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Observer-Based State-Space Current Control for a

Three-Phase Grid-Connected Converter Equipped

With an LCL Filter
Jarno Kukkola and Marko Hinkkanen, Senior Member, IEEE

Abstract—This paper presents a state-space current control
method for active damping of the resonance frequency of the
LCL filter and setting the dominant dynamics of the converter
current through direct pole placement. A state observer is used,
whereupon additional sensors are not needed in comparison with
the conventional L filter design. The relationship between the sys-
tem delay and instability caused by the resonance phenomenon is
considered. Nyquist diagrams are used to examine the parameter
sensitivity of the proposed method. The method is validated with
simulations and experiments.

Index Terms—Delay, LCL filter, Nyquist diagram, parameter
sensitivity, phase-lead compensator, state-space current control.

I. INTRODUCTION

LCL filters for three-phase, voltage-source, grid-connected

converters have been in great interest during the past few years.

The LCL filter offers better attenuation of switching harmonics

above the resonance frequency of the filter in comparison

with the traditional L filter with an equal inductance to the

inductance of the LCL filter. A disadvantage of the LCL filters

is the resonant behavior.

The resonance of the LCL filter can be damped actively [1]

or passively at the expense of losses [2]. Numerous different

active resonance damping methods have been proposed in

the literature: 1) filtering the output signal of a proportional

integral (PI) current controller [3], [4]; 2) additional feedback

of the capacitor voltage or capacitor current [1], [5], [6]; 3)

adding a virtual resistor with an additional control algorithm

[7], [8]; 4) passivity-based control design [9]; and 5) state-

feedback and predictive methods [10]–[18]. Some of these

active damping methods require extra sensors in comparison

with the conventional L filter design (where the converter

current and grid voltage are measured). Additional sensors are

needed, for instance, in the active damping methods based

on capacitor-current feedback [5] and state feedback [10],

[13], while the capacitor voltage measurements can be utilized

for the synchronization in the capacitor-voltage-based active

damping method [1]. The extra sensors increase costs and

decrease reliability. The number of measurements can be

reduced by state estimation [6], [8], [11], [14]–[19]. In addition

to state estimation, the grid-voltage sensors are eliminated in

[6], [8], [15], [17] and grid-voltage disturbances are estimated

in [15], [19].

J. Kukkola and M. Hinkkanen are with Aalto University School of Electrical
Engineering, P.O. Box 13000, FI-00076 Aalto, Espoo, Finland (e-mail:
jarno.kukkola@aalto.fi; marko.hinkkanen@aalto.fi).

State-space control is attractive in the case of the LCL filter

because it enables setting the dominant dynamics and resonant

dynamics (i.e. resonance damping) using pole placement. This

can be done directly by selecting the desired pole locations

[13], [14], using dead-beat control [10], optimizing some

cost function as in linear quadratic (LQ) control [15], [16],

or with Bessel functions [11]. A natural way to the pole

placement is the direct pole placement based on the open-loop

poles and the desired dynamics of the closed-loop system,

as in [13]. With this approach, the controller gains can be

analytically expressed with the parameters of the system and

dynamic performance specifications, but this may lead to long

expressions, if the discrete-time domain is used [13].

The transport delay, caused by calculation of control quanti-

ties and pulse-width modulation process, is an important issue

in current control of the LCL-filter system. The delay induces

stability problems in different frequency regions in the case

of grid-current feedback and in the case of converter-current

feedback [4], [20]. In other words, the system equipped with

grid-current feedback has a tendency to become unstable if the

resonance frequency of the filter is low (in comparison with the

sampling frequency), while the system with converter-current

feedback has a tendency to become unstable if the resonance

frequency is high. Thus, an important factor is the ratio of the

resonance frequency to the delay frequency, which is closely

related to the sampling frequency. This ratio has been used

to give limits for the stable operation of pure PI control [20],

[21].

In this paper, a complete grid-voltage oriented state-space

current control method for a three-phase, voltage-source, grid-

connected converter with an LCL filter is designed based

on the continuous switching-cycle-averaged model of the

converter. Converter-current feedback is selected because then

the current sensors can be integrated inside the converter,

protection of the converter is simple, and the LCL filter can

be installed as a separate module. Furthermore, a full-order

observer is used, whereupon additional sensors are not needed

in comparison with the conventional L filter design. Nyquist

diagrams are used to examine the parameter sensitivity of

the proposed design. Finally, the control method is validated

with simulations and experiments. The main contributions of

this paper are: 1) the direct pole-placement strategy in the

continuous-time domain giving relatively simple expressions

for the gains of the state-space controller and the full-order

observer in terms of model parameters and the desired dy-

namics; 2) the compensation of the cross-coupling with the
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direct pole-placement strategy contrary to [13]; 3) the ratio of

the resonance frequency and the delay frequency is examined

analytically in the case of converter-current feedback; 4) an

additional phase-lead compensator, as a modular block, is used

to compensate the destabilizing effect of the system delay.

II. SYSTEM MODEL

A grid-connected converter with an LCL filter is shown in

Fig. 1(a) and the block diagram of the current control scheme

is shown in Fig. 1(b). The dc-link voltage ud, line-to-line grid

voltages ugab and ugbc, and converter-side currents ica, icb,

icc are measured for control. Complex-valued space vectors in

synchronous coordinates are used, e.g., the grid-voltage vector

is ug = ugd + jugq. Complex-valued quantities, matrices, and

vectors are marked with boldface.

The current controller and the state observer operate in

grid-voltage-oriented synchronous coordinates, where ug =
ugd + j0. A phase-locked loop (PLL) based on synchronous

reference frame transformation [22], [23] is used to detect the

grid-voltage angle ϑg =
∫
ωgdt, where ωg is the grid angular

frequency. The gate signals for the switches are generated

using space-vector pulse-width modulation (SVPWM).

The state vector is selected as x = [ic uf ig]
T, where uf

is the voltage across the filter capacitor Cf , and ic and ig are

the converter and grid currents, respectively. In synchronous

coordinates rotating at the grid angular frequency ωg, the

dynamics of the converter current ic can be represented in

the state-space form

dx

dt
=





−jωg − 1
Lfc

0
1
Cf

−jωg − 1
Cf

0 1
Lfg

−jωg





︸ ︷︷ ︸

A

x+





1
Lfc

0
0





︸ ︷︷ ︸

Bc

uc +





0
0

− 1
Lfg





︸ ︷︷ ︸

Bg

ug

ic =
[
1 0 0

]

︸ ︷︷ ︸

Cc

x

(1)

where uc is the converter output voltage. Losses of the filter

components (Lfc, Cf , Lfg) are neglected, representing the

worst-case situation for the resonance of the LCL filter.

The transfer function (input admittance) from the converter

voltage to the converter current can be calculated from (1):

Y (s) =
ic(s)

uc(s)
= Cc(sI−A)−1Bc

=
1

Lfc

(s+ jωg)
2 + (ωs

z)
2

(s+ jωg)[(s+ jωg)2 + (ωs
p)

2]

(2)

where

ωs
p =

√

Lfc + Lfg

LfcLfgCf

ωs
z =

√

1

LfgCf

(3)

are the resonance frequency and the anti-resonance frequency,

respectively, in stationary coordinates. As can be seen from

(2), the resonance frequencies in synchronous coordinates are

shifted by ωg to lower frequencies due to the coordinate

transformation, e.g., the resonance frequency in synchronous

coordinates is ωp = ωs
p − ωg. The other transfer functions of

the open-loop system are obtained similarly: for the capacitor

voltage uf , the output vector is Cu = [0 1 0], and for the grid

current ig, the output vector is Cg = [0 0 1].
In the following analysis, SVPWM is assumed to operate

in the linear region. The system delay of Td = 3Ts/2 is

considered, where Ts is the sampling period. The angle error

caused by the delay is compensated for in the coordinate trans-

formation. Hence, the converter output voltage uc = ucd+jucq

is modeled as

uc(t) = uc,ref(t− Td) (4)

where the reference voltage uc,ref is the output of the current

controller.

III. CURRENT CONTROL DESIGN

The current control structure is shown in Fig. 1(b). The

voltage reference uc,ref for the modulator is produced by a

state-space controller together with a phase-lead compensator.

A full-order state observer is used to produce the estimates

ûf and îg for the capacitor voltage and the grid current,

respectively. The converter current estimate îc is also available

but the measured current ic is used in feedback instead.

However, if the measured current is noisy, it may be advanta-

geous to use the estimated current in feedback due to natural

filtering behavior of the observer. Furthermore, the state-space

controller could be augmented with a resonant controller in

order to improve performance in distorted conditions [13],

[24].

The current controller design process can be separated into

three steps: 1) the state-space controller is designed by assum-

ing that all the states are known and the delay is neglected;

2) the observer is designed by selecting the dynamics for the

estimation error; 3) the ratio of the system delay frequency

and the resonance frequency is examined and the phase-lead

compensator is designed to compensate the phase lag of the

delay, if needed.

A. State-Space Controller

The converter current is controlled with a state-space con-

troller that produces the control voltage

u
′
c,ref = kTic,ref + kIxI −Kx (5)

where ic,ref is the reference, kT is the feed-forward gain, kI

is the gain of the integral state xI =
∫
(ic,ref−ic)dt, and K =

[k1 k2 k3] is the feedback gain vector. With the assumptions

x = [ic uf ig]
T is known and u

′
c,ref = uc, the closed-loop

dynamics are obtained from (1) and (5),
[
ẋ

ẋI

]

=

[
A−BcK BckI

−Cc 0

]

︸ ︷︷ ︸

Ã

[
x

xI

]

+

[
BckT

1

]

︸ ︷︷ ︸

B̃

ic,ref

+

[
Bg

0

]

ug

ic =
[
Cc 0

]

︸ ︷︷ ︸

C̃

[
x

xI

]

(6)

where Ã is the system matrix, B̃ the control matrix, and C̃

the output vector of the closed-loop system. The influence of
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(a) (b)

Fig. 1. (a) Grid-connected converter with an LCL filter. (b) Current control structure. The angle ωgTd due to the delay is compensated for in the dq→abc
transformation and the anti-windup is implemented (not explicitly shown in the figure).

the grid voltage ug is considered as a disturbance. From (6),

the transfer function of the closed-loop system is

Gcl(s) =
ic(s)

ic,ref(s)
= C̃(sI− Ã)−1B̃. (7)

The closed-loop current control dynamics are set through di-

rect pole placement in synchronous coordinates. If the closed-

loop poles are selected as

(s2 + 2ζ1ω1s+ ω2
1)

︸ ︷︷ ︸

Dominant dynamics

(s2 + 2ζ2ω2s+ ω2
2)

︸ ︷︷ ︸

Resonant dynamics

, (8)

the controller gains can be calculated by equalizing the char-

acteristic polynomial of (7) and (8):

k1 = 2Lfc(ζ1ω1 + ζ2ω2)− 3jωgLfc (9a)

k2 = LfcCf

(

ω2
1 + ω2

2 + 4ζ1ω1ζ2ω2 + 3ω2
g −

2jωg

Lfc

k1

−
kI

Lfc

−
1

LfgCf

)

− 1
(9b)

k3 = (ω2
gLfgCf − 1)k1 + LfcLfgCf

[

2ζ1ω1ω
2
2 + 2ζ2ω2ω

2
1

+ jωg

(

ω2
g −

1

LfgCf

−
k2 + 1

LfcCf

−
2kI

Lfc

)]

(9c)

kI =
ω2
1ω

2
2LfcLfgCf

1− ω2
gLfgCf

. (9d)

Dominant behavior of the closed-loop system is set with the

dominant part of (8). The natural frequency of the dominant

dynamics is ω1 with the damping factor ζ1. The damping

is selected to a high value ζ1 = 0.7 . . . 1 to prevent large

overshoots. If the dominant pole pair is damped critically,

i.e. ζ1 = 1, there is a double pole at the frequency ω1 of

which the pole from the integrator can be compensated with

the feedforward gain

kT =
kI

ω1

. (10)

It is to be noted that the proposed pole placement leads to real

kI and kT, cf. (9d).

With the resonant part of (8), the resonance of the LCL filter

can be damped and the resonance frequency can be moved,

if desired. A good basis to select these resonant dynamics is

to let the resonance frequency stay close to its natural value,

i.e. ω2 ≈ ωp. Damping of the resonant pole pair is set to

a low value ζ2 = 0.05 . . . 0.3 in order to keep the control

effort reasonable but to provide enough resonance damping.

Furthermore, nonzero delay Td limits the maximum value of

ζ2 (cf. Section III-E). In practice, the losses of the filter,

particularly in the vicinity of the resonance frequency, also

increase damping.

The cross-coupling between the d and q components of the

converter current is compensated automatically with the pole

placement in (8). Alternatively, to decrease the control effort,

the cross-coupling could be left in the resonant dynamics if

the resonant part of (8) were selected as

(s+ jωg)
2 + 2ζ2ω2(s+ jωg) + ω2

2 . (11)

B. State Observer

Because the converter current ic and the grid voltage ug

are measured and the converter voltage uc is internally known

according to (4), the rest of the states for the controller can

be estimated using a full-order observer [25]

dx̂

dt
= Ax̂+Bcuc +Bgug + L(ic − îc) (12a)

îc = Ccx̂ (12b)

where L = [l1 l2 l3]
T is the observer gain vector. With (1)

and (12), the dynamics of the estimation error x̃ = x− x̂ are

dx̃/dt = (A−LCc)x̃. If the characteristic polynomial of the

observer dynamics is selected as

det(sI−A+ LCc) = (s+ αo1)(s
2 + 2ζo2ωo2s+ ω2

o2),
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where αo1 determines the first-order pole, and ζo2 and ωo2 the

second-order pole pair, the observer gains can be calculated

l1 = αo1 + 2ζo2ωo2 − 3jωg (13a)

l2 = −Lfc

(

2αo1ζo2ωo2 + ω2
o2 + 3ω2

g −
Lfc + Lfg

LfcLfgCf

− 2jωgl1

)

(13b)

l3 = αo1ω
2
o2CfLfc + jωg

(

ω2
gCfLfc −

Lfc

Lfg

− 1
)

+
(

ω2
gCfLfc −

Lfc

Lfg

)

l1 + jωgCf l2.

(13c)

This selection removes the cross-coupling in the observer

dynamics. Alternatively, the cross-coupling could be left in

the higher-order dynamics in the similar manner as in (11).

The poles of the closed-loop system consist of the union

of the controller poles and the observer poles [25]. A rule

of thumb is to select the observer poles to be 2 . . . 6 times

faster than the poles of the state-space controller. Then, the

observer dynamics do not limit the bandwidth determined by

the controller. However, the discrete-time implementation with

the Nyquist frequency of ωN = π/Ts gives the highest limit

for the observer poles.

C. System Delay

The transfer function of the delay, corresponding to (4), is

Gd(s) = e−sTd (14)

of which amplitude is always unity and the phase is linearly

decreasing, 6 Gd(jω) = −ωTd. From the current controller

point of view, the delay Gd(s) and the LCL filter can

be considered as one open-loop system ic(s)/uc,ref(s) =
Gd(s)Y (s), as described in [20]. Then, the angle of the open-

loop frequency response at the resonance frequency ωp (in

synchronous coordinates) can be expressed as

6 [Gd(jωp)Y (jωp)] = −ωpTd − π/2.

Further, if the delay is described with the delay angular

frequency ωd = 2π/Td, the phase margin of the open-loop

system at the resonance frequency can be calculated

PMR = π − ωp

2π

ωd

−
π

2
= 2π

(
1

4
−

ωp

ωd

)

. (15)

This equation shows that the system with a unity controller

is unstable (the phase margin is negative at the resonance

frequency) if ωd < 4ωp. Fig. 2 shows the open-loop frequency

responses of Gd(s)Y (s) with different ratios of the delay

frequency to the resonance frequency. With long delays (low

switching frequencies), the phase of the open-loop system

is turning below −180◦ when the gain is above unity (the

gain is infinity in the worst-case scenario). Thus, some phase

compensation is needed if the delay frequency is close to the

resonance frequency, e.g. the phase-lead compensator or the

Smith predictor. The phase-lead compensator is selected for

the sake of simplicity.

Fig. 2. Influence of the system delay in the open-loop transfer function
Gd(s)Y (s): Lfc = 2.94 mH, Lfg = 1.96 mH, and Cf = 10 µF (ωs

p ≈
9220 rad/s). The delay is Td = (3/2)Ts = 3/(4fsw) when two samples per
switching period are obtained. The limits of 1 and −180◦ are marked with
red dashed lines.

D. Phase-Lead Compensator

Adding a phase lead with the phase-lead compensator in

the vicinity of the resonance frequency is straightforward. The

transfer function of the phase-lead compensator is

GL(s) = AL

1 + s
ωL

1 + s
kLωL

(16)

where AL is the gain and kL > 1 is the ratio of the pole

kLωL and the zero ωL of the filter. The maximum phase lead

is provided at the frequency of

ωm =
√

kLωL. (17)

The relation between the maximum phase lead φm and kL is

[25]

kL =
1 + sinφm

1− sinφm

. (18)

The phase-lead compensator is designed based on the open-

loop phase margin at the resonance frequency (15) by the

following steps:

1) The maximum phase lead is produced at the resonance

frequency, i.e. ωm = ωp = ωs
p − ωg.

2) The maximum phase lead φm is calculated from the

difference of the desired phase margin (e.g. 40◦) with

the unity controller and the open-loop margin (15).

3) The parameter kL is calculated from (18) and ωL from

(17).

4) The parameter AL is selected to give unity gain for

GL(s) at the Nyquist frequency ωN = π/Ts. Hence, the

gain at the resonance frequency is not increased (since

ωp < ωN) and measurement noise is not amplified.

Unity gain at the infinity, i.e. AL = 1/kL, gives a good

approximation for small phase leads.

The maximum phase lead for the compensator in (16) is

π/2. However, increasing the amount of the phase lead, either

noise sensitivity is increased or disturbance rejection of current

control is decreased depending on the selection of the gain AL.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIA.2013.2295461

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



E. Parameter Sensitivity

The grid impedance was neglected in the gain calculation of

the state-space controller. The variation of the grid impedance

effectively changes the value of the inductance Lfg. Here, the

effect of varying inductance on current control is examined

with Nyquist diagrams of the loop-transfer function H(s) of

the whole feedback loop.

When the current reference is set to zero, i.e. ic,ref = 0,

and the grid voltage as a disturbance is neglected, the control

voltage uc,ref produced by the controller, observer, and phase-

lead compensator is

uc,ref(s) = −GL(s)
{[

k2G21(s) + k3G31(s)
]
uc(s)

+
[
k1 + k2G22(s) + k3G32(s) + kI/s

]
ic(s)

}

(19)

where the transfer functions from uc to ûf and from ic to ûf

are

G21(s) =
ûf(s)

uc(s)
= Cu(sI−A+ LCc)

−1Bc

G22(s) =
ûf(s)

ic(s)
= Cu(sI−A+ LCc)

−1L,

respectively. The transfer functions G31(s) = îg(s)/uc(s) and

G32(s) = îg(s)/ic(s) are obtained from (12) in a similar

way. Using relationships (2), (14), and (19), the loop-transfer

function is

H(s) =
{

k1Y (s) + k2[G21(s) + Y (s)G22(s)]

+ k3[G31(s) + Y (s)G32(s)] + (kI/s)Y (s)
}

·Gd(s)GL(s).

(20)

The poles of H(s) are the union of the poles of the separate

transfer functions of (20). Further, there are no right half-plane

poles in Y (s) and the poles of the observer transfer functions

and the phase-lead compensator can be freely selected to be in

the left half-plane. According to the Nyquist stability criterion,

if there are no right half-plane poles in H(s) and the Nyquist

plot of H(s) does not encircle the point of −1+j0, the system

is stable [25].

Let us examine the Nyquist stability criterion in an example

case. A sketch of the Nyquist diagram of the loop-transfer

function is shown in Fig. 3 when ωg is set to zero for

simplicity. In this case, due to the integrator and the dynamics

of the LCL filter (2), there are two poles at s = 0 turning

the phase of the plot −360◦ clockwise when the gain is

infinity. This path is further marked with the symbols 0−
and 0+. At the resonance frequency, the phase is turning

−180◦ clockwise, i.e., to the negative direction as in Fig. 2,

and the gain is infinity (due to the omitted losses) resulting

another large arc at infinity. This path is further marked with

the symbols ω+. There is a similar path at the negative

frequencies, marked with ω−, which is symmetric in this

example (but asymmetric if ωg 6= 0). If ωg 6= 0, the arcs

at infinities remain similar at the resonance frequencies; only

the arc of s = 0 is splitted into two parts, another originating

from the imaginary pole s = −jωg.

Fig. 3. Nyquist diagram of the loop-transfer function H(s). The grid
frequency ωg is set to zero to give a simple presentation of the controlled
system. Note, that the symmetry of the diagram is lost when ωg 6= 0.

As can be seen from Fig. 3, the Nyquist plot does not

encircle the critical point of −1 + j0. The system is stable.

Furthermore, there is a small modulus margin M (or vector

margin), which is the distance to the critical point from the

closest approach of the plot. The modulus margin is suitable

for analyzing complex systems in which the magnitude and

phase may cross 1 and −180◦, respectively, several times [25],

[26].

The loop-transfer function H(s) and Nyquist diagrams

provide a tool for examining stability with varying parameters

and parameter errors. For example, in the case of a varying grid

inductance, the controller gains are calculated with nominal

parameters, given in Table I, and a parameter error ∆Lfg is

taken into account in the sub-transfer functions of (20). The

real inductance in the circuit is Lfg + ∆Lfg. For example,

applying relative errors ∆Lfg/Lfg = −0.3, ∆Lfg/Lfg = 0
and ∆Lfg/Lfg = 0.3, the Nyquist diagrams of H(s) are

presented in Fig. 4 with the controller, observer, and phase-

lead compensator parameters given in Table II.

The controller is tuned by setting the natural frequency

ω1 = 2π · 500 rad/s of the dominant dynamics (corresponding

to the approximate bandwidth of fsw/12 = 500 Hz). The

resonance frequency ω2 = ωp is damped by selecting ζ2 = 0.1
in order to ensure stability in the worst-case scenario with

the selected bandwidth and parameter uncertainty of 30%.

It is to be noted that the damping ratio ζ2 is limited by

the delay Td in the control system. If the delay is zero, the

damping ratio could be selected almost arbitrarily within the

limits of the control effort, but with a delay of Td = 3Ts/2,

the selection of ζ2 is limited to lower values (depending on

the selected dominant dynamics, resonance frequency, and

phase-lead compensation). As an example, if the delay were

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIA.2013.2295461

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



TABLE I
SYSTEM PARAMETERS

Param. Value Param. Value

ug

√

2/3 · 400 V (1 p.u.) ωg 2π · 50 rad/s

iN
√
2 · 18 A (1 p.u.)

Lfc 2.94 mH (0.072 p.u.) Lfg 1.96 mH (0.048 p.u.)
Cf 10 µF (0.040 p.u.) ud 650 V (2 p.u.)
ωs
p 2π · 1470 rad/s ωs

z 2π · 1140 rad/s

fsw 6 kHz Ts 1/(2fsw)

TABLE II
STATE-SPACE CONTROLLER PARAMETERS

Param. Value Param. Value

ω1 2π · 500 rad/s ζ1 0.9
ω2 ωp = ωs

p − ωg ζ2 0.1

αo1 2ω1

ωo2 ωp ζo2 0.5
φm 13.8◦ AL 1/kL, cf. (18)

decreased by increasing the switching frequency to fsw = 10
kHz, the phase-lead compensator would not needed and a

higher damping ratio of ζ2 = 0.3 could be selected. These

limitations can be examined by means of Nyquist diagrams.

Lower values of the damping ratio will cause some oscillations

in the worst-case scenario, but with the losses of a real LCL

filter, effective damping is sufficient.

The dominant dynamics of the observer are selected to be

twice as fast as the control bandwidth. The resonant dynamics

of the observer are set at the resonance frequency. Based on

the delay analysis, PMR = 26.2◦ according to (15). The phase

lead of φm = 13.8◦ is used to produce the phase margin of

40◦ at the resonance frequency ωp with the unity controller.

However, the bandwidth, damping ratio, and phase lead could

be selected differently, since control tuning is a compromise

between dynamic performance and robustness. The analysis

based on the Nyquist diagrams enables optimization of the

damping ratio and phase-lead compensation, if the design

specifications and system parameters are known.

The Nyquist plots of Fig. 4 do not encircle the critical

point, i.e., the system is stable with the selected controller

tuning and the relative parameter errors of ∆Lfg/Lfg = −0.3,

∆Lfg/Lfg = 0, and ∆Lfg/Lfg = 0.3. If the parameter error

of the filter capacitor Cf is considered instead, the system

is stable with the equivalent errors of ∆Cf/Cf = −0.3,

∆Cf/Cf = 0, and ∆Cf/Cf = 0.3. By means of a similar

analysis, it can be shown that a more robust system could be

achieved at the expense of dynamic performance: the system

becomes less sensitive to the parameter errors, if the natural

frequency ω1 of the dominant dynamics is lowered.

F. Practical Implementation

Practical implementation issues are discussed in this subsec-

tion. Regarding to the integrator of the state-space controller,

the anti-windup is implemented by feeding back the difference

of the possibly saturated output sat(uc) and the control volt-

age, as described for PI control in [27]. Then, the reference

value of the current for the integral part of the controller is

Fig. 4. Nyquist diagrams of the loop-transfer function H(s) when the
inductance Lfg is varying. The real inductance in the circuit is Lfg +∆Lfg.

limited

ĩc,ref = ic,ref + k
−1
T [sat(uc)− uc,ref ]. (21)

Actually, PI control can be seen as a special case of state-

space control given in (5). With the selections

k1 = kp +Ra − jωgLfc (22a)

k2 = k3 = 0 (22b)

kT = kp (22c)

kI = ki (22d)

the state-space controller is equivalent to a two-degree-of-

freedom (2DOF) PI controller in [9] with the gains kp and

ki, the active damping term Ra, and the approximate cross-

coupling compensation jωgLfc.

For implementation of the proposed method, the control

system is discretized using Tustin’s bilinear equivalent [25]

s =
2

Ts

1− z−1

1 + z−1
. (23)

In the case of the phase-lead compensator, the discrete al-

gorithm is obtained inserting (23) in (16). For a general

state-space presentation, i.e., dx′/dt = A′x′ + B′u′ and

y′ = C′x′ +D′u′, Tustin’s method can be written as [28]:

w(k + 1) = Φw(k) + Γu′(k) (24a)

y′(k) = Cdw(k) +Ddu
′(k) (24b)

where w is the modified state vector and the discretized system
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matrices are

Φ = (I+ Ts/2 ·A
′)(I− Ts/2 ·A

′)−1 (25a)

Γ =
√

Ts(I− Ts/2 ·A
′)−1B′ (25b)

Cd =
√

TsC
′(I− Ts/2 ·A

′)−1 (25c)

Dd = D′ + Ts/2 ·C
′(I− Ts/2 ·A

′)−1B′ (25d)

In the state-space controller, only the integrator needs to

be discretized using (24) and (25), i.e., y′ = x′ = xI, u
′ =

ĩc,ref − ic, A′ = 0, B′ = 1, C′ = 1, and D′ = 0, leading to a

fairly simple algorithm. In the case of the state observer, the

gain vector L is packed into system matrices and the matrices

and vectors for the discretization are: y′ = x′ = x̂, u′ =
[uc ug ic]

T, A′ = A− LCc, B′ = [Bc Bg L], C′ = I, and

D′ = 0.

IV. SIMULATION AND EXPERIMENTAL RESULTS

Simulations and experiments were used to verify the pro-

posed current control method. An experimental setup con-

sists of two back-to-back connected 12.5-kVA 50-Hz con-

verters equipped with LCL filters, an isolation transformer

for the loading converter, and dSPACE DS1006, DS2201,

and DS5202 boards with associate hardware for the control

algorithms, PWM, and analog measurements of the converter

under test. The system parameters are given in Table I. The

converter under test was controlling the DC-bus voltage, while

another converter was used to feed the load to the bus. The

switching frequency was fsw = 6 kHz (unless otherwise

noted).

In the simulations, the load was a constant current source

and the grid was considered to be stiff. The frequency-

dependent losses of real inductors are considerable in the

vicinity of the resonance frequency [29]. In the simulation

model, the LCL filter was built using a first-order series

Foster model for the inductors [29], [30]: 102-mΩ and 68-

mΩ resistors are used in series with Lfc and Lfg, respectively;

and 420-Ω and 630-Ω resistors are used in parallel with Lfc

and Lfg, respectively. The series resistances are based on the

measured DC resistance of the filter. The parallel resistances

were selected to match the simulated losses with the measured

losses of the filter at the nominal power.

A. Validation

First, the simulation results are compared with the experi-

mental results in order to validate the simulation model. The

example design, whose parameter sensitivity was analyzed

in Section III-F, is considered. The step of 10 A (0.4 p.u.)

in the reference icq,ref of the converter current was applied.

The reference icd,ref was determined by the active power

transfer through the DC-voltage control. No active power,

except the losses of the setup, was transferred in this test.

The responses of the converter-current components and grid-

current components are shown in Figs. 5 and 6, respectively.

The time scale of 20 ms used in the figures equals one period

of the 50-Hz grid voltage.

As can be seen from the results, the simulated and measured

dominant dynamics match the designed dynamics: the current

Fig. 5. Simulated (above) and measured (below) step responses of the
converter current components icd and icq.

Fig. 6. Simulated (above) and measured (below) step responses of the grid
current components igd and igq.

Fig. 7. Converter-side phase current ica (above) and the grid-side phase
current iga (below). The converter operates slightly below the nominal point.
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Fig. 8. Simulated converter and grid current step responses with parameter
errors ∆Lfg/Lfg = −0.3 and ∆Lfg/Lfg = 0.3.

rises to its reference in 0.75 ms. The cross-coupling between

the d and q components is well compensated. The minor cross-

coupling oscillations at the resonance frequency originate from

the time delay. In the resonant dynamics, simulations show

slightly more oscillations in comparison with the experimental

results. This is because of the simple model of the LCL filter

was used in the simulations. In order to model high-frequency

behavior of the inductors more accurately, the order of the

Foster model could be increased [29], [30].

The proposed method is also validated when the converter

is supplying the nominal power. Fig. 7 shows the measured

converter-side and grid-side phase currents. Total harmonic

distortions (THD) up to the 50th harmonic of the converter

and grid currents are 2.6% and 2.9%, respectively.

B. Parameter Errors

In Section III-F, the effect of the varying grid inductance

was examined with the Nyquist diagrams. The correspond-

ing cases of the parameter errors ∆Lfg/Lfg = −0.3 and

∆Lfg/Lfg = 0.3 were simulated and the results are shown

in Fig. 8. The results are in line with the analysis, cf. Fig 4.

The system remains stable with the parameter variation and

the resonance behavior is close to the nominal situation shown

in Figs. 5 and 6. Only the resonance frequency is changing

due to the change in the actual inductance Lfg + ∆Lfg, i.e.,

the larger inductance decreases the resonance frequency.

C. Comparison With 2DOF PI Control

The proposed state-space current controller was compared

with a 2DOF PI controller, cf. (22), where the controller gains

were kp = αcLfc, ki = α2
cLfc, and Ra = αcLfc [9]. The

tuning parameter αc was selected so that the rise time equals

that in the proposed method.

For both control methods under comparison, the switching

frequency was decreased to fsw = 4 kHz in order to demon-

strate the smaller ratio of the delay frequency ωd = 2π/Td

Fig. 9. Comparison of state-space and PI control. Measured responses of the
converter current components icd and icq. For both control methods under
comparison, the switching frequency was decreased to fsw = 4 kHz.

Fig. 10. Comparison of state-space and PI control. Measured responses of
the grid current components igd and igq. For both control methods under
comparison, the switching frequency was decreased to fsw = 4 kHz.

to the resonance frequency ωp. The other system parameters

equal the values given in Table I. The delay frequency ωd <
4ωp, leading to the negative phase margin of PMR = −5.7◦

according to (15). To compensate the delay, the phase lead

of φm = 35.7◦ was produced at the resonance frequency,

corresponding to the target phase margin of 30◦ with the unity

controller. The other parameters of the state-space controller

were kept the same as in Table II. For a fair comparison, the

same phase-lead compensator was used with the both control

methods under comparison. It is important to note that, when

the switching frequency is 4 kHz, the system is unstable with

the both controllers if no phase lead is used.

Figures 9 and 10 show the measured converter and grid

currents when a step of 10 A (0.4 p.u.) in the reference icq,ref
was applied at t = 5 ms. Approximately the power of 5 kW

(0.4 p.u.) was transferred through the test setup, leading to

icd ≈ 10 A. It can be seen that the resonance of the filter is
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poorly damped in the case of the 2DOF PI controller. On the

other hand, damping is sufficient in the case of the proposed

state-space controller. Furthermore, the effect of the phase-

lead compensator, having the gain AL = 1/kL, can be seen

as slightly slower dominant dynamics in comparison with the

results with fsw = 6 kHz. The amount of the phase lead

could be decreased, which brings AL closer to unity. Then, the

dominant dynamics would be closer to the desired dynamics

ω1 = 2π · 500 rad/s.

V. DISCUSSION

The proposed controller was analytically tuned by assum-

ing the lossless LCL filter, which represents the worst-case

scenario from the point of view of the filter resonance. With

higher power ratings, reaching MVA ratings, the system losses

are relatively smaller than those in the power ratings of a

few kVA. Furthermore, the switching frequencies tend to be

lower. In this paper, the simulation and experimental results

were shown for a low-power converter. However, the proposed

design approach can also be applied in the case of higher

power ratings (if the same converter topology is used); this

applicability was verified with simulations and analyses of

Nyquist diagrams using the converter system parameters given

in [1], [6], [18].

The proposed method was designed using converter-current

feedback in order to enable installation of the current sensors

inside the converter and to make protection of the con-

verter straightforward. Furthermore, if the grid-voltage sensors

were eliminated by means of estimation [6], [8], [15], [17],

the amount of sensors would be less and the LCL filter

would be physically separated from the converter, enabling

modular assembly of the converter system. Instead of using

converter-current feedback, the state-space controller could be

redesigned for grid-current feedback using the proposed design

process and design tools. In the case of grid-current feedback,

the reactive power can be more accurately (i.e., independently

of the model parameters) controlled at the point of common

coupling. If the ratio of the resonance frequency ωs
p to the

sampling frequency ωs = 2π/Ts is high (ωs
p/ωs > 1/6),

the system with grid-current feedback is easier to stabilize

[4], [20], but then the previously mentioned advantages of

converter-current feedback are lost.

The degrees of freedom in the control design are higher

with the proposed state-space controller than those in the case

of the 2DOF PI controller, leading to better dynamic perfor-

mance and resonance damping. The proposed state observer

increases complexity of the control algorithm in comparison

with measurement of the states. However, contrary to the con-

trol methods in [5], [10], [13], the proposed method enables

implementation of the state-space controller using the same

amount of sensors as in the case of the 2DOF PI controller

[9], some of the virtual resistor designs [7], capacitor-voltage

feedback [1], [12], filtering output of the current controller [3],

[4] and passive damping [2].

If the state-space controller were designed in the discrete-

time domain [10], [11], [13], [14], [16], the discretization of

the controller is not needed and dynamic performance might be

slightly better, since the delay can be integrated in the system

model. With predictive methods [17], [18], performance could

be further improved. However, in the proposed scheme, sim-

pler expressions for the gains are obtained and the connection

between the physical parameters and control is retained at the

same time. Furthermore, the cross-coupling is automatically

compensated for through the proposed pole-placement method.

VI. CONCLUSION

This paper presented a continuous-time design method for

an observer-based state-space current controller of a grid-

connected converter equipped with an LCL filter. Model-based

pole placement was used to derive an analytical design for a

state-space controller and a full-order observer. The ratio of

the resonance frequency to the delay frequency was examined,

and a phase-lead compensator was proposed to compensate

for the phase lag of the delay. The Nyquist stability criterion

was used to examine the robustness of the proposed method

against varying grid inductance. The method was verified

with simulations and experiments; the results indicate more

effective resonance damping of the LCL filter and better dy-

namic performance in comparison with a 2DOF PI controller.

The proposed model-based design approach enables automatic

tuning of the controller, if the parameters of the LCL filter are

known or can be estimated. Furthermore, the proposed method

gives a solid basis for our future research focusing on grid-

voltage sensorless operation.
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