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ABSTRACT

Equivariance is a common and natural property of many nonlinear control systems, especially those associated
with models of mechatronic and navigation systems. Such systems admit a symmetry, associated with the
equivariance, that provides structure enabling the design of robust and high performance observers. A key
insight is to pose the observer state to lie in the symmetry group rather than on the system state space. This
allows one to define a globally defined intrinsic equivariant error but poses a challenge in defining internal
dynamics for the observer. By choosing an equivariant lift of the system dynamics for the observer internal
model we show that the error dynamics have a particularly nice form. Applying the methodology of Extended
Kalman Filtering (EKF) to the equivariant error state yields the Equivariant Filter (EqF). The geometry of the
state-space manifold appears naturally as a curvature modification to the classical EKF Riccati equation. The
equivariant filter exploits the symmetry and respects the geometry of an equivariant system model and yields
high performance robust filters for a wide range of mechatronic and navigation systems.

Keywords Equivariant systems theory, observer, filter, Lie-group, extended Kalman filter, equivariant filter

1 Introduction

The celebrated scientist Stanislaw Ulam once stated that “studying nonlinear systems is like [...] studying non-elephant animals”
[Cam87]. There is such a vast array of behaviours and structures encapsulated in the term nonlinear that any analysis can only
apply to a subclass of possible systems. Real world observer problems, even when highly non-linear, often have structure that
can be exploited in the design of algorithms. For mechatronic and navigation systems one of the most common structures is
symmetry. The present paper concerns how to exploit such symmetry to design high performance observers for nonlinear control
systems.

Formally, symmetry is a property of the defining equations of motion of a system. A system is said to by symmetric if there is a
transformation of the state-space (the symmetry) for which the equations of motion of the system are unchanged (an invariance)
or change in a structured manner (an equivariance). For example, consider directional kinematics on a sphere

η̇ = −Ω× η (1)

where the state η ∈ S2 is a direction on a sphere, Ω ∈ R3 is an input, and × is the usual vector cross product. For an observer
problem, measurements of the inputs Ω are provided by a velocity sensor such as an inertial measurement unit with rate
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gyroscopes providing velocity measurements in the body-fixed frame [MHT20]. The goal will be to estimate the direction η
from (noisy) velocity measurements and some additional (noisy) direction measurements. The directional kinematics (1) are
equivariant under multiplication η 7→ Q>η by a (constant) rotation matrix Q ∈ SO(3). That is

d

dt
(Q>η) = Q>η̇ = Q>(Ω× η) = (Q>Ω)× (Q>η).

The transformed kinematics are written in terms of a transformed state variable η′ := Q>η and a transformed input variable
Ω′ := (Q>Ω). The symmetry of the equations of motion is expressed in the sense that the new kinematics η̇′ = −Ω′ × η′ are
identical to the original equations. The input transformation Ω′ = Q>Ω is important, it encodes the equivariance of the system.
Invariant systems are a subclass of equivariant systems for which the input transformation is trivial, that is the transformed and
original system use the same input. Invariance is particularly relevant for autonomous dynamical systems (with no inputs) and is
a foundation principle of classical and modern mechanics. The presence of inputs leads naturally to equivariance playing an
analogous role for nonlinear control systems.

In this paper, we consider nonlinear control systems with symmetry and propose an approach for the design of nonlinear
observers that is based on two simple precepts:

• Exploit the symmetry of a system.
• Respect the geometry of a system.

The first precept leads to a foundation principle of equivariant observer design: that the observer state is formulated on the
symmetry group rather than the state-space. For example, in the direction estimation problem discussed earlier, the symmetries
are the set of all rotations in the special orthogonal group SO(3). The equivariant design approach poses the observer state
Q̂ ∈ SO(3) as a rotation matrix while the estimate of the state is recovered by applying the symmetry η̂ := Q̂>η̊ to an
arbitrary constant origin direction η̊ ∈ S2. Note that the observer-state lies in a completely different, and higher dimensional,
manifold Q̂ ∈ SO(3) compared to the system-state η ∈ S2, a general characteristic of equivariant observer design. This simple
reparametrization is more powerful than it may appear at first glance. Whereas η̂ is just a point on the sphere, the equivariant
observer state Q̂ corresponds to a symmetry diffeomorphism of the whole space Q̂> : S2 → S2. Applying (the inverse of) this
symmetry to the true state defines the equivariant error e = Q̂η ∈ S2; a globally defined intrinsic error for the observer design
problem. This construction should be compared to a classical observer design on a manifold where the observer/state error
depends on local or embedded coordinates and is neither global nor intrinsic. The goal of equivariant observer design is to find
dynamics on the symmetry group (the set of rotations SO(3) in this case) such that the observer state (the rotation Q̂ in this
case) evolves to force the error e→ η̊ to converge to the known fixed origin, leading to the state estimate η̂ → η to converge to
the true-state.

Posing the observer-state as an element of the symmetry group raises the question of how to define observer dynamics, since
the obvious copy of the state dynamics as an internal model is no longer an option. Recent work [MHT20] showed that (for an
equivariant system) there is always an equivariant lift Λ of the system dynamics. The lift function defines a set of dynamics on
the symmetry group that project down to the true system dynamics on the state-manifold and provide the structure of an internal
model for the observer architecture. For the simple example we are discussing1 Λ = Ω× and the observer is

d

dt
Q̂ = Q̂Ω× + ∆Q̂

where the observer depends on an additional correction term ∆t ∈ so(3), a skew-symmetric matrix in the Lie-algebra of SO(3)

that is used to steer e → η̊. For ∆t ≡ 0 the solutions of these observer-dynamics project η̂(t) = Q̂(t)>η̊ to solutions of
the system, encoding the internal model principle fundamental in observer design despite the difference in observer-state and
system-state spaces.

It remains to “design” the correction term ∆t. Here the equivariant properties of the lift Λ play a key role in ensuring that the
error dynamics are both globally defined and locally well conditioned. Indeed, for the simple direction estimation example

d

dt
e =

d

dt
Q̂η = Q̂Ω×η + ∆tQ̂η − Q̂(Ω× η) = ∆te.

Although, the velocity dependent part of the error dynamics for a general system do not cancel, they can always be written as a
globally defined function of the equivariant error e and a known origin input. This structure in the error dynamics provides a foun-
dation for a whole range of global nonlinear observer design methodologies [HZT+11, VCSO10, MHV11, HMT+11, THML12,
GFJS12, BSO12, IS14, HHMT15, AMB16, HMH16, BAT17, LBHMS17, HHMT15, ZF18, WT19, HTH+19, HTH+20] as
well as opening the door for principled observer design based on linearisation [BMR06, MS07, MS08, BMR08, BMR09,
BMS09, ZTM13, BMGB13, BMAG15, BB15, STMA16, BB17, BB18, LAF19, PC20, vHM20, vGHM20].

In the present paper, we provide a principled analysis of a linearising observer design by adapting the extended Kalman filter to
equivariant error coordinates [vHM20, vGHM20]. Here we draw on the second precept to respect the geometry. Only a single

1Here Ω× denotes the 3× 3 skew-symmetric matrix that encodes the vector cross product Ω×η = Ω× η.
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Figure 1: Direction estimation on the sphere. Comparison of an EqF in normal coordinates (solid red line) versus an EKF in
stereographic coordinates (dashed blue line).

set of local coordinates, centred on the origin in error coordinates, is required in contrast to a classical EKF that depends on
linearisations taken along a time-varying trajectories, and this leads to improved filter performance. Moreover, as shown in the
seminal work of Barrau and Bonnabel [BB17], there is a canonical choice of local coordinates (the normal coordinates) for
which the linearisation error is minimized, leading to improved filter performance. Finally, a careful application of the principles
of extended Kalman filtering in error coordinates, taking account of the geometry of the space, leads naturally to a curvature
modification of the Riccati equation corresponding to a parallel transport of the covariance estimate. We show that including
this term in the Ricatti also improves the filter response, particularly during the transient phase. The resulting filter is termed
the Equivariant Filter (EqF) (see also [vHM20, vGHM20]) and the design approach provides high performance filters for a
wide range of equivariant nonlinear systems. Even for the simple direction estimation example discussed above, for which
a classical EKF using stereographic coordinates is highly effective, the performance gain in following principled equivariant
observer design is clearly shown in Figure 1 (see Section 7 for details of the simulation).

2 Literature Review

Symmetry in mechatronic systems is a natural consequence of the invariance of the physical laws that govern their dynamics.
The field of geometric control systems [BL05, Jur97] is founded on this perspective and was highly active from the seventies
through to the nineties with work still ongoing. Although early work in this field [van81, GM85, Nv85] considered symmetry
for general control system models, the field matured towards using the Euler-Lagrange and Hamiltonian frameworks and
exploiting symmetry for structural analysis of these dynamics [BL05, Jur97]. Despite some effort [AR03, MBD04, Bon10] this
body of theory has not translated easily into observer and filter design. In contrast, working with simpler kinematic models
has had significant impact in navigation systems [BB18]. An early contribution in this direction was the work of Salucedean
[Sal91] on attitude estimation of a satellite. The original theory was extended a decade later [VF01, TS03] to incorporate
bias estimation in the sensor measurements. This work was done in parallel with the established Multiplicative Extended
Kalman Filter (MEKF) attitude estimators that had been first developed in the eighties [LMS82] but were still under active
research at the turn of the century [Mar03, CBO06, CMC07]. It was around 2005 that the importance of robust attitude filtering
for the growing Unmanned Aerial Vehicle (UAV) industry became clear and the resulting interest lead to a burst of activity
[MHP05, BR05, HM06, BMR06, MS07] leading to the seminal papers [MHP08, BMR09] proposing simple, robust observers
that were an enabling technology in the development of commercial systems. Although the quality of Inertial Measurements
Units (IMUs) has now improved, these early attitude observers were key in overcoming the very high noise levels and unreliability
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of the IMUs available to the early UAV systems. There was a significant body of work done in the 2010s that extended and
developed these ideas for attitude estimation [MHV11, THML12, GFJS12, BSO12, IS14, BAT17]. Analogous approaches have
considered the Special Euclidean group SE(3) for pose estimation [VCSO10, HZT+11, HHMT15, WT19, LBHMS17], the
Special Linear group SL(3) for homography estimation [HMT+11, HHMT15, HTH+19, HTH+20], and a number of works on
velocity aided attitude estimation [BMR06, MS08, AMB16, HMH16]. A key contribution here was in the work of Bonnabel
et al. [BMR08, BMS09] who introduced a new group structure, later denoted by SEm(n) [BB16], that allowed second order
translation kinematics to be modelled in the same group structure as first order kinematics in attitude. This group structure was
also exploited to model the Simultaneous Localisation and Mapping problem [BB16, ZWS+17, MH17, MHT21]. In parallel
Zlotnik et al. used a direct product structure [ZF18] for the SLAM problem.

There are several works over the last fifteen years that have developed general theory for classes of systems [BMR09, MTH13,
BMAG15, BB17, MHT20, NvHM20]. Bonnabel and coauthors have built a theory for the Invariant Extended Kalman Filter
(IEKF) in a series of papers [Bon07a, BMS09, BB15]. Although similar in spirit to the multiplicative extended Kalman filter
[LMS82, CMC07] and the error state Kalman filter [RSB99, Sol17], the IEKF provides a clear design methodology for general
systems posed on Lie-groups. This perspective has provided significantly more insight into the structural properties of observer
systems on Lie-groups and lead to the definition of the “group affine” property [BB16, BB17, MT21] for which it is possible to
prove powerful stability results for highly nonlinear systems. Stability and robustness of high performance filters can also be
guaranteed by the direct design of Ricatti observers [HS18, WBT21]. An advantage of this approach is that the filters are not tied
to a fixed linearisation structure, however, there is no standardised design methodology and each example must be considered
independently. The majority of approaches in the literature, including IEKF, MEKF, and the Riccati observers, are only applicable
to systems posed directly on a Lie-group. Equivariant systems on smooth homogeneous spaces, that is, systems on manifolds
that support a smooth group action from a higher dimensional Lie-group [MTH13], is a more general class of systems to which
analogous observer design principles can be applied. This perspective goes back to the origins of modern equivariant observer
theory where direction estimation on S2, an homogeneous space under rotation action by SO(3), was proposed in [MPHS05]
and lifted to SO(3) [MHP08] to obtain the complementary filter for attitude discussed earlier. A similar perspective also led
from [Bon07b] to [BMR09] and recent work on Ricatti observers for direction estimation [HA18]. Unfortunately, direction
kinematics was the only known example of a robotics application involving a true homogeneous system structure until the SLAM
problem was considered over ten years later [MH17, MHT21]. The gauge invariance inherent in the SLAM problem induces a
homogeneous space structure that underlies recent work by the authors [vHM20, vMHT20, vMHT19, vM21]. This perspective
is critically important for the visual SLAM problem where cameras are the primary exteroceptive sensor and the SLAM problem
can no longer be modelled [vGHM20] using the SEn+1(3) geometry introduced by Barrau et al. [BB16]. In other recent work,
Joshi et al. has also considered more general bundle structures for the equivariant observer problem [JMB20], Izadi et al. has
exploited variational approaches [IS14], Lavoie considered H∞ observers [LAF19], Bourmaud et al. [BMGB13, BMAG15]
proposed extended Kalman and unscented filters on Lie groups from first principles, Ng et al. introduced a semi-direct group
structure [NvMH19, NvHM20] for second order kinematics, while Phogat et al. considered a direct product structure for general
second order systems on Matrix Lie groups [PC20].

In order to improve filter performance above the second order optimality in local coordinates provided by the extended Kalman
filter, Bonnabel and coauthors have proposed the invariant unscented Kalman filter [BBC17, BBB18, BBB20] that exploits the
invariant structure of the problem to transport the sample points of the unscented filter. A similar algorithm was proposed in
Bourmaud et al. [BMAG15]. This approach can be generalised to any parallelizable manifold [BBB20] and corresponds to
placing a flat geometric structure on the space. Using a flat geometry goes counter to other recent work Loianno et al. [LWK16]
in applying the UKF on SE(3). Curvature also occurs naturally in the Geometric Approximate Minimum Energy (GAME)
filters [ZTM13, STMA16, JAF+15, BLB+17]. Second order filters [May82] have been considered for some time in the INS
field [Mar03, Mar04] and these terms turn out to be the same as the curvature terms found in GAME filters on TSO(3)
[ZTM13, STMA16]. Questions around curvature and its connection with choice of local coordinates, linearisation error, second
order filter terms, unscented filter design and filter performance are current research topics in equivariant

3 Systems with Symmetry

In this section we discuss the formal structure of symmetry for the class of affine control systems. The concepts of invariance
and equivariance are formulated in a unified manner as a symmetry property of the affine subspace of vector fields associated
with the system. This is an elegant and powerful way to understand the structure of symmetry for a control system with inputs.
From there we introduce the concept of lift and show how this leads to a system defined on the symmetry group that will be
used as the internal model for the observer design in Section 4. The lift must satisfy two properties, pre-image and equivariance,
that ensure firstly that it is a true pre-image of the system dynamics, and secondly that the associated error dynamics have nice
symmetry properties.

Consider a system

ξ̇ = f(ξ, u) (2a)
y = h(ξ) (2b)
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for ξ ∈ M the state-space, a smooth manifold, y ∈ N the output-space, a smooth manifold, u ∈ L the input-space, a linear
vector space. The output function h : M → N is smooth and well defined everywhere. The system function f : M × L→ TM
is smooth and affine in the second argument. That is, in local coordinates it can be written

f(ξ, u) =

l∑
i=1

fi(ξ)u
i + f0(ξ)

for u = (u1, . . . , ul) ∈ L known (measured) input signals where fi are termed the input vector fields and f0 is termed the drift
field.

For example, consider second order linear kinematics in R3

ṗ = v (3a)
v̇ = a (3b)

where ξ = (p, v) ∈M = R3 × R3 is the state and u = a ∈ R3 is the input. The drift field is f0(ξ) = (v, 0). The input vector
fields are fi = (0, ei) for i = 1 . . . , 3 where ei are the coordinate unit vectors, that is, (0, a) =

∑3
i=1 fi(ξ)a

i.

For the case of direction kinematics (1) discussed in the introduction, ξ = η ∈ S2 and the drift field f0(ξ) = 0 is trivial. The
input vector fields are

f1(η) = −e1 × η, f2(η) = −e2 × η, f3(η) = −e3 × η
and η̇ =

∑3
j=1 fj(η)Ωj .

The functions f0, f1, . . . , fl define the structure of the system considered. These objects are vector fields on M , written
fi ∈ X(M ), that smoothly assign a vector direction fi(ξ) ∈ TξM to each element of M . The set X(M ) of smooth vector
fields on M is itself an (infinite dimensional) vector space under point wise addition and scalar multiplication. That is, for all
f1, f2 ∈ X(M ) and α1, α2 ∈ R then α1f1 + α2f2 ∈ X(M ). The system function f(ξ, u) can be interpreted as an affine map
f : L→ X(M ) where u 7→ fu defined by

fu(ξ) := f(ξ, u) =

l∑
i=1

fi(ξ)u
i + f0(ξ) (4)

We will also need notation for just the input or controlled part of system function independent of the drift term

f ctl
u :=

l∑
i=1

fi(ξ)u
i.

Thus, fu(ξ) = f ctl
u (ξ) + f0(ξ).

The core structure that enables equivariant observer design is the existence of a transitive family symmetries on the state space
M . A symmetry is just a diffeomorphism of the state space with certain properties with respect to the system equations that
we discuss further below. Let G denote an index set for the family of diffeomorphisms and let φX : M → M denote the
diffeomorphism indexed by the element X ∈ G. The requirement that the family of symmetries is transitive means that for
any two points in the state space, ξ1, ξ2 ∈M there is a symmetry φX : M →M from the family such that ξ2 = φX(ξ1). This
assumption is necessary for equivariant observer design and is one of the places where the theory varies from that established in
the geometric control field [BL05, Jur97].

Two diffeomorphisms can be concatenated to make a new diffeomorphism φX ◦ φY : M → M . Similarly, the inverse of a
diffeomorphism φ−1

X is also a diffeomorphism of M . If for all X,Y ∈ G there is a Z ∈ G such that φZ = φX ◦ φY : M →M
and an X−1 ∈ G such that φX−1 = φ−1

X , then the family of diffeomorphisms has the natural structure of a group. In this case,
the object φ : G×M →M defined by

φ(X, ξ) := φX(ξ) (5)

is termed a group action. Groups and group actions are the natural structure in which to understand symmetries of state space. In
this paper we will consider right handed group actions where φX ◦ φY = φY X and Y X is the group multiplication. This is the
natural choice for most robotics applications, particularly those with body fixed-frame sensing systems. The reader is warned
that most physics and mathematics texts are written using left handed actions. Theory developed for right-handed symmetries
can be transferred directly to left-handed symmetries without loss of generality by redefining the group multiplication, although
this process does lead to considerable notational and conceptual complexity and in the authors opinion it is better to restrict to a
single choice of handedness as we do in this paper.

Consider the direction kinematics (1). The set of diffeomorphisms considered are

φQ(η) := Q>η. (6)
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where Q ∈ R3×3 is a rotation matrix. The associated group is the special orthogonal group SO(3) of 3× 3 rotation matrices
with matrix multiplication and matrix inverse. Note that the group action φ is right handed

φQ1 ◦ φQ2(R) := Q>1 Q
>
2 η = (Q2Q1)>η = φQ2Q1(R).

For the second order kinematics (3) we will consider two separate symmetry groups in the present paper. The first symmetry
group considered is G = R3 ×R3 under addition. That is (α1, β1)(α2, β2) = (α1 + α2, β1 + β2) and (α, β)−1 = (−α,−β).
This group acts on M = Rm × Rm via addition

φ(α,β)(p, v) = (p+ α, v + β). (7)

This group action captures the Galilean transformations that correspond to expressing linear kinematics with respect to
frame of reference that is translated and also moving with an arbitrary linear velocity. The group action is commutative
φ(α1,β1)φ(α2,β2) = φ(α2,β2)φ(α1,β1) and the concept of handedness does not apply in this case. Later in the paper (Section 5) we
will introduce a second symmetry group to show that the symmetry is not unique and demonstrate the importance of choosing
symmetries that respect the sensors as well as the kinematics.

The concept of equivariance of a control system has been around since at least the eighties [GM85, van81, Nv85]. The modern
formulation is present in the work of Aghannon et al. [AR03] and is core to the work on moving frame observers from that
period [BMR06, MS08, BMR09]. This formulation is used in the authors previous work observer for systems on homogeneous
spaces [MTH13]. The present development introduces a new perspective on the same structure: we use the state-space symmetry
to define a group action on the set of vector fields [MHT20] and in turn use this to develop a unified geometric interpretation of
equivariance and invariance.

A symmetry φX , a diffeomorphism of the state-space M , naturally induces a linear mapping on the set of vector fields X(M ) on
M via the push forward operation. Let DφX : TξM → TφX(ξ)M be the differential of a symmetry φX . The push forward map
ΦX : X(M )→ X(M ) defined by

ΦX(f) := DφX ◦ f ◦ φ−1
X

is a well defined linear map that has the structure of a group action Φ : G× X(M )→ X(M ), Φ(X, f) := ΦX(f) [MHT20].
Since ΦX acts on the vector fields it can be applied to the system function f and provides a natural structure to define invariance
and equivariance.

A vector field f ∈ X(M ) is invariant if

ΦX(f) = f

for all X ∈ G. That is, a vector field is invariant if DφXf(ξ) = f(φX(ξ)). Similarly, a system f : L → X(M ) is invariant
(with respect to Φ) if it satisfies

ΦX(fu) = fu (8)

for all X ∈ G and u ∈ L. Explicitly one has DφXf(ξ, u) = f(φX(ξ), u) for all ξ ∈M , u ∈ L and every X ∈ G. Note that an
invariant system is made up of invariant vector fields. In particular, for a constant input u ∈ L the associated vector field fu is
independently invariant.

Consider the linear kinematics (3) and the Galilean group action (7). The input vector fields for this system are f ctl
a (ξ) = (0, a).

One has
Φ(α,β)(f

ctl
a (p, v)) = Dφ(α,β)f

ctl
a (p− α, v − β) = Dφ(α,β)(0, a) = (0, a) = f ctl

a (p, v).

As one would expect, the linear input function f ctl
a is invariant to the Galilean symmetry action. For the drift field f0(p, v) = (v, 0)

one has
Φ(α,β)(f0(p, v)) = Dφ(α,β)f0(p− α, v − β) = Dφ(α,β)(v − β, 0) = (v − β, 0) 6= f0(p, v),

and this is not an invariant vector field. The constant velocity offset for the reference frame associated with the Galilean symmetry
breaks symmetry in the position kinematics (the ṗ kinematics). Note that the velocity kinematics (the v̇ kinematics) are invariant
as would be expected by Newton’s laws of motion.

A system is equivariant if f : L→ X(M ) satisfies

ΦX(fu) = fψX(u) (9)

for an input group action ψ : G × L → L. Written in the classical form one has DφXf(ξ, u) = f(φX(ξ), ψX(u)) [GM85,
BMR08, BMR09, MTH13, MHT20]. That is, the action ΦX takes the vector field fu to another vector field fψX(u) that also
lies in the system image. The situation is visualised in Figure 2. The image of f is a finite dimensional affine subspace of the
infinite dimensional linear space X(M ). The action Φ is well defined on the infinite dimensional space X(M ); indeed, each
ΦX : X(M )→ X(M ) is a linear automorphism of X(M ). Equivariance captures the property that ΦX maps im f into im f . In
prior work, the input action ψ : G× L→ L was regarded as a separate structure [GM85, BMR08, BMR09, MTH13]. However,
with this perspective it is clear that the substantive condition is that the Φ on X(M ) preserves the affine subspace im f and that,
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Figure 2: The affine subspace im f = {fu ∈ X(M ) | u ∈ L}. For an equivariant system then im f is fixed by the induced group
action Φ : G× X(M )→ X(M ).

once this is true, the action ψ is fully defined by Φ through (9). The property that ψ : G×L→ L is a group action follows from
the group action property of Φ, as long as it is closed on im f . Due to the affine structure of the system f , the input action ψX is
also affine; that is, ψX(0) 6= 0 in general. Indeed, ψX(0) = 0 if and only if the drift vector field f0(ξ) is invariant ΦX(f0) = f0.

Consider the attitude kinematics (1) with group action (6). One has

ΦQ(Ω× η) = DφQ(−Ω× φQ−1(η)) = Q>(−Ω×Qη) = −(Q>Ω)× η.

Direction attitude kinematics are equivariant and the associated group action on the input Ω is given by ψ : SO(3)× R3 → R3

ψ(Q,Ω) := Q>Ω.

Note that ψ is a right-handed group action ψQ1
(ψQ2

(Ω)) = Q−1
1 Q−1

2 Ω = (Q2Q1)−1Ω = ψQ2Q1
(Ω).

Returning to second order linear kinematics (3). Consider an extension of the kinematics

ṗ = v + w (10a)
v̇ = a (10b)

to include a new virtual input w ∈ R3 that can be chosen arbitrarily [MHT20, vHM20, vGHM20]. The original linear kinematics
are recovered by setting w = 0, so there is no loss of generality in considering this more general system. For the new system the
input space is L = R3×R3 with elements (w, a). The input function for the extended system can be written f ctl

(w,a)(p, v) = (w, a)

and specialises to the input function for the old system by setting the input to (0, a).

As discussed earlier, the drift vector field f0 = (v, 0) was not invariant to transformation by Φ for the second order kinematics.
However, by including the virtual input the extended system becomes equivariant with input action ψ : G× L→ L

ψ((α, β), (w, a)) := (w − β, a).

To see this compute

Φ(α,β)(f(w,a)(p, v)) = Dφ(α,β)f(w,a) ◦ φ−1
(α,β)(p, v),

= Dφ(α,β)f(w,a)(p− α, v − β),

= Dφ(α,β)[v − β + w, a],

= (v − β + w, a),

= f(w−β,a)(p, v),

= fψ((α,β),(w,a))(p, v).

The velocity offset introduced by the Galilean symmetry that broke invariance is captured in the equivariance of the input through
the virtual input w. A way to interpret this structure physically is as modelling a constant velocity offset of the reference frame
as an exogenous input rather than as a separate parameter in the modelling of the system.

Recalling Figure 2, the structure of adding virtual inputs is easily visualised. Consider firstly the input vector fields f ctl
u (ξ). Let

Lctl = span{f ctl
u | u ∈ L} ⊂ X(M ) and note that im f = f0 + Lctl. Define a linear subspace of X(M ) by

ΦXL
ctl = span{ΦX(f ctl

u ) | X ∈ G, u ∈ L}

Similarly, define the linear subspace ΦXL
drift = span{ΦX(f0)− f0 | X ∈ G} in X(M ). Define

Lctl
ext = ΦXL

ctl ∪ ΦXL
drift.

7
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Geometrically, the affine set im f in Figure 2 is extended to a new affine set f0 + Lctl
ext with the same offset f0 and a larger

linear span. By construction this new affine set contains all possible vector fields that can be obtained by acting on the old
system by ΦX , including the original system since ΦI = id. Moreover, since ΦXΦY = ΦY X is a group action, then this new
affine set is closed under action by ΦX . Choose a basis {f1

i } ∈ X(M ) for Lctl
ext that contains the input vector fields {fi}li=1

of the original system. Define the extended system f ext
w = f0 +

∑∞
j=1 w

jf1
j (for w with finitely many non-zero elements

arbitrary), noting that the old system fu = f0 +
∑l
i=1 u

ifi is wholly contained in the image of the extended system. The group
action ψ : G × Lctl

ext → Lctl
ext is defined implicitly by the action ΦX since im f ext

w maps into im f ext
w . Of course, an extended

system constructed in this way may in general be infinite dimensional, however, in many cases of interest, such as the Galilean
system considered as an example in this paper, the extension is finite. This construction provides a clear and highly practical
methodology to apply equivariant observer design to a wide range of systems defined on homogeneous spaces including certain
systems that were not equivariant as originally formulated.

For a transitive group action then for all ξ̊ and ξ ∈ M there is an X ∈ G such that φX(ξ̊) = ξ. In particular, the map
φξ̊ : G→M ,

φξ̊(X) := φ(X, ξ̊)

is a submersion. Fixing a reference point ξ̊ ∈M , the group G parametrizes M , that is, one can represent any element ξ of the
manifold M by the image ξ = φ(X, ξ̊) of an element X ∈ G. Although straightforward this point deserves more attention as
it one of the key concepts in equivariant observer design. The parametrization provided by the group allows the observation
problem to be formulated at the group level rather than directly on the state-manifold. Rather than trying to find an estimate
ξ̂ ∈M for the true state ξ ∈M , one can search for an estimate X̂ ∈ G such that ξ̂ = φ(X̂, ξ̊) is an estimate of the state. This
simple reparametrization is more powerful than it may appear at first glance. Abstractly, we now pose the observer state on the
symmetry group X̂ ∈ G and the state estimate becomes an output generated by the action of the observer state on an arbitrary
(but fixed) origin point ξ̊ ∈M . The observer state, as an element of the symmetry group, has much more structure than just the
state estimate; indeed, it corresponds to a symmetry φX̂ while ξ̂ ∈M is just a point. In particular, φX̂ is a diffeomorphism on M
and can be applied to any point in the space, not just the origin ξ̊. This structure is fundamental in the construction of a globally
defined intrinsic error (cf. Section 4) that is the foundation of the observer design methodology.

Choosing the observer state on the symmetry group allows for a globally defined intrinsic error (as we will show in Section 4),
however, it poses a separate challenge in observer design; that of choosing internal model dynamics for the observer. Internal
model dynamics are the unforced dynamics of the observer that enable it to continue to track the system state when the
measurement has converged. For a classical observer, where the observer state space is the same as the system-state space, the
internal dynamics are chosen to be a copy of the system dynamics. If the initial observer state and system state are equal, and the
observer and system model are fed with the same inputs, the two trajectories will be equal, at least up to perturbations due to
disturbances and modelling error. In contrast, the symmetry group may have a higher dimension than the state-manifold and
although there is a natural projection φξ̊ : G→M the inverse of this map is not intrinsic and defining a good internal model on

the group is not straightforward. The stabiliser stabφ(ξ̊) of a point ξ ∈ M is the set {S ∈ G | φS(ξ̊) = ξ̊} that captures the
additional degrees of freedom in G compared to M . Defining an internal model on G boils down to choosing a set of compatible
dynamics in the stabiliser to complement dynamics on G induced by the system, such that resulting trajectories on G project
down to the system trajectories on M as shown in Figure 3. Note that since there is no intrinsic global factorisation of the
symmetry group of a homogeneous space into stabiliser and manifold directions there is no simple way of separating the choice
of stabiliser dynamics from the induced dynamics and the internal model must be chosen to integrate both requirements into a
single set of system dynamics defined on the symmetry group.

A key advance in equivariant systems theory [MHT20] was the understanding that a lifted system (of an equivariant system on
M ) can always be written

Ẋ = XΛ(φξ̊(X), u), X(0) ∈ G (11)

where Λ : M × L→ g is termed a lift function [MHT20]. The lifted system formulation (11) encodes internal model dynamics
in the standard left invariant form Ẋ = XΛ where Λ ∈ g is an element of the Lie-algebra of the Lie-group and XΛ = DLXΛ
is the left translated tangent vector element of the tangent space of G at X [BL05, Jur97] where LXY = XY is the left
multiplication on the group. The system lift formulation is more powerful than considering a general Ẋ = XU(X,u) structure
for U : G×L→ g, since Λ as a map defined on M ×L ensures that the resulting lifted dynamics are in some sense independent
of the stabiliser on G. In particular, if S ∈ stabφ(ξ̊) then Λ(φξ̊(S), u) = Λ(ξ̊, u). This ensures that the internal model dynamics
of the observer are invariant to left translations X 7→ SX by the stabiliser

d

dt
SX = SẊ = SXΛ(φξ̊(SX), u) = SXΛ(φX(φS(ξ̊)), u) = SXΛ(φξ̊(X), u).

The system lift (eq. 11) is chosen to satisfy the following two conditions:
Pre-image: A necessary and sufficient condition to ensure that solutions of the lifted system project to solutions of the actual
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Figure 3: The lifted system on G evolves such that its projection φξ̊(X(t) ∈M is a solution of the system (2).

system is that

DφξΛ(ξ, u) = f(ξ, u) (12)

where Dφξ : g→ TξM is the differential of the group action in its group variable, for a given ξ ∈M , evaluated at the identity in
G [MTH13, MHT20]. From this it is straightforward to prove that as long as φξ̊(X̂(0)) = ξ(0) then trajectories of (11) project
to trajectories of (2) (Figure 3). Since the map φξ̊ : G → M is a submersion the differential Dφξ̊ : g → TξM is surjective,
and it is always possible to define a pre-image Λ(ξ, u) of f(ξ, u) in g [MTH13]. For a free group action, where the stabiliser is
trivial and hence φξ : G → M is invertible, then Λ(ξ, u) = Dφ−1

ξ f(ξ, u) and Λ is fully defined by (12). Such lifts naturally
lead to equivariant system dynamics on the symmetry group. Indeed, for a free action the state-manifold is isomorphic to the
symmetry group and the design problem specialises to the case of equivariant observer design on a Lie-group. In general, when
the symmetry is not a free action, the pre-image condition (12) is not sufficient to ensure that the lifted system has symmetry
properties on the group and without an additional condition leads to issues in the observer analysis.

Equivariance: The second condition required is that the lift respects the symmetry. This condition is encoded as [MHT20]

AdX−1 Λ(ξ, u) = Λ(φX(ξ), ψX(u)) (13)

where AdX : g → g, U 7→ XUX−1, is the adjoint automorphism of the Lie-algebra [BL05, Jur97]. The role of the adjoint
here is as the symmetry transformation of the Lie-algebra associated with change of base point ξ ∈M . In particular, for any
homogeneous space the following diagram is known to commute [BL05, Jur97]

g
AdX−1 //

Dφξ̊

��

g

DφφX (ξ̊)

��
Tξ̊M

DφX// TφX(ξ̊)M

Recalling (12), it is natural to lift the equivariance condition DφXf(ξ, u) = f(φX(ξ), ψX(u)) for the system on M to (13) on
the symmetry group. For a free group action, Λ(ξ, u) = Dφ−1

ξ f(ξ, u) (from (12)) and equivariance of the lift can be proved by
exploiting the equivariance of the system model. However, for groups with non-trivial stabiliser, the condition (13) extends this
relationship to the stabiliser. That is, for any S ∈ stabφ(ξ) then (13) becomes AdS−1 Λ(ξ, u) = Λ(ξ, ψS(u)) since φS(ξ) = ξ
by construction. It is only in the unusual case where the stabiliser is a normal subgroup of the symmetry group that this constraint
can be ignored without compromising the error dynamics defined in Section 4. Existence of an equivariant lift for any equivariant
system is a non-trivial question that was answered in the affirmative in a recent work [MHT20]. There is a construction given
in [MHT20] for building a system lift for an arbitrary system based on an iterative process that progressively works through a
basis for the input space L. The tricky part is that for each new direction in L, the behaviour of the lift on the stabiliser must
be constructed to satisfy the equivariance condition and this influences the next choice of a direction in L. A full discussion is
beyond the scope of the present paper beyond noting that, in practice, the most effective way of determining a lift known to the
authors is to use (12) and then make educated guesses that can be verified using (13).

The lifted system in the case of the direction kinematics is simply

Ṙ = RΩ×

where Ω× ∈ so(3) is in the Lie-algebra of SO(3), the set of skew-symmetric matrices. The system lift Λ(η,Ω) = Ω× maps the
input directly to the Lie-algebra with no state dependence. The simplicity of this correspondence is both a boon and a curse, as it
makes observer design simple for direction kinematics but also hides much of the structure of the general case.
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For second order linear kinematics, consider a trajectory (p(t), v(t)) = φ(α,β)(p̊, v̊) associated with a lifted system trajectory
(α(t), β(t)) and constant origin (p̊, v̊) ∈ R3 × R3. One has

d

dt
φ(α,β)(p̊, v̊) = (ṗ, v̇) = (v + w, a)

Thus the system lift is Λ((p, v), (w, a)) := (v+w, a). Note that the system lift function depends on the system state. To compute
the lifted system in terms of (α, β) one computes d

dt (α, β) = DL(α,β)Λ(φ(α,β)(p̊, v̊), (w, a)) and sets w = 0 (corresponding to
the actual input) to yield

α̇ = v̊ + β

β̇ = a

The offset v̊ in the first equation is important since the symmetry structure of β encodes the offset between the true velocity and
reference β = v − v̊ and not directly the system velocity.

4 Equivariant Error and the Observer Architecture

The classical observer error ξ̃ = ξ − ξ̂ ∈ Rm is defined for systems with Euclidean state space ξ ∈ Rm and where the observer
is a copy of the system ξ̂ ∈ Rm. This error has been the foundation of observer design both for nonlinear constructive design
methods, where ξ̃ is either the primary variable in a Lyapunov construction or is fundamental in the stability analysis, as well as
for linearising design methods, where the error ξ̃ is linearised around ξ̃ = 0. For systems on manifolds, ξ̃ can only be constructed
using an atlas of local or embedded coordinates centered around the time-varying state estimate ξ̂(t). This approach to defining
an observer error is neither intrinsic nor global. In contrast, a key step in equivariant observer design is the construction of an
equivariant error that is both intrinsic and globally defined. Recent work [MHT20] showed that this is only possible by exploiting
the symmetry structure of the problem. In particular, there is no error construction e : M ×M → M , e(ξ̂, ξ) ∈ M between
observer and system states at the manifold level [MHT20, Theorem 5.7] that has the nice properties that we will demonstrate with
the equivariant error defined below (Eq. (18)). The equivariant error construction (Eq. (14)) overcomes this structural constraint
by posing the observer state on the symmetry group. That is, the equivariant error is a map e : G ×M → M , e(X̂, ξ) ∈ M
between an element of the symmetry group X̂ ∈ G and the system state ξ ∈M . This construction motivates the choice to pose
the observer state on the symmetry group and in turn motivates the work done in Section 3 to build a lifted system on G to act as
internal model for the observer dynamics.

For an observer state X̂ ∈ G and a system state ξ ∈M the equivariant error is defined to be

e := φX̂−1(ξ) ∈M . (14)

To understand this error recall that the state estimate is given by ξ̂ = φX̂(ξ̊) for a fixed origin ξ̊. If e = ξ̊ it follows that

ξ̂ = φX̂(ξ̊) = φX̂(e) = φX̂(φX̂−1(ξ)) = ξ. (15)

Thus, driving the error e→ ξ̊ ensures the that state estimate ξ̂ = φX̂(ξ̊) converges to the true state ξ.

It is instructive to consider the linear kinematics example. The observer state X̂ ∈ R3 ×R3 is an element of the Galilean group.
Write X̂ = (α̂, β̂), then

e = φ(X̂−1, ξ) = φ(−α̂,−β̂)(p, v) = (p− α̂, v − β̂).

Choose ξ̊ = (0, 0) to be the origin point in R3 × R3 and define the state estimate to be (p̂, v̂) = φ(0,0)(α̂, β̂) = (α̂, β̂).
Substituting into the error yields e = (p− p̂, v − v̂) the classical linear observer error. Driving e→ (0, 0) is the same is driving
p̃ = p− p̂ and ṽ = v − v̂ to zero. The equivariant error construction passes the “pub test” of specialising to the classical linear
error in the case where the state space M = Rm is linear.

The direction kinematics example, however, demonstrates the power of the equivariant error. In this case X̂ = Q̂ ∈ SO(3) and
there is no natural origin ξ̊ = η̊. Let us choose η̊ = e3 in lieu of any better choice. The equivariant error is

e := φQ̂>(η) = Q̂η ∈ S2.

If e = e3 = Q̂η then η = Q̂>e3 = η̂ where the second equality is the definition of η̂ = φQ̂(e3). In contrast, the difference in
state elements (η − η̂) is not an element of S2 and can only be expressed in a non-intrinsic way in either embedded or local
coordinates. More importantly, the equivariant error lives in a neighbourhood of a fixed origin η̊ = e3 on the sphere while the
coordinates for the difference (η − η̂) must be chosen carefully and changed periodically as η and η̂ move.

For any X̂ , the equivariant error e = φX̂−1(ξ) ∈ M is well defined. This opens the door to global analysis of observer
convergence, something that is rarely possible for standard observer architectures applied to nonlinear systems on manifolds.
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Figure 4: The Equivariant observer architecture. Measurements from the system feed into the observer that is posed on the
symmetry group. The observer state and the system state feed into the equivariant error. The observer is designed to drive e→ ξ̊

and this ensures that the state estimate ξ̂ → ξ converges to the system state.

Nonlinear observer designs can be designed based on Lyapunov functions V : M → R+ written as a function of error
coordinates V (e) and centered at the origin V (ξ̊) = 0. Construction of the Lyapunov functions and design of the observer
must be undertaken on a case-by-case basis, however, the resulting observers are inherently globally defined and their basins
of attraction are only limited by the construction of the Lyapunov function and topological constraints of the manifold M
[HZT+11, VCSO10, MHV11, HMT+11, THML12, GFJS12, BSO12, IS14, HHMT15, AMB16, HMH16, BAT17, LBHMS17,
HHMT15, ZF18, WT19, HTH+19, HTH+20]. For linearisation based observer design, the error dynamics can be linearised
at ξ̊ using a single set of local coordinates [BMR06, MS07, MS08, BMR08, BMR09, BMS09, ZTM13, BMGB13, BMAG15,
BB15, STMA16, BB17, BB18, LAF19, PC20, vHM20, vGHM20]. The improved regularity of the linearisation (no coordinate
changes) leads to improved observer performances as is shown for the equivariant filter design presented in Section 6.

The equivariant error construction allows a principled observer architecture for equivariant systems as shown in Figure 4. The
observer state lies in the symmetry group and uses the internal model provided by the lifted kinematics (11)

d

dt
X̂ = X̂Λ(φξ̊(X̂), u)−∆tX̂. (16)

Here the correction term ∆t := ∆t(X̂, y) ∈ g must be a function of the observed outputs y and the known observer state X̂ and
remains to be defined. The equivariant error e is generated as a signal and the design goal is to drive e→ ξ̊ asymptotically. In
the case that e→ ξ̊ then the state estimate ξ̂ = φξ̊(X̂) will converge to the true state ξ (see (15)). The observer state X̂ lives in a
higher dimensional space G and its convergence is not characterised directly.

The proposed architecture leads to a clear design principle: to design the correction term ∆t such that the equivariant error
dynamics e→ ξ̊. To do this one must study the dynamics of the equivariant error in detail. It is a straightforward exercise to
compute [MHT21]

d

dt
e(t) = Dφe AdX̂

(
Λ(φX̂(e), u)− Λ(φξ̊(X̂), u)

)
−Dφe∆t. (17)

Formally, the error dynamics are a system defined for e ∈M with two exogenous inputs u(t) and X̂(t) while the correction term
can be considered separately as an arbitrary forcing term in the tangent space TeM . The input u(t) dependence is structural in
the problem, indeed, in many robotics problems a persistently exciting input signal is required to ensure observability of the
system [THML12]. However, the dependence of the error dynamics on X̂ in such an embedded manner will lead to challenges
in the analysis. The fact that the evolution of X̂ depends in turn on the choice of correction term ∆t adds additional complexity.

This is where equivariance of the lifted system plays a critical role. Recall that for an equivariant lift AdX̂ Λ(ξ, u) =
Λ(φX̂−1(ξ), ψX̂−1(u)) (see (13)). Factoring the adjoint operator into the dynamics yields

d

dt
e(t) = Dφe

(
Λ(e, ů)− Λ(ξ̊, ů)

)
−Dφe∆t (18)

where we introduce the notation

ů := ψX̂−1(u) (19)

and term this the origin input. The best way to understand ů is as a ‘change of basis’ transformation that takes the input u (a
velocity measurement) and rewrites it in the correct ‘frame of reference’ to apply to the error kinematics (18). In robotic systems
where sensors are mounted on the vehicle then the action ψX̂−1 is typically an explicit change of basis, usually a rotation, that
transforms the measurement from the body-fixed-frame to the observers best estimate of the reference frame. For example,
in the direction kinematics example ψQ̂>(Ω) = Q̂Ω can be interpreted as a change of basis for the input Ω measured in the
body-fixed-frame to Q̂Ω in the (observers best estimate of the) reference frame.

Whereas Eq. (17) are dynamics in two exogenous inputs X̂ and u(t) as well as the correction term, the equivariant error
dynamics Eq. (18) have a single exogenous input ů(t) along with the correction term. Analogous to the general case, the
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equivariant error dynamics often depend on a persistently exciting input ů(t) to ensure observability, particularly for robotic
systems. This imposes some constraints on the relative relationship between the observer trajectory and the input, which, at
least asymptotically, corresponds to a constraint on the relationship between the system trajectory and the raw input. However,
apart from the observability analysis, the fact that ů(t) depends on the observer state makes no difference to the observer
design. The error dynamics (18) are not autonomous (except in certain special cases [MTH13]), however, the simplicity and
elegance of the equation provides a powerful tool in observer design. For non-linear observer design then the global structure of
Λ(e, ů) is of interest and there are many systems where this structure has tractable algebraic structure and it is possible to build
globally defined non-linear observers [HZT+11, VCSO10, MHV11, HMT+11, THML12, GFJS12, BSO12, IS14, HHMT15,
AMB16, HMH16, BAT17, LBHMS17, HHMT15, ZF18, WT19, HTH+19, HTH+20]. For linearising observers then it is the
local structure of the error dynamics that are of interest [BMR06, MS07, MS08, BMR08, BMR09, BMS09, ZTM13, BMGB13,
BMAG15, BB15, STMA16, BB17, BB18, LAF19, PC20, vHM20, vGHM20]. In this case, the linearisation of the unforced
error dynamics in e around ξ̊ are straightforward to compute and provide a powerful model for observer design as we show in
Section 6.

5 Equivariant outputs

An observer problem is highly dependent on the measurements available. An important design choice in equivariant observer
design is to choose a symmetry, if possible, that is compatible with the output measurements. Although this is not always
possible, there are many recent examples where symmetries compatible with common sensor modalities are being discovered.
Interestingly, the corresponding system symmetries are often not the classical symmetries common in the physics literature. This
opens a whole line of research into what is the best symmetry to choose to analyse a systems and control problem and why. We
only touch on this question in the present paper by providing a motivating example.

An output y = h(ξ) is equivariant if there exists a group action ρ : G×N → N such that

ρX(y) = h(φX(ξ)). (20)

The existence of such a symmetry action is a structural constraint that involves the output and symmetry group. For example, an
R3 measurement of the position of a point y = p = h(p, v) for the linear kinematics admits an output action

ρ(α,β)(y) = y + α = p+ α = h(p+ α, v + β) = h(φ(α,β)(p, v)).

A similar output action exists for the direction kinematics output y = η. In this case the output action is trivially that of the state
space, since the full state has been measured

ρQ(y) = Q>η = φQ(η).

However, not all outputs are equivariant with respect to the commonly used symmetries.

For example, consider the case of the linear kinematics (3) and imagine that there are separate bearing and range measurements
of the position coordinate

y1 =
p

|p|
=: h1(p, v) ∈ S2, y2 = |p| =: h2(p, v) ∈ R+, (21)

a very common measurement modality in robotics. Although these measurements could be (and commonly are) used to
reconstruct the measurement y = y1y2 = p, such an algebraic manipulation of the raw measurements distorts the noise properties
of the model and impacts the performance of a filter or observer. It is far preferable to consider a filter design that explicitly
uses the raw measurements in the filter. These raw measurements, however, do not admit a group action that is equivariant with
respect to the Galilean symmetry. It is important to note that this failure of equivariance is a structural constraint on both the
outputs and the symmetry. The outputs are part of the physical design of the system and cannot be changed without changing the
sensor suite. The symmetry, however, is a mathematical construct and it may be possible to deliberately choose a symmetry
group for which the output does admit an equivariant group action.

To make this point clear, since it is one of the key differentiators of equivariant observer design, let us develop a symmetry that
is compatible with bearing and range measurements for linear second order kinematics. Consider the Lie-group (SO(3) ×
MR(1)) nR3 with group multiplication

(R2, r2, β2)(R1, r1, β1) = (R2R1, r2r1, β2 + r2R2β1). (22)

In addition to the special orthogonal group SO(3) of rotation matrices, we use the ‘multiplicative real’ group MR(1) of
all scalar positive reals under multiplication with identity 1, and the ‘additive real group’ R3 of real 3-tuples under addition
with identity (0, 0, 0). The notation ‘n’ denotes a semi-direct product of (SO(3) ×MR(1)) on R3 defined by the group
multiplication (22). We write the indices in ‘reverse’ order to aid in verifying the action property (23) below. The identity
element of (SO(3)×MR(1)) is (I3, 1, 0) and the inverse element is

(R, r, β)−1 =

(
R>,

1

r
,−1

r
R>β

)
.
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Now consider a state symmetry φ′ : ((SO(3)×MR(1)) nR3)× (R3 × R3)→ (R3 × R3),

φ′((R, r, β), (p, v)) :=

(
1

r
R>p,

1

r
R>(v − β)

)
.

It is straightforward to verify

φ′((R1, r1, β1), φ′((R2, r2, β2), (p, v))) =

(
1

r2r1
(R2R1)>,

1

r2r1
(R2R1)>(v − (β2 + r2R2β1))

)
= φ′((R2, r2, β2)(R1, r1, β1), (p, v)) (23)

and see that φ′ is a group action on R3 × R3. This action is most certainly not a Galilean action. It is, however, compatible with
the bearing-range output sensor modality. Consider output actions

ρ1
(R,r,β)(y1) := R>y1 = R>

p

|p|
=

1
rR
>p∣∣ 1

rR
>p
∣∣ = h1(φ′(R,r,β)(p, v))

ρ2
(R,r,β)(y2) :=

1

r
y2 =

1

r
|p| =

∣∣∣∣1rR>p
∣∣∣∣ = h2(φ′(R,r,β)(p, v))

It remains to show that the proposed symmetry is compatible with the second order state kinematics. Consider an input action
ψ′ : G× L→ L defined by

ψ′((R, r, β), (w, a)) :=

(
1

r
R>(w + β),

1

r
R>a

)
.

Then the system is equivariant, since

Φ′(R,r,β)(f(w,a))(p, v) = Dφ′(R,r,β)f(w,a)(φ
′−1
(R,r,β)(p, v)),

= Dφ′(R,r,β)f(w,a) (rRp, rRv + β) ,

= Dφ′(R,r,β) (w + rRv + β, a) ,

=

(
1

r
R>(w + rRv + β),

1

r
R>a

)
,

=

(
v +

1

r
R>(w + β),

1

r
R>a

)
,

= fψ′((R,r,β),(w,a))(p, v).

The advantage of an equivariant output is that it is now possible to define an equivariant innovation. Recall the classical definition
of an innovation ỹ = y − ŷ for y, ŷ ∈ Rm. The innovation ỹ captures the new information in the measurement y compared to
the existing knowledge ŷ = h(ξ̂) of the state. The equivariant innovation is defined to be

d = ρX̂−1(y). (24)

In the same way that the classical innovation for a linear system satisfies ỹ = y − ŷ = Cξ − Cξ̂ = Cξ̃ one has
d = ρX̂−1(y) = ρX̂−1(h(ξ)) = h(φX̂−1(ξ)) = h(e). (25)

In this sense the equivariant innovation captures the new information in the measurement y with respect to the existing information
on the state encoded in X̂ . If the state estimate X̂ is correct then e = ξ̊ and d = h(ξ̊) = ẙ contains no new information on the
state X̂ . However, whereas an innovation y − ŷ requires local or embedded coordinates and is neither globally defined nor
intrinsic, the equivariant innovation provides a globally well defined intrinsic measure of new information. This is an extremely
important property for nonlinear observer design where global definition of the correction term is often one of the key design
criteria. It is also important in linearising observer design and leads to improved linearisation error in the equivariant filter
[vGHM20].

6 Observer Design

In this section we present a careful derivation of the Equivariant Filter (EqF), an observer design approach based on the principles
of the extended Kalman filter applied in equivariant error coordinates. The approach taken is based on the extended Kalman filter
derivation, adapted to continuous-time and the equivariant setting. In particular, we design a linearised or perturbation Kalman
filter [May82] around a reference trajectory generated by unforced observer dynamics and then translate this reference trajectory
to track the filter trajectory by adding a steering input. The approach allows us to clearly separate the filter dynamics from the
re-centering process and consequently identify the role of parallel transport in the covariance reset on a manifold. The approach
is summarised as follows:
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1. Define a reference trajectory and reference error.

• The reference trajectory is a solution to the unforced observer dynamics
• The reference error is analogous to the equivariant error.

2. Linearise the error dynamics around the reference trajectory.

3. Apply a Kalman filter to the linearised error dynamics.

• Implement the Riccati equation in linearised error coordinates.
• Instead of directly implementing the linearised error dynamics, define observer dynamics using the full nonlinear

internal model of the system along with the correction term from the Kalman filter innovation lifted to the observer
state space such that the resulting error trajectory implicitly implements the filter error dynamics.

4. Modify the reference trajectory to include a steering term.

• The steering term holds the filter estimate of the error to zero. That is, to steer the reference trajectory to follow the
observer trajectory exactly.

5. Update the filter equations for the new reference trajectory.

6.1 Define a reference trajectory and reference error

The equivariant filter is based on linearised error dynamics computed around a known reference trajectory of the system. The
first step is to choose a reference trajectory X̌(t) ∈ G in the symmetry group and not a trajectory on the system state space as
would be the case for a classical EKF. We choose X̌ as a solution of the lifted system (11)

d

dt
X̌ = X̌Λ(φξ̊(X̌), u), X̌(0) = I (26)

This choice is made in order to define the equivariant reference error:

ě = φX̌−1(ξ). (27)

This error is analogous to the equivariant error (14) except that instead of measuring the error from state to observer, it measures
the error from state to reference trajectory X̌ ∈ G. Since the reference trajectory has initial condition X̌(0) = I we choose
the origin ξ̊ to be the best a-priori guess of the true value of the initial state2. As a consequence the initial reference error
ě(0) ∼ N(ξ̊,Σ0) is distributed around the origin according to some initial prior distribution.

The analogy with classical Extended Kalman Filtering (EKF) with state ξ ∈ Rm is instructive. The reference trajectory ξ̌ ∈ Rm

is chosen to be a solution of the system model ˙̌ξ = f(ξ̌, u), with ξ̌(0) ≈ ξ(0) chosen in the neighbourhood of the state. The
linear structure of Rm leads to a reference error ξ̃ = ξ − ξ̌. The error is analysed in a neighbourhood of the origin 0 ∈ Rm. That
is the error is small when ξ̃ is close to the origin 0.

Analogous to the equivariant output, we define an equivariant reference output

ď = ρX̌−1(y).

One has ď = h(ě) analogous to (25).

Define the reference input signal ǔ := ψX̌−1(u) analogous to the origin input discussed earlier (19). The full nonlinear dynamics
for the equivariant reference error ě around the reference trajectory X̌ are analogous to the error dynamics (18)

d

dt
ě = Dφě

(
Λ(ě, ǔ)− Λ(ξ̊, ǔ)

)
(28a)

ď = h(ě). (28b)

The goal is to generate an estimate ê for the actual reference error ě. Given such an estimate, the associated state estimate is
obtained by applying the transformation associated with the reference trajectory

ξ̂ = φX̌(ê). (29)

In particular, if ê = ě then ξ̂ = φX̌(φX̌−1(ξ)) = ξ as required. Note that the filter problem is posed in error coordinates ě around
ξ̊ but that the actual estimate of ê does not necessarily converge to ξ̊ in this formulation since ě does not converge to ξ̊. The ê and
ě trajectories shown in Figure 5 provides a visualisation of the formulation.

2This assumption can be generalised to arbitrary ξ̊ but the choice made above simplifies the following discussion.
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6.2 Linearise the error dynamics around the reference trajectory

The equivariant filter (EqF) is based on linearisation of the ě error dynamics. To linearise a system on a manifold it is necessary
to work in a set of local coordinates. For an equivariant filter, only a single chart of local coordinates on M around ξ̊ and single
chart of coordinates on N around ẙ = h(ξ̊) are required.

Let ε : M → Rm and δ : N → Rn be such local coordinates and we will assume that ě and ď remain in the domain of definition
of the local coordinates for all time. This is to be expected since the reference trajectory X̌ is the lifted dynamics and will project
down to system trajectories. Expressing the equivariant error system (28) in local coordinates and linearising around the origin
ξ̊ ∈M , and ẙ ∈ N yields a time-varying linear system [vGHM20]

dε̌ = Atε̌dt+Btdµv (30a)

dδ̌ = Ctε̌dt+Dtdνy (30b)

where we add noise as Wiener processes Dµv ∼W(0,Mt) and Dνy ∼W(0, Nt) for positive definite time-varying covariance
Mt, Nt > 0. We circumvent the difficulty of understanding noise processes on non-linear manifolds by modelling the noise in
the linearisation where classical theory holds. The linear noise models introduced in the linearisation will correspond to some
nonlinear noise model on the full nonlinear system. A full understanding of noise in equivariant filtering is still an active topic of
research.

It is worth taking a moment to discuss the linearised model (30). Recall the analogy to the classical EKF where ξ, ξ̌ ∈ Rm and
the error is ξ̃ = ξ − ξ̌. The EKF error is linearised around ξ̃ = 0. One has

d

dt
ξ̃ = ξ̇ − ˙̌ξ = f(ξ, u)− f(ξ̌, u) = f(ξ̌ + ξ̃, u)− f(ξ̌, u) ≈ f(ξ̌, u) +Dfu(ξ̌)ξ̃ − f(ξ̌, u)

= Dfu(ξ̌)ξ̃

That is, linearising the error around ξ̃ = 0 is the same is linearising the system function around ξ = ξ̌. This leads to direct
dependence of the linearisation on the reference trajectory ξ̌. In contrast, the error dynamics ě are linearised around the fixed
point ξ̊ and are independent of the reference trajectory X̌ except through the transformed input ǔ = ψX̌−1(u). Similarly, the
Bt and Dt matrices are only dependent on the reference trajectory through the input action, while the output matrix Ct = C̊
matrix is constant [vGHM20] since the equivariant innovation is independent of the input. The regularity of the matrices in the
linearisation are a direct consequence of the equivariance of the underlying system and lead to improved filter performance
[vGHM20].

6.3 Apply a Kalman filter to the linearised error dynamics

From (30) a standard Kalman filter with nonlinear update can be used to filter for the best estimate ê of ě [RSB05]. In error
coordinates, this filter can be written [vHM20, vGHM20]

d

dt
ê = Dφê

(
Λ(ê, ǔ)− Λ(ξ̊, ǔ)

)
−Dε−1ΣC>t N

−1
t (δ − δ̂), ê(0) = ξ̊ (31a)

d

dt
Σ = AtΣ + ΣA>t − ΣCtN

−1
t C>t Σ +B>t MtBt, Σ(0) = Σ0, (31b)

for Σ0 ∈ S+(m) the covariance of the prior for the reference ě(0) discussed in Section 6.1.

The full nonlinear equivariant error dynamics (31a) are used with the innovation drawn from the linear filter equation as is
the usual case in an extended Kalman filter [RSB05]. The stochastic interpretation of this filter is that the equivariant error
ě ∼ N(ê,Σ) is distributed around the estimate ê with variance Σ. The filter is initialised with an estimate of uncertainty for the
initial equivariant error ě(0) ∼ N(ξ̊,Σ0).

The filter dynamics (31a) are a good start, however, they must be related to the observer (16) in order to implement a filter. In the
case of equivariant filtering, this involves lifting the error dynamics (31a) to observer dynamics

d

dt
X̂ = DLX̂Λ(φξ̊(X̂), ψX̂(ǔ)) + Dφ†

ξ̊

(
Dε−1ΣC>t N

−1
t (δ − δ̂)

)
X̂, X̂(0) = I (32)

where Dφ†
ξ̊

: Tξ̊M → g is a pseudo-inverse of Dφξ̊. The particular choice of pseudo-inverse is arbitrary and does not effect the

performance of the filter. It is straightforward to verify that ê(t) = Dφξ̊(X̂(t)) is a solution of (31a). It follows that there is no
requirement to implement (31a) to solve the filtering problem, rather one implements the observer equation (32) along with the
Riccati equation (31b). The EKF filter equation (31a) is implicit in the equivariant structure of the problem. The associated state
estimate is computed by

ξ̂ = φX̌(ê) = φX̌(φX̂−1(ξ̊)).
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6.4 Modify the reference trajectory to include a steering term

To this point we have derived a linearised or perturbation Kalman filter [May82], that is, applied the linear Kalman filter to a
linearised version of the error dynamics and then lifted these filter dynamics to an observer on the group. The resulting observer
is well defined and provides a stochastic estimate of the a-positori distribution of the error ě ∼ N(ê,Σ) = N(φξ̊(X̂),Σ).

However, the construction relies on a reference trajectory X̌ that must be chosen such that ě remains close to ξ̊. Choosing initial
conditions sufficiently close, then the lifted dynamics of the reference trajectory project to a solution for which the equivariant
error will only drift slowly. Eventually, since the two trajectories are not synchronous [LTM10], the equivariant error will drift
away from ξ̊ compromising the principles of the linearisation on which the filter is based. This issue is overcome by steering the
reference trajectory to keep the error close to ξ̊.

Consider the modified reference trajectory dynamics

d

dt
X̌ = X̌Λ(φξ̊(X̌), u)−∆tX̌, X̌(0) = I. (33)

Where ∆t ∈ g is a steering term. With this choice then the equivariant error dynamics (28a) become

d

dt
ě = Dφě

(
Λ(ě, ǔ)− Λ(ξ̊, ǔ)

)
+ Dφě∆t

and in consequence the filter dynamics, which are a copy of the error dynamics plus the correction term, become

d

dt
ê = Dφê

(
Λ(ê, ǔ)− Λ(ξ̊, ǔ)

)
+ Dφê∆t + Dε−1ΣC>t N

−1
t (δ − δ̂), ê(0) = ξ̊. (34)

From here it is natural to choose

∆t := −Dφ†êDε
−1ΣC>t N

−1
t (δ − δ̂). (35)

Noting that ê(0) = ξ̊, it is straightforward to verify that ê(t) = ξ̊ is a solution of (34) for all time. That is, the steering term ∆t is
chosen to fix the estimate ê ≡ ξ̊ constant at the origin. Since the estimate ê was designed to converge to ě then it follows that ě
should converge to ξ̊.

An important consequence of this choice is that the modified reference trajectory (33) is also a solution of the observer (32).
This follows since the initial conditions match and along a trajectory of X̌ = X̂ then ǔ = ů and the defining equations become
identical. Thus, the role of the reference trajectory is subsumed by the observer and (33) can be discarded. Moreover, the
equivariant reference error is now

ě = φX̌−1(ξ) = φX̂−1(ξ) = e;

the equivariant error (14) introduced in Section 3. As such, the notation for ě can also be discarded. Note that steering the
reference trajectory to track the observer trajectory can only be undertaken once the filter estimate is available. The reference
trajectory must be defined first while the linearisation of the error dynamics is computed around a reference trajectory that does
not include the steering term. In a classical extended Kalman filter, this process is a re-centering or reset process done at each
step of the algorithm. In continuous time, it is a steering term added to the unforced internal model that corresponds to the filter
correction term. Thus, the correction term is doing two things, firstly implementing the correction term associated with the
linearised Kalman filter algorithms, and secondly steering the reference trajectory to track the filter estimate.

6.5 Update the filter equations for the new reference trajectory

The final step in the extended Kalman filter derivation is to combine (32) and (31b) (with ǔ replaced by ů). The observer
trajectory X̂ is the reference trajectory, the observer estimate is ξ̊ for all time and the equivariant error e→ ξ̊ at least as long as
the filter converges. However, the derivation of the filter used a linearisation associated with a reference trajectory that was a
solution of the system (26), and steering the trajectory breaks this assumption. In fact, the steering term corresponds to translating
the filter solution in the error coordinates in order to keep ê centred on the origin ξ̊. For the error dynamics themselves, this
is just a change of coordinates and does not change the observer dynamics of the filter. But the filter estimate is not just the
observer state ê, it is the full information state estimate ě ∼ N(ê,Σ) and translating this solution involves parallel transport of
the covariance Σ.

Figure 5 shows a figure where the unmodified filter solution generates an estimate N(ê,Σ) that converges to the true equivariant
error state ě. Adding the steering term to the reference trajectory is analogous to translating the estimate ê to the origin ξ̊,
with a corresponding translation of the reference error ě to the equivariant error e. The covariance Σ is translated to the
corresponding covariance Σ̊ around ξ̊. The transformed filter state can be interpreted as the information state for the equivariant
error e ∼ N(ξ̊, Σ̊). If the manifold is flat then the parallel transport is trivial and Σ̊ = Σ, however, if the manifold has curvature
this additional parallel transport should be modeled as a curvature modification to the Riccati equation.
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Figure 5: The evolution of error variables and covariances shown at two times with subscripts one and two. As time passes, the
trajectory of ê converges to ě and the covariance estimate Σ contracts. The information state for the reference error ěi ∼ N(êi,Σi)

transforms to an information state for the equivariant observer error ei ∼ N(ξ̊, Σ̊i). The covariance Σ̊ is the parallel transport of
the covariance Σ.

Recall that parallel transport P on a manifold is defined along curves on the space. If γ : R → M is a smooth curve then
parallel transport is an operator Pγ : Tγ(0)M → Tγ(t)M that maps tangent vectors g ∈ Tγ(0)M to their parallel transport
Pγ(t)g ∈ Tγ(t)M for t ≥ 0. Covariance Σ ∈ S+(m) can be thought of as a (0,2)-tensor that accepts two tangent vectors
(written in local coordinates) and returns a scalar. The parallel transport of Σ over the curve γ is given by Σ̊ = PγΣP>γ (in local
coordinates).

Since the steering process is an infinitesimal modification of the continuous time reference trajectory, the correction to Σ does not
need to be computed explicitly as a parallel transformation. Rather, the steering input can be applied to the covariance evolution
as an instantaneous curvature correction. The infinitesimal parallel transport of a vector g ∈ Tγ(0)M due to an infinitesimal
displacement γ̇(0) is

d

dt

∣∣∣∣
t=0

Pγ(t)g =: Γγ̇(0)g,

where Γγ̇(0) : Tγ(0)M → Tγ(0)M is the connection function for the manifold M evaluated at γ(0) in direction γ̇(0). Conse-
quently, the infinitesimal modification of Σ is given by

d

dt

∣∣∣∣
t=0

Σ̊ =
d

dt
|t=0Pγ(t)ΣP>γ(t),

= Γγ(0)Σ + ΣΓ>γ(0).

In the final line we write the connection function for a known infinitesimal translation Γγ̇(0) ∈ Rm×m as a matrix in the same
local coordinates as those used for Σ.

Now, in our case the steering input applies an infinitesimal translation γ̇(0) = −Dφξ̊∆t to the trajectory ê(t). This point is

somewhat subtle as in fact this term is holding ê(t) ≡ ξ̊, nevertheless, the infinitesimal translation is transporting the covariance
that otherwise would have been moving along with the reference system trajectory. Substituting the known infinitesimal
translation due to the steering input into the parallel transport equations one obtains the required modification term to the Riccati
equation.

Thus, following the methodology outlined at the start of Section 6 for an equivariant system, we propose the Equivariant Filter
(EqF) with curvature modification

∆t := Dφ†
ξ̊
Dε−1ΣC>t N

−1
t (δ − δ̂), (36a)

d

dt
X̂ = X̂Λ(φξ̊(X̂), u)−∆tX̂, X̂(0) = I (36b)

d

dt
Σ = AtΣ + ΣA>t − ΣCtN

−1
t C>t Σ +B>t MtBt − ΓDφξ̊∆tΣ− ΣΓ>Dφξ̊∆t

, Σ(0) = Σ0 (36c)

where the “curvature modification” −(ΓDφξ̊∆tΣ + ΣΓ>Dφξ̊∆t
) in (36c) compensates for the distortion of the covariance due to

parallel transport on a non-flat manifold. Note that since ∆t depends on Σ, the curvature modification is a quadratic perturbation
to the classical Ricatti equation.
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It is interesting to note that the curvature modification (36c) is driven by the steering term Dφξ̊∆t and not the system dynamics.
In particular, the nonlinearity associated with the evolution of the system is captured in the local coordinates and is modeled in
the linearisation process used to derive the Kalman filter in error coordinates. It is only the process of re-centering the error
using a steering input that incurs the curvature correction. The re-centering process is fundamental for the EqF where the filter
is continuously translated to centre on the origin, a process that yields significant benefits in the regularity of the linearisation
mentioned earlier.

7 Simulations

In this section we provide simulations to demonstrate the qualitative behaviour of the equivariant filter on the two examples
discussed in the body of the paper.

In Section 7.1 we consider the direction kinematics (1) and compare an EqF using normal coordinates inherited from the
symmetry with an EKF using stereographic coordinates. In Sections 7.2 and 7.3 we consider second order linear kinematics with
range and bearing measurements. In Section 7.2 we simulate two filters both using the Galilean symmetry. In the first Galilean
filter we algebraically reconstruct a position measurement from the actual range and bearing measurements and apply a linear
Kalman filter. In the second we use the classical extended Kalman filter (EKF) in the natural Euclidean coordinates on R3 × R3

by linearising the bearing and range measurement functions. Section 7.3 uses the polar symmetry developed in Section 5. We
implement the full EqF in this symmetry for the range and bearing measurements, taking care to use local coordinates inherited
from the symmetry of the system. We also simulate the same filter, in the same local coordinates, but without the curvature
modification term in the Riccati equation (36c) for comparison.

All simulations were done by implementing the continuous-time system equations using Euler integration at a constant time-
discretization of dt = 0.02s. Noise was simulated as Gaussian processes added directly to the variables at each time step.

7.1 Direction kinematics: Rotational symmetry

For simplicity we assume the true system is rotating with a constant body velocity Ω = (0, 0.5,−0.2)rad/s. The input for
the systems is a velocity measurement v = Ω + µv corrupted with Gaussian noise µv ∼ N(0, 0.01) in rad/s. The initial
value of the true direction η ∈ S2 was chosen to be η = (e3 + µ)/|e3 + µ|, where µ ∼ N(0, 10.0). The measurement
y = (η + νy)/|η + νy| was corrupted by Gaussian noise νy ∼ N(0, 0.1). Figure 1 plots both the raw state error, in this case the
bearing error θ = | arccos(η̂>η)|, and the filter energy. The filter energy refers to the quantity L = ε>Σ−1ε that describes the
log-likelihood of the estimate with respect to the filter’s own estimate of the covariance Σ of the error estimate ε. Low filter
energy indicates internal consistency of the filter, and is a desirable feature alongside error in the state estimate. Figure 1 uses a
log10 scale on the y-axis to show the convergence properties of the errors more clearly.

The first filter we implement is a classical EKF. For this filter we use the well-known stereographic projection for local coordinates,
centred on the filter estimate η̂. That is, we adapt the local coordinates to track with the filter to minimize the linearisation error
associated with poor local coordinate conditioning. The second filter is the EqF where we use the equivariant error around
the origin e3 ∈ S2. For this filter we use the so called normal coordinates on M , obtained by projecting exponentials from
the Lie-group to the manifold via the group action. Specifically, one sets ε(y) = ω, where ω ∈ R2 is the unique element such
that exp((ω, 0)×)e3 = y. These coordinates most closely capture the equivariance of the system and can be thought of as the
natural generalisation of the log-linear coordinates that play a critical role in the analysis of group affine systems on Lie-groups
[BB17]. Since the linearisation point is fixed, only the single local coordinate chart is required for the EqF. The sphere is a
reductive homogeneous space of SO(3) and hence has a unique symmetric connection3 that is compatible with the symmetry
action [KN63]. This connection corresponds to the normal Riemannian connection on S2 and as a consequence the connection
coefficients Γkij are zero in the normal coordinates at e3. It follows that the curvature modification terms ΓDφξ̊∆t in (36c) are
uniformly zero at the origin η̊. It is important to note that this property is closely coupled to the particular choice of local
coordinates and these terms are not zero in the stereographic coordinates.

Figure 1 shows the performance of both filters. The EqF with normal coordinates clearly outperforms the EKF with stereographic
coordinates as shown. The main reason for the performance advantage lies in the choice of normal coordinates as the local
coordinate chart that minimizes linearisation error. This is particularly clear early in the trajectory when the correct scaling of
local coordinates significantly reduces the transient of the filter.

7.2 Second order kinematics: Galilean symmetry

The trajectory for the second order kinematics was an oscillatory trajectory with acceleration a = (0, cos(5t), 0). The initial
state was chosen p(0) = φexp(µ∧)(0, 0, 50) and v = 0 where the variation in position |µ| ∼ N(0, 0.25) is generated by a
homogeneous Gaussian on the group projected to normal coordinates on the state manifold. The acceleration measurement

3The projection of the Cartan-Schouten (0) or (first) canonical connection on the Lie-group. The canonical connection on the Lie group
is the unique symmetric connection for which geodesics are the 1-parameter subgroups (exponentials). The normal coordinates (projected
exponential) on the homogeneous space are geodesics of the induced connection.
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a = a+ µv is was corrupted by Gaussian noise µv ∼ N(0, 0.0025) in m/s2. The bearing and range measurements (21) were
corrupted by Gaussian noise ν1 ∼ N(0, 4) in degrees and ν2 ∼ N(0, 4) in metres respectively. Figure 6 shows position error
|p− p̂| and velocity error |v − v̂| to show the tracking error. We also show the filter energy analogous to Figure 1. All plots are
in log10 scale to better show the convergence properties of the error signals.

The Galilean symmetry preserves the linear structure of the state space R3 ×R3. The error e = φ(α̂,β̂)−1(p, v) = (p− α, v − β)

and the unforced error dynamics are a linear time invariant system

ė =
(

˙̃p, ˙̃v
)

= (ṽ, 0) (37)

The measurements y1 and y2 are bearing and range (21) and it is possible to reconstruct an algebraic estimate of a position
measurement

y = y1y2 = p+ νy,

with noise model νy ∼ N(0, 4y2
2(I3 − y1y

>
1 ) + 4y1y

>
1 ) estimated from the noise characteristics of y1 and y2. With full position

measurements y = p then the innovation is a linear function of the error state ỹ = p̃ and a linear Kalman filter applies directly to
this system.

Applying the principles of the extended Kalman filter to the full nonlinear model, the nonlinear measurements y1 and y2 are
linearised. The linearisation of the associated equivariant innovations are

ỹ1 =

(
I3 −

p̊p̊>

|p̊|2

)
p̃, ỹ2 =

p̊>

|p̊|
p̃.

The extended Kalman filter uses these measurement functions along with the linear error kinematics (37).

Figure 6 shows qualitative results for these two filters in solid red and dashed blue. The linear Kalman filter is actually highly
effective as long as the noise in the measurements is low. However, it is very prone to instability for increasing measurement
noise. The particular noise characteristics we have chosen are on the limit of the envelope in which the linear Kalman filter is
effective and the trajectory demonstrates incipient instability in some of the sharp jumps in the filter response. For lower noise
level the performance of the linear Kalman filter is similar to that of the EqF filters and indeed, if the measurement y = p were
truly distributed as a Gaussian variable then the equivariant filter in Galilean symmetry is exactly the linear Kalman filter. For
higher noise levels the linear Kalman filter diverges. In contrast, the EKF is robust and stable, however, its performance is clearly
inferior to the other filters. This is due to the linearisation error incurred by linearising the output functions around the incorrect
state estimates.

7.3 Second order kinematics: Polar symmetry

The equivariant filters for second order linear kinematics with range and bearing measurements were implemented for the polar
symmetry. The same system trajectories and parameters were used with identical noise sequences.

For the polar symmetry the lift function is

Λ((p, v), a) :=

(
(p× v)×

|p|2
,
p · v
|p|2

,

[
(p× v)× v + (p · v)v

|p|2
− a
])
∈ (so(3)×mr(1)) n r3

that maps into the Lie-algebra of (SO(3)×MR(1)) nR3. The lifted system is

Ṙ = −R (p× v)×

|p|2
, ṙ = −r p · v

|p|2
, β̇ = rR

(
(p× v)× v + (p · v)v

|p|2
− a
)
,

where (p, v) = φ((R, r, β), (p̊, v̊)). The error dynamics are complicated and we omit them to save space. The origin element4
chosen was ((0, 0, 50), (0, 0, 0)) ∈ R3 ×R3. The coordinates used are the normal coordinates obtained by projecting the normal
exponential coordinates from the Lie-group down onto the state space around the origin. Only a single coordinate chart is
required.

The range and bearing measurements are equivariant with respect to the polar symmetry. As a result, the measurements can be
written using a subset of the same exponential coordinates as the state elements. In this particular case, this leads to very simple
and state-independent linearisations of the output:

δ1 = (I2 02,4) ε, δ2 = (01,2 1 01,3) ε.

The regularity of the output linearisation is one of the key properties of the approach that leads to the performance of the EqF.

4The group action for the polar symmetry is not actually transitive on the whole of R3 × R3; the set {0} × R3 and R3/{0} × R3 are
disjoint orbits of the action. The origin must be chosen in the orbit that where the trajectory will evolve. This is not a true restriction since the
measurements are not defined on the exception set either.
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The homogeneous space is reductive (the stabilizer is S1) and we will use the canonical symmetric invariant connection induced
on the state manifold by the canonical invariant connection on the Lie-group. However, unlike the direction kinematics on
the sphere, the resulting connection is not a Riemannian connection and the connection coefficients are not zero in the normal
coordinates. Using exponential coordinates of the Lie group to describe the manifold about the origin (p̊, v̊), the connection
coefficients are5

Γ∆ =
1

2
ad∆ |m,

for any ∆ ∈ m, where the tangent space about (p̊, v̊) is identified with a subspace m of the Lie algebra, T(p̊,̊v)M ' m ⊂ g
invariant under Adstabφ(ξ̊).

Figure 6 shows the qualitative performance of two filters: the EqF with (black, dash-dot) and without (green, dotted) curvature
modification. It is clear that both these filters outperform the extended Kalman filter and the reconstructed linear Kalman filter.
The bulk of this performance advantage comes from the equivariance of the output and nice form of the equivariant innovation.
This structure minimizes the linearisation error in the filter and leads to significant performance gains. The performance
difference between the two EqF filters is relatively small. The curvature correction appears to make most difference in the
transient of the velocity term. This is likely due to the fact that these variables are not directly measured and rely on the quality
of the covariance estimate to couple the innovation into a state correction. It is intuitive that the curvature modification will make
most difference when ∆t is large during the transient, and that the difference will be most visible in states that are not directly
measured. Once the correction term ∆t is small, the curvature modification appears to make little difference to the asymptotic
performance of the filter, although it is apparent that the filter energy for the full EqF is always superior to that without the
curvature modification. Given the complexity of the curvature correction it is not clear that its benefits are worth the extra effort
in derivation and implementation unless either performance is at an absolute premium or the filter is often in transient.

It is clear from the results obtained that the two EqF filters significantly outperform the standard EKF filter design. As noted
above, for low noise levels the linear Kalman filter with reconstructed error performs similarly to the EqF filters, however, it is
not robust to increased noise levels as shown in the simulation.
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