Ā(2)

i12 + R̄i2 Ā(2)
i22 ,

(3)Ā(2)
i21 = −R̄i3, (4)Ā(2)

i22 = −R̄i4,
(5)R̄i1 Ā(2)

i12 − R̄i2R̄i4 − AiR̄i2 = 0, (6)R̄i2 + R̄i1H̄i21 = 0,
(7)R̄i1B̄(2)

i1 = Bi, (8)R̄i3̂̄x(1)1 (t) + R̄i4y(t) = 0.
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Moreover, (1)–(4) can be obtained by the equivalence of corresponding terms of the
following equation:

Ā(1)
i = ĀiT̄−1

i =

[
AiR̄i1 AiR̄i2
−R̄i3 −R̄i4

]
= H̄−1

i Ā(2)
i =

[
R̄i1 R̄i2

0p×n Ip

][
Ā(2)

i11 Ā(2)
i12

Ā(2)
i21 Ā(2)

i22

]

=

[
R̄i1 Ā(2)

i11 + R̄i2 Ā(2)
i21 R̄i1 Ā(2)

i12 + R̄i2 Ā(2)
i22

Ā(2)
i21 Ā(2)

i22

]
.

(A1)

Thus, (1)–(4) hold. Using (2) and (4), we have:

R̄i1 Ā(2)
i12 − R̄i2R̄i4 − AiR̄i2 =R̄i1 Ā(2)

i12 − R̄i2R̄i4 − R̄i1 Ā(2)
i12 − R̄i2 Ā(2)

i22

=R̄i1 Ā(2)
i12 − R̄i2R̄i4 − R̄i1 Ā(2)

i12 + R̄i2R̄i4 = 0.
(A2)

Thus, (5) holds, then

H̄−1
i H̄i =

[
R̄i1 R̄i2

0p×n Ip

][
H̄i11 H̄i21
H̄i12 H̄i22

]
=

[
R̄i1H̄i11 + R̄i2H̄i12 R̄i1H̄i21 + R̄i2H̄i22

H̄i12 H̄i22

]
=

[
In 0n×p

0p×n Ip

]
.

(A3)

By the equivalence of corresponding terms, we have R̄i1H̄i21 + R̄i2H̄i22 = 0. So (6) hold

B̄i =

[
Bi
0

]
= H̄−1

i B̄(2)
i =

[
R̄i1 R̄i2

0p×n Ip

][
B̄(2)

i1
B̄(2)

i2

]
=

[
R̄i1B̄(2)

i1 + R̄i2B̄(2)
i2

B̄(2)
i2

]
. (A4)

Thus, B̄(2)
i2 = 0, andR̄i1B̄(2)

i1 + R̄i2B̄(2)
i2 = R̄i1B̄(2)

i1 = Bi. So (7) hold.

ˆ̄x(t) =
[

x̂(t)
0

]
=

[
R̄i1 R̄i2
R̄i3 R̄i4

][
ˆ̄x(1)1 (t)
y(t)

]
=

[
R̄i1̂̄x(1)1 (t) + R̄i2y(t)
R̄i3̂̄x(1)1 (t) + R̄i4y(t)

]
. (A5)

Thus, (8) holds. From the above equation, it can be seen that the equations in Lemma 1
are true. The proof is finished.
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