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Observer Designs for Experimental Non-Smooth and Discontinuous Systems
Apostolos Doris, Aleksandar Lj. Juloski, Nenad Mihajlović, W. P. M. H. (Maurice) Heemels,

Nathan van de Wouw, and Henk Nijmeijer

Abstract—This brief presents the design and implementation
of observer design strategies for experimental non-smooth con-
tinuous and discontinuous systems. First, a piece-wise linear
observer is implemented for an experimental setup consisting
of a harmonically excited flexible steel beam with a one-sided
support which can be considered as a benchmark for a class of
flexible mechanical systems with one-sided restoring characteris-
tics. Second, an observer is developed for an experimental setup
that describes a dynamic rotor system which is a benchmark for
motion systems with friction and flexibility. In both cases, the im-
plemented observers guarantee global asymptotic stability of the
estimation error dynamic in theory. Simulation and experimental
results are presented to demonstrate the performance of the
observers in practice. These results support the use of (switched)
observers to achieve state reconstruction for such non-smooth and
discontinuous mechanical systems.

Index Terms—Continuous piece-wise linear (PWL) systems, dis-
continuous systems, switching observer.

I. INTRODUCTION

T HE MOTIVATION for this work originates from the
need to analyse and control the dynamics of complicated

engineering constructions with non-smooth and discontin-
uous dynamics. An important class of engineering systems
exhibiting non-smooth dynamics are mechanical systems
comprising structural elements with piece-wise linear (PWL)
restoring characteristics, such as tower cranes, suspension
bridges [1], solar panels on satellites [2], or floating platforms
for oil exploration [3]. Another relevant class of engineering
systems consists of mechanical systems with discontinuities
due to friction, such as industrial robots, drilling rigs [4], pick
and place machines [5], turbine blade dampers [6], and many
more. A common characteristic of all the mentioned applica-
tions is the non-smooth nature of their dynamics.

As the complete state of the aforementioned systems usually
cannot be measured, it is convenient to have an accurate estimate
of the complete system state in order to control these systems.
Accurate estimates can be obtained using properly designed ob-
servers, given a model and measured input–output data of the
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system. Although in the linear and smooth setting observer de-
sign is well understood, in the nonlinear and non-smooth context
the reconstruction of the state is far more difficult, in particular,
if one faces the inherent difficulties of an experimental engi-
neering environment (modeling errors, sensor noise, etc.). The
overall objective of this work is the design and experimental
validation of observers for certain classes of non-smooth and
discontinuous systems in the field of applied mechanics and en-
gineering.

In literature, various observer designs for non-smooth Lip-
schitzian systems are available. Sliding mode observers (see
[7]) are designed for a class of non-smooth systems. These ob-
servers guarantee local asymptotic stability of the state estima-
tion error. In [8], it was shown that in case of a nonlinear dy-
namical system with a scalar nonlinearity a Kalman filter can
be used for state estimation. The drawback of this method is
that the calculation of the observer gains relies on a trial-and-
error technique. A more general approach for the state estima-
tion of the aforementioned class of systems can be taken by
using a switching Kalman filter (see [9]). Herein, different ob-
server gains are used for different modes. An important draw-
back of both Kalman filter designs is that stability in general
cannot be proven a priori. In [10] and [11], it is proven that
the state estimation error of a model-based observer for a Lips-
chitzian system with slope-restricted possibly monotone multi-
variable nonlinearities, exponentially converges to zero. In [12],
switched observers are considered for a class of bimodal PWL
systems. The observer design strategy employed there provides
sufficient conditions, under which global asymptotic stability of
the state estimation error can be achieved if the system dynamics
is continuous over the switching plane. In [13], a constructive
observer design procedure for a class of non-smooth dynamical
systems, namely systems of Lur’e type with a monotone multi-
valued mapping in the feedback path, is presented. Under cer-
tain passivity-related assumptions the observer asymptotically
recovers the state of the observed system. The design in [13]
is based on ideas in [14], in which monotone multivalued map-
pings were first introduced in the control community. It is a dis-
tinguishing feature of the observer structures in [10], [12], and
[13] that the observers do not need knowledge about the active
mode of the system, in contrast to those in [8] and [9]. A dif-
ference between [10] and [12], for the bimodal case, is that the
observer design in [10] implies that the same observer gain is
used for both modes, while in [12], different observer gains are
used for every mode. A difference between [10], [12], and [13]
is that the results of [10] are applicable to locally Lipschitzian
systems while the results of [12] and [13] can also be applied to
non-smooth, non-Lipschitzian systems.

The focus of this brief is on the design and implementation
of: 1) a non-smooth PWL observer on a harmonically excited
experimental PWL beam setup and 2) a discontinuous observer

1063-6536/$25.00 © 2008 IEEE
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based on [13] on an experimental dynamic rotor system with
discontinuous friction. The PWL beam setup can be consid-
ered as a benchmark system for the implementation of observer
and controller design strategies to complex engineering systems
with PWL characteristics. More specifically, this system cap-
tures the basic dynamics of the aforementioned mechanical sys-
tems and reveals the fundamental practical problems that one
faces when designing observers for such systems. Namely, the
available measurements can hardly ever detect the moment of
switching between the different dynamic regimes of such me-
chanical systems, since commonly the switching boundary for
these systems is characterized by a combination of the compo-
nents of the system state. Very often, it is very difficult and/or
very expensive to use measurement devices to measure all of
these state components in practice. The dynamic rotor system
can be seen as a benchmark system for observer and controller
design strategies for engineering systems with discontinuities
due to friction. In such engineering systems the presence of fric-
tion induces a vibrational phenomenon (stick-slip limit cycles)
that results in kinetic energy dissipation, noise, excessive wear
of machine parts, and inferior positioning properties. Due to the
fact that the examined system reproduces this kind of behavior
it can be considered as benchmark for this type of systems.

For the description of the dynamics of the experimental
setups, we use relatively simple low-order models, which, how-
ever, exhibit non-smooth or discontinuous characteristics. Such
models are shown to be highly predictive for the experimental
systems (see [4] and [15]) while exhibiting a limited model
complexity. This motivates, first, the validity of non-smooth
continuous and discontinuous modeling for engineering sys-
tems and, second, the need for the design of model-based
observers for these types of non-smooth and discontinuous
systems.

This brief is structured as follows. The observer design strate-
gies that we will use are introduced in Section II. In Section III,
a description of the PWL beam system is given and the ob-
server design and implementation for this system are presented
together with simulation and experimental results related to the
observer performance. In Section IV, the experimental dynamic
rotor system is presented, the observer design and implemen-
tation on this system are explained and simulation and exper-
imental results are given. Discussions, conclusions, and direc-
tions for future work are given in Sections V and VI, respec-
tively.

II. OBSERVER DESIGN FOR NON-SMOOTH AND

DISCONTINUOUS SYSTEMS

A. Observer Design for Bimodal PWL Systems

Consider a continuous-time bimodal PWL system of the fol-
lowing type:

if
if

(1)

with , and the output, the
state, and the input of the system, respectively. The matrices

, , , and . The

hyperplane defined by sepa-
rates the state space into two half-spaces. We assume that the
vector field of (1) is continuous, which implies that
implies that . The observer design problem is to
synthesize a state estimation procedure, which, on the basis of
a known system model, the input , and the measured output

provides a state estimate . In order to do so, we choose the
following observer for (1):

if
if

(2)

with , , and the output, the ob-
server state, and the observer gain matrices, respectively. As we
will show in the following, the observer does not require infor-
mation on which linear dynamics of the system (1) is currently
active as all modes are included in the error dynamics. More
specifically, the dynamics of the state estimation error
is described by

(3)

where . By substituting in (3), we see
that the right-hand side of the state estimation error dynamics is
piece-wise linear in . The observer design problem can
formally be stated as follows.

Problem: Determine, if possible, observer gains in (2)
such that global asymptotic stability of the state estimation error
dynamics (3) is achieved, for all functions ,
satisfying (1) for some bounded locally integrable input func-
tion .

Theorem II.1: [12] The state estimation error dynamics (3)
is globally asymptotically stable (in the sense of Lyapunov), for
all satisfying (1) for a bounded locally inte-
grable input function if there exist matrices

, , and constants , such
that the following set of matrix inequalities is satisfied:

(4a)

(4b)

Proof: Here we only provide a sketch of the proof. Full
details of the proof can be found in [12]. To show that the origin
of the observer error dynamics (3) is globally asymptotically
stable for all given , we prove that

is a Lyapunov function for (3). To be precise, we use that
and we will prove that

(5)

where denotes the right time-derivative of along solutions
of (3). First, we observe that the upper left block of (4a) and (4b)
imply that for .
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Hence, for the first and fourth mode of (3) it is clear that (5)
holds. To show that (5) also holds for the second and third mode
we use the regional information ,
(second mode), and , (third mode),
which both imply the quadratic constraint

(6)

Hence, if we use this information, we see from (4a) that if
, , then it holds that

(7)

and from (4b) we see that if , , then it
holds that

(8)
This implies that (5) is also satisfied for the second and third
mode. This shows that is a Lyapunov function for (3).
Using the usual Lyapunov-based reasoning now completes the
proof.

The inequalities (4a) and (4b) are nonlinear matrix
inequalities in , but are linear in

and thus can be efficiently solved
using linear matrix inequalities solvers, such as LMITOOL for
MATLAB [16]. Note that the proposed observer design does not
need information about active dynamics nor tries to estimate
this explicitly. In case , the LMI conditions (4)
are equivalent to the conditions given in [10]. Conditions for
feasibility of the LMI (4) can be formed in [10]. Moreover,
the aforementioned theory related to observer design for PWL
systems remains conceptually the same for multiple-mode
systems. Nevertheless, we will encounter a higher complexity
when deriving the observer error dynamics compared to the
bimodal case. The reason for that is the fact that there is a
quadratic relation between the number of system modes
and the number of the modes of the observer error dynamics

. This results in a quadratic increasing number of LMIs,
which are numerically more difficult to solve.

B. Observer Design for Lur’e Systems With Multivalued
Mappings

Consider the system that is given by the following differential
inclusion (see Fig. 1):

(9)

with output , , , ,
, and has full column rank. We assume that

the multivalued mapping defined on satisfies the following
properties:

• for all the set is non-empty, convex,
closed, and bounded;

• is upper semicontinuous (see [17, p. 41]);

Fig. 1. System with a monotone multivalued mapping in the feedback path.

• is monotone, i.e., for all and it holds that
and implies that

, where denotes the inner product;
• there exist positive constants and such that for any

it holds that .
The input functions are assumed to be in the space of piece-

wise continuous1 bounded functions from to , de-
noted by PC . Clearly, the mapping

is upper semicontinuous and attains
non-empty, convex, closed, and bounded set-values. From [17,
p. 98] or [18, § 7], it follows that local existence of solutions2 is
guaranteed given an initial state at initial time 0. Due to the
growth condition , , it follows that
any solution to (9) is globally defined on .

As an observer for the system (9), we propose the following
differential inclusion:

(10)

with output , and . Since the right-
hand side is again upper semicontinuous in due to con-
tinuity of and piece-wise continuity of , using the previous
properties of it can be shown that global solutions exist of (10).
Knowing that both the plant and the observer have global solu-
tions, the observer error dynamics between (9) and (10), with
observer error exists globally and obeys

(11)

The problem of the observer design is finding the gains ,
such that all solutions to the observer error dynamics converge
exponentially to the origin, which implies that

.
The following theorem presents a method for the observer de-

sign that requires strict passivity of which is defined
by the existence of a and a such
that and .

Theorem II.2: Consider the observed system (9), the observer
(10), and the observer error dynamics (11). If

is strictly passive, then, the point is globally

1We call a function u piece-wise continuous, if any bounded interval contains
at most a finite number of discontinuity points of u.

2We call a function x : [a; b] ! a solution to the differential inclusion
_x(t) 2 F (t; x(t)), if x is absolutely continuous and satisfies _x(t) 2 F (t; x(t))
for almost all t 2 (a; b).
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exponentially stable. Moreover, the following bound holds:

(12)
where denotes the minimal eigenvalue, and matrices
and are given by (14).

Proof: Here, we provide a sketch of the proof (for the de-
tails see [13]). Note that is an equilibrium point of (11).
Now, let and be positive definite matrices that correspond to
the strict passivity conditions
and for . To show
global exponential stability of the origin of (11), we consider
the candidate Lyapunov function . It can be
shown that the derivative exists almost everywhere and satis-
fies (if it exists)

(13)

for some satisfying (11). Since

with and
, it follows from monotonicity of

that . Therefore,
and standard Lyapunov

reasoning can be used to derive global exponential stability and
the error bound.

The gains and such that is strictly
passive can be computed by solving the following linear matrix
inequalities (see also in [13] and [19]):

(14)

where . For a given , inequality (14) is a linear matrix
inequality in , , and . According to (12), the rate of
convergence depends on the eigenvalues of the matrix and ,
which in turn depend on the system parameters. When solving
the LMIs for observer design the size of both matrices can be
“controlled,” for example, by tuning or by adding the con-
straint and my including scalar variables (such as and

) in the optimization objective. The computed output feedback
gains will then guarantee the rate of convergence as in (12). Note
that this tuning is allowed since the provided LMI is a conserva-
tive constraint. The conservatism of this constraint is due to the
fact that it is based on a Lyapuvov-based approach. For details
on numerical schemes for computing the solutions to observer
dynamics (10), we refer the reader to [13] and [19].

III. OBSERVER DESIGN IMPLEMENTATION ON

A PWL BEAM SYSTEM

In this brief, we implement the observer discussed in
Section II-A to a PWL beam system [a harmonically excited
flexible beam supported by a one-sided spring, see Fig. 2(a)]
and we show, based on simulation and experimental results,
that the non-smooth observer reconstructs with high accuracy
the dynamics of the examined system.

A. Experimental PWL Beam Setup

The experimental setup as shown in Fig. 2(a) consists of a
steel beam supported at both ends by two leaf springs. A second
beam, clamped at both ends, is located parallel to the first one
and acts as a one-sided spring. This one-sided spring represents
a non-smooth nonlinearity in the dynamics of the beam system.
In case the spring is linear and the impact between the one-
sided spring and the beam is negligible, the beam system can
be described as a PWL system. The beam is excited by a force

generated by a rotating mass-unbalance, which is mounted at
the middle of the beam. A tacho-controlled motor, that enables
a constant rotational speed, drives the mass-unbalance. In the
experimental setup, the displacements at two positions can be
measured using linear voltage displacement transducers (with a
sensor accuracy in the order of 10 m). For further information
on the experimental setup, the reader is referred to [20] and [21].
When the beam moves from its rest point towards the one-sided
spring, the spring is active. Therefore, the system has different
dynamics on this side than on the opposite side. In the first case,
the system dynamics is determined by the stiffness of the beam
and the spring, in the second case, only by the beam stiffness.
The switching boundary between the two dynamic regimes is
present at zero displacement of the middle of the beam.

In order to describe the behavior of the beam accurately, a
111 degrees-of-freedom (DOF) finite-element model (FEM) has
been developed (see [22]). Due to the large number of model
DOFs, the simulation of the nonlinear responses is computa-
tionally expensive. In order to decrease the computational time
we develop a reduced model, which is based on the FEM, by
using a dynamic component mode synthesis reduction method,
the so-called Rubin method [23]. The reduced model has three
degrees-of-freedom, see [22], [24], and is described by

(15)

where and . Herein,
is the displacement of the middle of the beam and is the
displacement of the point depicted in Fig. 2(b). Moreover,
reflects the contribution of the first eigenmode of the beam and

, , and are the mass, damping, and stiffness matrices of
the reduced model, respectively. We apply a periodic excitation
force , which is generated by the rotating mass-
unbalance at the middle of the beam. Moreover, the restoring
force of the one-sided spring is

, where is the stiffness of the one-sided
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Fig. 2. (a) Photo of the experimental PWL beam setup system. (b) Scheme of the experimental PWL beam setup.

spring. Model (15) can be written in the form (1), where
,

Herein, N/m , while the numerical values of
kg , N/m , Ns/m are

The output of the model will be the displacement [see
Fig. 2(b)]. Note that the LMIs in (4) must be feasible for this
output.

B. Observer Design, Simulation, and Experimental Results
for the PWL Beam Setup

For the complete state reconstruction of the beam system only
a transversal displacement of a single point on the beam is
needed [point 1 in Fig. 2(b)]. Nevertheless, the displacement
of a second point [point 2 in Fig. 2(b)] is also measured in order
to experimentally validate the obtained results.

This means, is output of the plant and
is used for validation purposes, with

and (see
[15]). Using for observer output injection, the observer re-
constructs the full state , and consequently, the displacement

of the second point on the beam.
By solving the LMIs (4a) and (4b) the observer gains

and are calculated. The numerical values of these gains are
,
.

A detailed description for the and computation is given
in Section V. In Figs. 3(a.1), (b.1), and (b.2), is compared
with for different excitation frequencies and different ex-
citation amplitudes of the harmonic excitation in simula-
tions. Furthermore, the estimation error is de-
picted in Fig. 3(a.2). In this figure, it is shown that the estimation
error converges to zero, as guaranteed by the theory. The esti-
mation error settling time is less than 0.7 s. In Fig. 3(c) and (d),
the model and observer estimations of the displacement of the
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Fig. 3. (a.1) Model prediction y [m] and observer reconstruction ŷ [m]. (a.2) Estimation error e [m]. (b.1) Zoomed version of (a.1) in the transient state. (b.2)
Zoomed version of (a.1) in steady-state. (c) Model prediction q [m] and observer reconstruction q̂ [m]. (d) Zoomed version of (c) in the transient state.
(e.1) Measured displacement y [m] and model prediction y [m]. (e.2) Measured displacement y [m] and observer reconstruction ŷ [m]. (e.3) Estimation
error e [m] and model error e [m]. (f.1) Zoomed version of (e.1). (f.2) Zoomed version of (e.2). (f.3) Zoomed version of (e.3). The excitation frequency is
!=2� = 35 Hz and the excitation amplitude is u = 50 N.

middle of the beam are depicted. In Fig. 3(d), we show that the
model and the observer do not switch dynamics simultaneously.
Nevertheless, both converge to the same steady-state solution, as
can be seen in Fig. 3(c). The initial conditions for the model and
the observer are , .

In order to examine experimentally whether the observer re-
constructs the real state of the system, a comparison between
the measured displacement of a point along the beam
[point 2 in Fig. 2(b)] with the corresponding model prediction
and observer estimation ( , ) is performed. The output in-
jection used here is the measured displacement of the
point 1 in Fig. 2(b). In Fig. 3(e.1), (e.2), (f.1), and (f.2), and

are compared with . Furthermore, the estimation error
and the model error are de-

picted in Fig. 3(e.3) and (f.3). The initial conditions , are
the same as in simulations.

Clearly, the observer accurately reconstructs . Furthermore,
a difference between and exists [e.g., see Fig. 3(f.1)]
due to an (inevitable) model mismatch and due to noise in the
measured signals. Since the observer is based on a model in-
cluding such inevitable mismatch and since it uses as output in-
jection a signal contaminated by noise we expect that will
also be affected by these inaccuracies. Nevertheless, is con-
siderably smaller than in all results (at least a factor of three
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Fig. 4. (a) Scheme of the experimental dynamic rotor system. (b) Photo of the
experimental dynamic rotor system.

smaller). Moreover, it is worth mentioning that converges
to its steady-state solution faster than . Providing somewhat
more numerical details, in Fig. 3(e.3) and converge to
their steady-state response within 0.5 and 0.7 s, respectively.
The maximum absolute value of the amplitude of and in
steady-state is 2 10 m and 2.2 10 m, respectively.

The mismatch between the model and the experimental PWL
beam is caused by series of factors. For instance, the model as-
sumes that the one-sided spring is massless while in reality it
is not. This means that, in the model, the contact between the
beam and the spring occurs very smoothly, while in reality there
is an impact between the beam and the spring every time the
middle of the beam touches the one-sided spring. Furthermore,
themodelcontainsonly thedynamicmodes in thefrequencyband

Hz, while we compensate for the remaining
modes, see [23]. For an online implementation of the observer
design strategy, the observer should be based on a simple model
in order to ensure fast online state reconstruction.

IV. OBSERVER DESIGN IMPLEMENTATION ON A DYNAMIC

ROTOR SYSTEM

In this brief, we present the experimental implementation of
the observer proposed in Section II-B to a dynamic rotor system
[two inertias, coupled by a flexibility, of which one is subject to
friction and the other is driven by an actuator, see also Fig. 4(b)].
Moreover, using simulation and experimental results, we show
that the observer can accurately predict the dynamical behavior
of this system.

A. Experimental Setup for a Dynamic Rotor System

The experimental setup is shown in Fig. 4(a) and (b). The
input voltage from the computer, which is between 5 and 5 V,
is fed into the dc-motor via the power amplifier. The dc-motor
is connected to the upper steel disc, via the gear box. The upper
and lower discs are connected through a low-stiffness steel

string. Both discs can rotate around their geometric centers and
the related angular positions are measured using incremental
encoders. Moreover, an additional brake is applied at the lower
disc and creates a friction that induces limit cycling to the
system.

In order to derive a simple, though predictive, model for the
dynamic rotor system we assume that the dc motor dynamics
does not influence the system’s dynamics, the lower disc re-
mains always horizontal and it does not move in vertical and
lateral direction, the torsional damping in the string is negligible
with respect to the damping of the bearings of the discs and the
string is massless (for more details see [25]).

The experimental dynamic rotor system can be described by
the following model:

(16)

where and are the angular positions of the upper and lower
discs, respectively. Moreover, is the input voltage to the power
amplifier of the motor, and are the moments of inertia of
the upper and lower discs about their respective centers of mass,

is the torsional spring stiffness, and is the motor constant.
The friction torques and act on the upper and lower
disc, respectively. The friction torque at the upper disc
is caused by friction in the bearings of the upper disc and the
electro-magnetic effect in the dc-motor. The friction torque at
the lower disc comprises the friction in the bearings of
the lower disc and the friction induced by the brake mechanism.

The dynamics of the system (16) can be described by a third-
order state-space system since its dynamics only depends on the
difference between the two angular positions and their veloci-
ties. Therefore, by choosing the state variables as ,

, and , the following state-space model can be
obtained

(17)

The parameters , , , , and the models of and
are identified experimentally in [25] and [26]. In [25] and [26],
it is indicated that the viscous friction due to the electro-mag-
netic effect in the motor dominates the friction at the
upper disc. Therefore, we can take that .
Furthermore, the friction at the lower disc can be modeled
accurately with a set-valued dry friction model with negative
damping (Stribeck effect [27], [28]), shown in (18) at the
bottom of the page, where , , , , , and are
the parameters of the friction model. Moreover, and
represent the minimum and the maximum static friction level,
respectively, and is the viscous friction coefficient. The

for

for
(18)
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TABLE I
PARAMETER VALUES OF THE MODEL (17), (18)

Fig. 5. Dry friction model T (! ) at the lower disc.

identified parameters of the model (17) and (18) are given in
Table I. The friction law (18) with the parameters from Table I
is depicted in Fig. 5.

The mapping which describes the friction force at the lower
disc is not monotone (see Fig. 5) but can be transformed into a
monotone mapping using the technique of loop transformation
[29]. The new friction mapping is defined as

, where is the maximal negative slope of the
graph in Fig. 5. The system matrix is replaced by

. The model of the setup now takes the form

(19)

which is in the form of (9) with , 0. ,
,

It should be noted that although the friction model is rather
simple (static), it accurately describes the discontinuous dy-
namics of the system (see [26]). Furthermore, system (19)
satisfies the conditions proposed in Section II-B.

B. Observer Design, Simulation, and Experimental Results for
the Experimental Dynamic Rotor System

For the complete state reconstruction of the dynamic rotor
system, the difference between the measured angular positions
of the two discs is used as an output injection signal, i.e., .
For the validation of the observer for the dynamic rotor system
we, first, show that the observer can reconstruct the state of the
model and, second, we experimentally show that it can recon-
struct the output (thus the state) of the real system.

For the observer design, we will use as a measured
output, which is the difference between the angular positions
of the two discs. These angular positions are measured using
incremental encoders. The observer will provide estimates for
the other state variables (i.e., also the velocities of upper and
lower discs). In simulations and experiments we will compare
the estimated values of the state variables with the measured
values. Due to the fact that velocities are not measured, in order
to provide a comparison measure for the estimated velocities
based on the observer (10), we also derive the velocities of the
discs by numerically differentiating the angular positions of the
discs and filtering the resulting signals using a low-pass filter.
The high resolution of the encoders 10 rad allows for
accurate computation of the aforementioned velocities.

The observer design of the form (10) for system (19), entails
finding gains and such that the triple
is strictly passive. By solving LMIs (14) using the LMITOOL
for MATLAB [16] we found that and

satisfy (14). For simulation purposes, the input
signal in (17) is chosen to be a constant signal 2 V. The
case of constant inputs is considered, since in this dynamic rotor
system the steady-state behavior to constant inputs is of great
interest; equilibria, represented by constant velocities, are con-
sidered desirable, whereas stick-slip limit-cycling is considered
to be an unwanted vibrational phenomenon. At this point, we
present simulations for the initial state for the system taken as

and for the observer as . The so-
lution of (17) is constructed using a dedicated technique for sim-
ulating systems with set-valued friction based on the switched
friction model presented in [30] while the observer is simulated
using numerical schemes presented in [13] and [19].

The simulation results are depicted in Fig. 6(a) and the
(squared) estimation error is depicted in Fig. 6(c). When
a constant input voltage is applied (i.e., a constant torque is
applied to the upper disc) stick-slip oscillations (torsional
vibrations) occur due to the negative damping in the friction
law (18). During these oscillations, the velocity of the lower
disc alternates between zero (stick phase) and positive values
(slip phase). As guaranteed by the theory, the designed observer
is able to provide the correct estimate of the state. Moreover,
based on (12), we can provide a bound on the decrease of
the squared estimation error. This bound is indicated by the
dashed line in Fig. 6(c). From Fig. 6(c), we can conclude that
the squared estimation error does not converge to zero
exactly, but a small residual value remains after 3.7 s.
When simulating the differential inclusions (10) and (17) there
are two sources of numerical errors. The first is due to the time
discretization introduced by the numerical method itself. The
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Fig. 6. (a) Simulated responses of the system (solid line) and the observer (dashed line): x (upper), x (middle), x (lower) under the constant input voltage
u = 2 V. (b) Measured and computed responses x , x , x (solid line), and the observer estimates x̂ , x̂ , x̂ (dashed line): x (upper), x (middle), x (lower)
under the constant input voltage u = 2 V. (c) The norm of the simulated estimation error (solid line) and the theoretical bound of the error norm (dashed line), on
a logarithmic scale. (d) The norm of the experimental estimation error (solid line) and the theoretical bound of the error norm (12) (dashed line), on a logarithmic
scale.

second source of numerical errors stems from the fact that at
each time step a system of nonlinear equations has to be solved
and the used solvers have finite precision.

As it was mentioned in the beginning of Section IV-B, the
response of the experimental setup is measured and the re-
sponses , are computed (using numerical differentiation
of the measured displacements of the upper and lower discs)
under the same input voltage 2 V as for the simulations.
The measured state component , the computed state compo-
nents ( , ) and the estimate state components ( , , )
are depicted in Fig. 6(b). The experimental squared error is
depicted together with the theoretical bound (12) in Fig. 6(d).

The experimental results show that the designed observer is
able to provide accurate estimates of the state of the experi-
mental setup. The squared estimation error does not con-
verge to zero exactly, but oscillates around the value of approxi-
mately 10 rad after 3.7 s. This error is small compared to the
magnitude of the state, but larger than in the simulation results.
The residual error can be attributed to (inevitable) model errors
and sensor imperfections.

V. DISCUSSION

The mismatch between the observer and the experimental
PWL beam or the dynamic rotor system [see the remaining
estimation error in Figs. 3(f.3) and 6(d)] is the guide line

for the evaluation of the computed observer gains ( , ) or
, in terms of fast transient convergence and low sensi-

tivity to model errors and measurement noise. More specifically,
we compute different observer gains that satisfy the LMI con-
straints (4) (for the beam system) or the LMI constraints (14)
(for the dynamic rotor system) by varying the constants and ,
respectively. For every pair of observer gains or
we can measure the magnitude of or (for the PWL
beam or the dynamic rotor system, respectively) in steady-state
and the time (settling time) required for to converge to its
steady-state. By increasing, for example, or we guarantee a
faster settling time. Nevertheless, this results in higher observer
gains and, as a consequence, in an increase in the system’s noise
sensitivity.

The knowledge of or can then be used to assess the
effect of the choice of the observer gain on both the transient per-
formance and the steady-state sensitivity to modelling errors and
measurement noise. This is exactly the trade off between such
transient and steady-state performance that determines the ulti-
mate choice for the observer gains. Clearly, the desired balance
between transient and steady-state performance heavily depends
on the specific performance requirements for the system under
study. The specific observer gains used in this brief are obtained
by balancing such transient and steady-state performance for the
PWL beam system and the dynamic rotor system with friction.
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In order to further reduce the model errors and the measure-
ment noise in the examined benchmark setups aiming at even
higher steady-state performance, we could use more accurate
(more complex) models to describe the system dynamics. Fur-
thermore, high precision encoders are needed in order to decrease
the measurement noise in the signals that are used to recover the
system state. The drawback of aiming at more accurate models
is that, in most of the cases, it will lead to models of higher order
and/or higher complexity. As a result, the calculation of the
observer responses becomes (too) computationally expensive.
This is not favorable for the online implementation of observer
designs in real systems. Moreover, the drawback of using high
precision encoders is that they are generally expensive.

VI. CONCLUSION

In this brief, we have presented observer designs and experi-
mental implementations for two types of systems; non-smooth
continuous systems and discontinuous systems. More specifi-
cally, we designed and applied a PWL observer for a period-
ically excited beam with one-sided flexible support and a dis-
continuous observer for an experimental dynamic rotor system
with discontinuous friction. Generally speaking, to show the
strengths, weaknesses, and potential of any observer design be-
yond their theoretical importance, it is indispensable to evaluate
them in experimental and industrial setups. The presented case
studies can be considered as benchmarks for observer design for
non-smooth and discontinuous systems as they are prototypical
for entire classes of engineering systems. The beam system is
representative for mechanical systems with one-sided restoring
characteristics and the rotor dynamic system is representative
for motion systems with friction.

The assessment of the performance of the implemented ob-
servers is based on both simulation and experimental results.
According to these results the observers perform well, since
they predict with high accuracy the real system responses,
despite the presence of unavoidable modeling inaccuracies and
measurement noise. These results are promising as we used
relatively simple low-order models, which, however, exhibit
non-smooth or discontinuous characteristics. Such models are
shown to be highly predictive for the examined experimental
systems while having limited model complexity. This motivates,
first, the validity of non-smooth, discontinuous modelling for
engineering systems and, second, the need for the design of
model-based observers for non-smooth, discontinuous systems,
as shown in this brief.

The current line of work will be continued by the design of
output-feedback controllers for the considered classes of sys-
tems based on the implemented observers and the application
of such controllers to the experimental setups.
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