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Abstract— In this note, observers design for a class of non
linear dynamical systems has been investigated. The main con-
tribution lies in the use of the differential mean value theorem
(DMVT) to transform the nonlinear error dynamics into a LPV
system. The stability analysis is, therefore, performed using a
standard Lyapunov function that leads to the solvability of
a set of Linear Matrix Inequalities (LMIs), easily tractable.
Numerical examples are provided to show high performances
of the proposed approach and the large class of nonlinear
dynamical systems that are concerned.

I. INTRODUCTION

Over the last decades, tremendous research activities
focus on observer design for nonlinear dynamical systems
as can be shown through the vast literature in this field. The
main motivations lie in the fact that state estimation may
be used for control design, diagnosis or supervision. More
recently, other applications like synchronization and input
recovery, in communication systems, become one of the
emerging and interesting research area [1]-[2]-[3]-[4].
For the lack of space here, we will mention some basic and
standard observer methods. One of them consists in using
nonlinear change of coordinates to bring the original system
into a linear one (or pseudo-linear one). We refer the reader
to the pioneering works and their extensions about this
approach [5]-[6]-[7]-[8]-[9]-[10]-[11]. As can be expected,
the main advantage behind the use of this approach is to
simplify the observer design, however this requires strong
sufficient conditions to be satisfied and therefore only a
class of systems may be considered, see [12].
A second, and famous, approach consists in using the
Extended Kalman Filter (EKF). The latter is frequently used
as a deterministic observer for nonlinear systems. The proof
of its exponential stability has been given in [13], and it has
been proved in [14] that the EKF is locally stable when it is
used as an observer for discrete-time nonlinear systems. In
[15], the authors proposed an observer for continuous-time
nonlinear systems where the observer gain is computed by
a Riccati differential equation similar to the EKF. In spite
of the large use of this method, only local convergence may
be guaranteed.
The class of Lipschitz nonlinear systems has been widely
investigated, since most physical processes can be described

by nonlinear Lipschitz models. In [15], [16], [17], [18] and
[19], the authors proposed specific solutions to this type
of systems where the stability conditions are expressed in
terms of algebraic Riccati equations. The same class of
systems is investigated in [20] to construct an observer,
where the convergence of the estimation error has been
studied by using both Lyapunov functions and functionals,
and stability conditions are expressed using LMIs. However,
all these stability conditions are difficult to be satisfied for
large values of the Lipschitz constant.
Recently, Arcak et al. [21], and Fan et al. [22] have
presented a new observer for a class of systems with
monotonic nonlinearities. This new design removes the
global Lipschitz restriction and avoids high-gain. The single
restriction is that the nonlinearities must be nondecreasing
functions of linear combinations of unmeasured states. The
stability conditions expressed as LMIs are not restrictive
and are easily satisfied for many examples. However,
the nondecreasing restriction excludes a broad variety of
nonlinearities such as x2, exp(−x), etc.
In this paper, we propose a new observer design for a large
class of nonlinear systems. The basic idea of this work
is to use the well known DMVT, which allows to write
the dynamics of the observer error as a LPV system. The
stability analysis is easy to investigate by using a classical
quadratic Lyapunov function and convexity theory. The
observer gain guaranteeing the global convergence of the
proposed observer is computed by LMIs.
It should be noticed that the proposed approach can be
applied in both continuous and discrete time nonlinear
models even with non Lipschitz nonlinearities. Numerical
examples are provided to show high performances and
the large class of nonlinear dynamical systems that are
concerned.
This paper is organized as follows. In section II, we recall
the DMVT. The class of systems to be investigated and the
proposed observer are presented in section III. In section
IV, we introduce the main contribution of our paper. In
section V we propose a generalization of our approach to
a large class of systems and we give an extension to the
discrete-time case. Three numerical examples are simulated
in section VI to demonstrate the validity of this approach.
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Finally, we give some conclusions in section VII.

Notations : In this note, the notation (�) is used for
the blocks induced by symmetry. The matrix AT represents

the transposed matrix of A. The symbol
q,n∑

i,j=1

means
q∑

i=1

n∑
j=1

.

II. PRELIMINARIES

In this section, we present a mathematical tool which is
important for the next section : the differential mean value
theorem.
We first present the differential mean value theorem in one
dimension and then we generalize it to a higher-dimension.

Theorem 2.1: (DMVT) Let f : [a, b] −→ R be continu-
ous on [a, b] and differentiable on (a, b). Then, there is some
c with a < c < b such that

f(a) − f(b) = f
′
(c)(a − b).

This theorem is a consequence of Rolle’s theorem.
Now, we state the mean value theorem in higher-dimension
which is important for the approach developed in this paper.
Before stating this theorem, we introduce the following
definition :

Definition 2.2: Let x, y be two elements in R
n. We define

by Co(x, y) the convex hull of the set {x, y}, i.e.

Co(x, y) = {λx + (1 − λ)y, λ ∈ [0, 1]}.
Theorem 2.3: (DMVT in R

n) Let f : R
n → R. Let a, b

be two elements in R
n. We assume that f is differentiable on

Co(a, b). Then, there is a constant c ∈ Co(a, b), c �= a, c �= b
such that :

f(a) − f(b) = f
′
(c)(a − b)

where
f

′
= [

∂f

∂x1
...

∂f

∂xn
].

Proof: Let g: [0, 1] → R be the function defined by

g(t) = f(a + t(b − a)).

g is differentiable on ]0, 1[, continuous on [0, 1], and

g
′
(t) = f

′
(a + t(b − a))(b − a).

Using the Theorem 2.1, there exists c1 ∈]0, 1[ such that :

g(1) − g(0) = g
′
(c1),

which is equivalent to

f(b) − f(a) = f
′
(a + c1(b − a))(b − a).

Then, there exists c = a+ c1(b−a) ∈ Co(a, b), c �= a, c �= b
such that :

f(a) − f(b) = f
′
(c)(a − b).

Remark 2.4: Generally the differential mean value theo-
rem is not true for higher-dimensional vector-valued func-
tions. The following is a counter-example (see [23]).
Let f : R

2 −→ R
2 be defined by :

f(x) =
(

f1(x1, x2)
f2(x1, x2)

)
=

(
x2

1

ex1+x2

)
.

If we set a =
(

1
1

)
and b =

(
0
0

)
,

then,

f(a) =
(

1
e2

)
, f(b) =

(
0
1

)
and

∂f

∂x
(a + c(b − a)) =

(
2(1 − c) 0
e2−2c e2−2c

)
.

If the mean value theorem exists, then we will have(
1

e2 − 1

)
=

(
2(1 − c)
2e2−2c

)
.

The first equation gives c = 1
2 , which contradicts the second

equation.

Since, the DMVT is not correct for vector-valued function,
we propose to proceed as follows :
Let

Es =
{
es(i) | es(i) = (0, ..., 0, 1, 0, ..., 0)T , i = 1, ..., s.

}
be the canonical basis of the vectorial space R

s for all s ≥ 1.
Let

f : R
n → R

q

be a vector function. Then,

f(x) = [f1(x), ..., fq(x)]T ,

where fi : R
n → R is the ith component of f .

We know that the vectorial space R
q is generated by the

canonical basis Eq . Therefore, we can write :

f(x) =
q∑

i=1

eq(i)fi(x). (1)

Now, we state the following proposition.

Proposition 2.5: Let f : R
n → R

q . Let a, b ∈ R
n. We

assume that f is differentiable on Co(a, b). Then, there are
constant vectors c1, ..., cq ∈ Co(a, b), ci �= a, ci �= b for
i = 1, ..., q such that :

f(a) − f(b) =

⎛
⎝ q,n∑

i,j=1

eq(i)eT
n (j)

∂fi

∂xj
(ci)

⎞
⎠ (a − b) (2)

Proof: From (1), we have

f(a) − f(b) =
q∑

i=1

eq(i) (fi(a) − fi(b)) .

Now, we apply the DMVT on each fi, i = 1, ..., q.
From the Theorem 2.3, there exists ci ∈ Co(a, b) such that

fi(a) − fi(b) =
∂fi

∂x
(ci)(a − b),

for all i = 1, ..., q.
As (

∂fi

∂x

)T

=
(

∂fi

∂x1
, ...,

∂fi

∂xn

)T

∈ R
n,

6354



then, we can write

∂fi

∂x
(ci) =

n∑
j=1

eT
n (j)

∂fi

∂xj
(ci).

Therefore,

f(a) − f(b) =

⎛
⎝ q,n∑

i,j=1

eq(i)eT
n (j)

∂fi

∂xj
(ci)

⎞
⎠ (a − b).

III. PROBLEM FORMULATION

We consider the class of nonlinear systems described by
the following nonlinear state equations :{

ẋ(t) = Ax(t) + Bf(x(t)) + g(y(t), u(t))
y(t) = Cx(t) (3)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the input
vector and y(t) ∈ R

p is the output vector. A, B, C are constant
matrices of appropriate dimensions. The functions f : R

n �→
R and g: R

p × R
m �→ R

n are nonlinear and f is assumed to
be differentiable.
A state observer corresponding to (3) is given as follows :⎧⎨

⎩
˙̂x(t) = Ax̂(t) + Bf(x̂(t)) + g(y(t), u(t))+

+ L(y(t) − ŷ(t))
ŷ(t) = Cx̂(t)

(4)

where x̂(t) denotes the estimate of the state x(t). The
observation problem consists in finding a gain L such that the
observer error ε(t) = x(t) − x̂(t) converges exponentially
and asymptotically towards zero.
The dynamics of the observer error is expressed as follows :

ε̇(t) = (A − LC)ε(t) + B
(
f(x(t)) − f(x̂(t))

)
.

By the DMVT, there exists z(t) ∈ Co(x(t), x̂(t)) such that

f(x(t)) − f(x̂(t)) =
∂f

∂x
(z(t))(x(t) − x̂(t)).

As
(

∂f
∂x

)T

∈ R
n, then we can write

∂f

∂x
(z(t)) =

n∑
i=1

eT
n (i)

∂f

∂xi
(z(t)).

With the notation

hi(t) =
∂f

∂xi
(z(t)),

the dynamics of the observer error becomes :

ε̇(t) =

(
A +

n∑
i=1

hi(t)BeT
n (i) − LC

)
ε(t). (5)

By setting
h(t) = (h1(t), ..., hn(t))

and

A (h(t)) = A +
n∑

i=1

hi(t)BeT
n (i)

we have
ε̇(t) =

(A(h(t)) − LC
)
ε(t). (6)

The observer error system (6) is a LPV system, for which
we can easily study the stability conditions.
Before introducing our main result, we introduce the follow-
ing assumption :
Assumption : we assume that the functions hi are bounded.

max
t

|hi(z(t))| < +∞.

Note that this assumption is not restrictive. Indeed, it is
satisfied for a large class of nonlinear systems, namely the
chaotic systems for which this assumption is always satisfied.
By this assumption, the parameter h(t) evolves in a bounded
domain Hn of which 2n vertices are defined by :

VHn
=

{
α = (α1, ..., αn) | αi ∈ {hi, h̄i}

}
where

h̄i = max
t

(
hi(t)

)
and hi = min

t

(
hi(t)

)
.

IV. MAIN RESULT

In this section, we introduce the main contribution of
our work. We give sufficient conditions for the observer
synthesis.

Theorem 4.1: The observer error ε(t) converges exponen-
tially towards zero if there exist matrices P = PT > 0 and
R of appropriate dimensions such that the following LMIs
are feasible :

AT (α)P − CT R + PA(α) − RT C < 0
∀ α ∈ VHn . (7)

When these LMIs are feasible, the observer gain L is given
by L = P−1RT .

Proof: To study the exponential convergence of the
observer error, we consider the following quadratic Lyapunov
function

V (t) = V (ε(t)) = εT (t)Pε(t),

where P is a symmetric matrix, with P > 0.
The observer error converges exponentially towards zero if
V (t) > 0 and V̇ (t) < 0 for all ε(t) �= 0.
We have

V̇ (t) = εT (t)F (h(t))ε(t)

where

F (h(t)) =
(A(h(t)) − LC

)T
P + P

(A(h(t)) − LC
)
.

The condition V (t) > 0 is satisfied because the matrix P is
positive definite. Note that the condition V̇ (t) < 0 is satisfied
if we have

F (h(t)) < 0 for all h(t) ∈ Hn.

Since the matrix function F is affine in h(t), then using the
convexity principle (see [24] for more details) we deduce
that V̇ (t) < 0 if the following condition is satisfied :

F (α) < 0, ∀ α ∈ VHn . (8)
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If we use the notation R = LT P , the condition (8) is
equivalent to (7). Thus, if (7) holds, then the inequality (8)
is also verified, which imply that V̇ (t) < 0. This ends the
proof of theorem 4.1.

V. EXTENSIONS

In this section, we generalize our main result to a broader
class of systems and we extend it to the discrete-time case.

A. Generalization to a Broader Class of Systems

Consider the nonlinear system described by :{
ẋ(t) = Ax(t) + Bf(x(t)) + g(y(t), u(t))
y(t) = Cx(t) (9)

where x(t) ∈ R
n is the state vector,u(t) ∈ R

m is the input
vector and y(t) ∈ R

p is the output vector. A, C are constant
matrices of appropriate dimensions.
The functions f : R

n �→ R
q and g: R

p × R
m �→ R

n are
nonlinear and f is assumed to be differentiable.
Consider also the corresponding state observer as follows :⎧⎨

⎩
˙̂x(t) = Ax̂(t) + Bf(x̂(t)) + g(y(t), u(t))

+ L(y(t) − ŷ(t))
ŷ(t) = Cx̂(t)

(10)

The dynamics of the observer error is expressed as follows :

ε̇(t) = (A − LC)ε(t) + B(f(x(t)) − f(x̂(t))).

From the Proposition 2.5, there exist zi(t) ∈ Co(x(t), x̂(t)),
for all i = 1, ..., q, such that :

f(x(t)) − f(x̂(t)) =

⎛
⎝ q,n∑

i,j=1

eq(i)eT
n (j)

∂fi

∂xj
(zi(t))

⎞
⎠ ε(t).

Using the notations

hij(t) =
∂fi

∂xj
(zi(t)),

h(t) = (h11(t), ..., h1n(t), ..., hqn(t))

and

A(h(t)) = A +
q,n∑

i,j=1

hij(t)Beq(i)eT
n (j),

the observer error dynamics can be rewritten as follows :

ε̇(t) =
(A(h(t)) − LC

)
ε(t). (11)

As previously, we assume that the functions hij are bounded
for all i = 1, ..., q and j = 1, ..., n.
Then, the parameter vector h(t) remains in a bounded
domain Hq,n of which 2qn vertices are defined by :

VHq,n =
{
α = (α11, ..., α1n, ..., αqn) | αij ∈ {hij , h̄ij}

}
where

h̄ij = max
t

(
hij(t)

)
and hij = min

t

(
hij(t)

)
.

Now, we can state the following theorem.
Theorem 5.1: The observer error converges exponentially

towards zero if there exist matrices P = PT > 0 and R

of appropriate dimensions such that the following LMIs are
feasible :

AT (α)P − CT R + PA(α) − RT C < 0
∀ α ∈ VHq,n . (12)

When these LMIs are feasible, the observer gain L is given
by L = P−1RT .

Proof: The proof of this theorem is similar to that
of theorem 4.1. The same Lyapunov function and the same
reasoning are used.

B. Extension to the Discrete-Time Case

Now, we consider the discrete-time nonlinear system in
the general form described by :{
x(k + 1) = Ax(k) + Bf(x(k)) + g(y(k), u(k))
y(k) = Cx(k) (13)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is the input
vector and y(k) ∈ R

p is the output vector. A,C are constant
matrices of appropriate dimensions. The functions
f : R

n �→ R
q and g: R

p × R
m �→ R

n are nonlinear and f is
assumed to be differentiable.
A state observer corresponding to (13) is given as follows:⎧⎨

⎩
x̂(k + 1) = Ax̂(k) + Bf(x̂(k)) + g(y(k), u(k))+

+ L(y(k) − ŷ(k))
ŷ(k) = Cx̂(k)

(14)

The dynamics of the observer error ε(k) = x(k) − x̂(k) is
governed by the following equation :

ε(k + 1) = (A − LC)ε(k) + B
(
f(x(k)) − f(x̂(k))

)
We proceed as in the continuous-time case. From the Propo-
sition 2.5, there exists zi(k) ∈ Co(x(k), x̂(k)) for all
i = 1, ..., q, such that :

f(x(k)) − f(x̂(k)) =

⎛
⎝ q,n∑

i,j=1

eq(i)eT
n (j)

∂fi

∂xj
(zi(k))

⎞
⎠ ε(k).

Then, using the notations :

hij(k) =
∂fi

∂xj
(zi(k)),

h(k) = (h11(k), ..., h1n(k), ..., hqn(k))

and

A(h(k)) = A +

q,n∑
i,j=1

hij(zj(k))Beq(i)e
T
n (j),

the equation of the observer error dynamics can be rewritten
as follows :

ε(k + 1) =
(A(h(k)) − LC

)
ε(k). (15)

Our aim is to design the matrix L ∈ R
n×p that guarantees

the exponential convergence of the observer error to zero.
As in the previous section, we assume that the functions hij

are bounded for all i = 1, ..., q and j = 1, ..., n.
Then, the vector h(k) evolves in a bounded domain H̄q,n of
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which 2qn vertices are defined by :

V̄H̄q,n
=

{
α = (α11, ..., α1n, ..., αqn) | αij ∈ {hij , h̄ij}

}
where

h̄ij = max
k

(
hij(k)

)
and hij = min

k

(
hij(k)

)
.

Under the above assumption, we can state the following
theorem.

Theorem 5.2: The observer error ε(k) converges exponen-
tially towards zero if there exist matrices P = PT > 0 and
R of appropriate dimensions such that the following linear
matrix inequalities (LMIs) are feasible :[−P AT (α)P − CT R

(�) −P

]
< 0

∀ α ∈ V̄H̄q,n
. (16)

When these LMIs are feasible, the gain-matrix L is given
by L = P−1RT .

Proof: Consider the following usual Lyapunov function

V (k) = V (ε(k)) = εT (k)Pε(k).

The variation of this Lyapunov function is :

∆V = ε(k)T (
(A(h(k)) − LC)T P (A(h(k)) − LC) − P

)
ε(k).

Based on the Lyapunov stability theory, ∆V must be
negative-definite in order to guarantee the convergence of the
estimation error. Using the Schur complement, this implies

F (h(k)) =
[ −P AT (h(k))P − CT R

(�) −P

]
< 0.

Finally, using the convexity theory as in the proof of Theo-
rem 4.1, we deduce that ∆V < 0 if F is negative definite
on V̄H̄q,n

, which is equivalent to (16). This ends the proof
of Theorem 5.2.

VI. NUMERICAL EXAMPLES

Our approach has been tested successfully on several
examples. We can mention the Rossler chaotic system, the
Van Der Pol oscillator and all the examples presented in [22],
[1], [9], [20] and others discrete-time nonlinear systems. In
this paper we present three numerical examples. The first
one is the Duffing nonlinear system. The second one is the
model of a flexible joint robot link and the third one is the
discrete version of the Lorenz chaotic system.

A. Example 1

Consider the following continuous-time nonlinear system
of Duffing under the form (3) :

A =
[
0 1
0 −δ

]
, C =

[
0.2 1

]
, B =

[
0
−1

]
,

f(x(t)) = x3
1, g(y(t), u(t)) =

[
0

σ cos(t)

]
,

where δ = 0.1, σ = 11 and x =
[

x1 x2

]T
.

Applying our approach, we obtain
∂f
∂x (z(t)) = h1(z(t))eT

2 (1), with h1(z(t)) = 2z1(t)
and eT

2 (1) =
[

1 0
]
. Since the state of the system is

0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Time (s)

Ma
gn

itu
de

Fig. 1. The estimation error behavior.

bounded, then the parameter z(t) is bounded. Then also
h1(z(t)) is bounded and we have after simulations, h1 = 0
and h̄1 = 45.86.
Then, the theorem 4.1 gives L =

[
0.9901 −0.0056

]T
. The

estimation error is showed in figure 1.

B. Example 2

Consider the model of a flexible joint robot link. Joint
flexibility is modeled as a stiffening torsional spring. The
dynamic equations are given by :⎧⎪⎪⎪⎨

⎪⎪⎪⎩
θ̇m = ωm

ω̇m = 1
Jm

τ − b
Jm

ωm + Kτ

Jm
u

θ̇l = ωl

ω̇l = − 1
Jl

τ − Mgh
Jl

sin(θl)

(17)

where θm, ωm, θl and ωl are the motor and link position and
velocities respectively. Jm and Jl are the inertia of the motor
and link respectively, 2h and M represent the length and
mass of the link, b is the viscous friction, and Kτ is the
amplifier gain. The torque due to the stiffening spring is

τ = κ1(θl − θm) + κ2(θl − θm)3,

where κ1 and κ2 are positive constants.
By setting x =

[
θm ωm θl ωl

]T
, the set of equations

(17) can be rewritten under the form (9), with

A =

⎡
⎢⎢⎣

0 1 0 0
− κ1

Jm
− b

Jm

κ1
Jm

0
0 0 0 1
κ1
Jl

0 −κ1
Jl

0

⎤
⎥⎥⎦ , g(u(t), y(t)) =

⎡
⎢⎢⎣

0
Kτ

Jm

0
0

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣

0 0
κ2
Jm

0
0 0

−κ2
Jl

−Mgh
Jl

⎤
⎥⎥⎦ and f(x(t)) =

[
(θl − θm)3

sin(θl)

]
.

The output matrix is : C =
[
0 1 0 0
1 0 0 0

]
.

Then, with the physical values Jm = 3.7 × 10−3kgm2,
Jl = 9.3 × 10−3kgm2, h = 1.5 × 10−1m,M = 0.21kg,
b = 4.6 × 10−2m,Kτ = 8 × 10−2NmV −1, κ1 = 1, κ2 = 1
and u(t) = sin(t), our approach gives the following matrix-
gain, L, guaranteeing the exponential convergence of the
proposed observer :
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Fig. 2. The estimation error behavior.
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Fig. 3. The estimation error behavior.

L =
[

191 456 42 335
−322 −49032 −2358 −7659

]T

.

The exponential convergence of the state estimates is illus-
trated with simulations in figure 2.

C. Example 3

Consider the following discrete-time version of Lorenz
chaotic system under the form (13) :

A =

⎡
⎣1 − 10T 10T 0

28T 1 − T 0
0 0 1 − 8

3T

⎤
⎦, C =

[
0 1 0

]
,

f(x(k)) =
[
x1(t)x3(t) x1(t)x2(t)

]T
,

B = T

⎡
⎣ 0 0
−1 0
0 1

⎤
⎦ and g(u(k), y(k)) =

[
0 0 0

]T
,

where T = 0.001 is the sampling period.
Then, using our approach, we obtain by Theorem 5.2

L =
[
0.0252 0.9994 0.0567

]T
.

We give in figure 3 the observer error behavior which shows
that the observer error converges exponentially towards zero.

VII. CONCLUSION

In this paper, an observer design problem for a large
class of nonlinear systems has been considered. We used
the DMVT which allows to write the dynamics of the
observer error as a LPV system. New sufficient conditions
are obtained. These conditions are expressed as a LMIs
solvability problem which is easily tractable by convex opti-
mization techniques. The convergence conditions presented

in this paper are not restrictive. We have tested it on several
examples and we proposed in this paper three examples to
show the good performances of our method.
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