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Observer metamerism: Why do [mis]matches of neutral appear

pinkish or greenish?

Yongmin Park *, **, Michael J. Murdoch *, Mark D. Fairchild *; * Munsell Color Science Laboratory, Rochester Institute of Technol-

ogy, Rochester, New York, USA; ** LG Display, Seoul, Republic of Korea

Abstract
White lighting and neutral-appearing objects are essential

in numerous color applications. In particular, setting or tuning

a reference white point is a key procedure in both camera and

display applications. Various studies on observer metamerism

pointed out that noticeable color disagreements between ob-

servers mainly appear in neutral colors. Thus, it is vital to un-

derstand how observer metamers of white (or neutral) appear

in different colors by different observers. Most observers who

participated in a visual demonstration reported that white ob-

server metamers appear pinkish or greenish but rarely yellow-

ish or bluish. In this paper, this intriguing question, “Why ob-

server metamers of white are usually pinkish or greenish?,” is

addressed based on simulations. Besides, it is also analyzed that

which physiological factors play an essential role in this phe-

nomenon and why it is less likely for humans to perceive yellow-

ish or bluish observer metamers of white.

Introduction

Figure 1: A photo of a neutral metamer for an observer out of the Asano’s 10

categorical observers [1] with a field of view (FOV) of 10◦. Note that the two

light booths would theoretically appear the same D65 white for the observer.

However, due to the camera’s RGB sensitivity, the light booth on the right

appears pinkish or purplish. Also, if the image was white-balanced for the

light booth on the right, the light booth on the left might appear greenish.

It is not uncommon to see two spectrally different stimuli

match in color for an observer. At the same time, the stimuli pair

likely no longer match for other observers. This phenomenon is

called observer metamerism. Observer metamerism intrinsically

occurs due to differences in the color matching functions (CMFs)

of different observers [2]. The CMFs of an observer are, indeed,

derived by characterizing the spectral sensitivities of his/her vi-

sual system [3]. Importantly, the spectral sensitivities are deter-

mined by different physiological factors, such as lens pigment,

macular pigment, and three types of photopigments (L, M, and

S-cone) [4, 5].

An interesting visual demonstration regarding observer

metamerism was held at the Munsell Color Science Laboratory

of Rochester Institute of Technology. A pair of light booths were

designed to illuminate metamers for a given observer. The light

booths adopted the same light source, which has seven narrow-
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Figure 2: Spectral power distributions of the 7-primary LED system used in

the visual demonstration in Figure 1. Note that the names of the 7-primaries

were determined by the manufacturer [6].

band primaries but used different combinations of the primaries.

Specifically, the light booth on the participants’ left was tuned to

illuminate the CIE D65 using the seven primaries for the CIE 10◦

observer [5]. On the other hand, the light booth on the partici-

pants’ right was tuned to appear the same using four out of the

seven primaries for a given observer. For the demonstration, 10

categorical observers devised by Asano were used [1]. It means

that 10 metamers were, in turn, presented to the participants, and

the participants were asked whether the two light booths illumi-

nate the same white and what color they see from the two light

booths if they do not match in color. Figure 1 represents one

of the metamers in the visual demonstration. Interestingly, by

the smartphone camera used to take the photo, the light booth

on the right appears pinkish while the light booth on the left ap-

pears neutral. However, it is noteworthy that the light booth on

the right appeared greenish for some participants. At the same

time, some participants argued that none of the light booths ap-

pears neutral, and the color of the light booth on the left changes

over the demonstration even though the light booth on the left

remained unchanged during the whole demonstration. It means

that neutral sensation relies on not only observers but also stimuli

paired. Another noteworthy is that very few people answered the

light booths appear yellowish or bluish. This casual experiment

cast an intriguing question that “Why do mismatches of neutral

(or white) usually appear either pinkish or greenish?”.

This paper aims to address the question based on simula-

tions. First of all, this paper explores whether the observations

in the demonstration are valid or probable. The article suggests

the answer to the intriguing question, explaining which physio-

logical factors mainly contributed to the phenomenon. The pa-

per also indicates whether people can perceive neutral observer

metamers as bluish or yellowish.
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Procedure
To simulate the phenomenon, a simulation GUI was imple-

mented using MATLAB R2019b, as shown in Figure 3. The GUI

shows four plots on the left side. The two plots on the top-left

represent the cone fundemantals and XYZ-like color matching

functions (CMFs) of two observers, reference observer, and in-

dividual observer. The reference observer was fixed as the CIE

10◦ standard observer.

The cone fundamentals and XYZ-like CMFs of the refer-

ence observer are plotted with solid lines. On the other hand,

the cone fundamentals and XYZ-like CMFs of the individual ob-

server, which are plotted with dotted lines, are adjustable using

either the slide bars for 8 physiological parameters: Lens density

(Lens), Peak optical density in Macula (Macula), Peak optical

density in L photopigment (PL), Peak optical density in M pho-

topigment (PM), Peak optical density in S photopigment (PS),

Peak wavelength shift in L photopigment (SL), Peak wavelength

shift in M photopigment (SM), and Peak wavelength shift in S

photopigment (SL), and age or the drop-down boxes to select a

categorical observer predefined. The ranges of the physiological

parameters and age (20 - 80) are based on the work of Asano

[7], as described in Table 1. The maximum range of each phys-

iological parameter adjustable on the GUI is [-3σ +3σ ]. The

two plots on the bottom-left represent the spectral power dis-

tributions (SPDs) of a reference stimulus and device under test

(DUT). It is assumed that the test display is used to reproduce a

color match of the reference stimulus for the reference observer.

In this work, the SPD of the CIE D65 illuminant was used as the

reference stimulus, while two virtual displays as shown in Figure

4, a broad-band primary display and narrow-band primary dis-

play, which can cover the Rec.709 and Rec.2020, respectively,

were assumed as test display. Additionally, all the possible 3+

primary combinations, which represent a D65 metamer for the

reference observer, from the 7-primary LED system were added

to the test display list. A total of 67 different 3+ primary combi-

nations were created and these primary combinations particularly

aimed to investigate whether the pinkish-greenish variation could

be extensively witnessed across various displays.

The Hue-Chroma polar-scatter, which is based on the a*-b*

plane of the CIELAB color space, visualizes the discrepancy in

the color reproduced on the test display between the reference

observer and individual observers. Thus, the polar-scatter plot in

Figure 3 implies that the color on the test display appears neu-

tral for the reference observer while it appears pinkish for the

individual observer. More precisely, the color that the individual

observer sees is a ∆ a*b* of 24.7 away at 319◦ from the neu-

tral color. Also, the color discrepancy can be examined in the

CIE u’v’ chromaticity diagram on the other tab menu. But, note

that the background color in the polar-scatter is exaggerated for

visualization, which means that the color does not accurately rep-

resent what the observers, indeed, perceive.

Results and Discussion

The pinkish-greenish variation
First of all, a simulation was performed to see whether the

pinkish-greenish variation exists. For the simulation, the 10 cate-

gorical observers were used because categorical observers could

represent the inter-observer variability of color-normal popula-

tions [1, 8]. The simulation created a pair of the CIE D65

metamers for the CIE 10◦ standard observer on the two displays.

Then, what colors on the two displays look like for the 10 cate-

gorical observers were simulated, as shown in Figure 5.

A difference in the magnitude of a color discrepancy was

found between the two displays. Nonetheless, Figure 5 clearly

represents the pinkish-greenish variation regardless of the dis-

plays. It reveals that inter-observer variability could be inten-

sified on narrow-band primary displays. In order to make sure

whether the pinkish-greenish variation could be extensively wit-

nessed across different sets and numbers of primaries, the same

simulation was conducted for the 67 3+ primary combinations.

The two plots in Figure 6 represent the normalized cumula-

tive magnitudes from the simulation result. Despite the fact that

some primary combinations barely show the pinkish-greenish

variation, a quite consistent tendency was observed across the

primary combinations. The primary combinations, which do not

show a clear pinkish-greenish variation, commonly represented

a low degree of observer metamerism. Thus, this simulation re-

sult indicates that in every case where there is a mismatch of

noticeable magnitude, it is consistently in the pinkish-greenish

direction.

Another simulation was carried out to look at what causes

the pinkish-greenish variation by computing the degree of the ef-

fects of each of the individual 8 physiological parameters and age

on the color variation. The simulation result is noteworthy. First,

as shown in Figure 7, the majority of the 8 physiological param-

eters including age are actively involved in the pinkish-greenish

variation except for 4 parameters: Peak wavelength shift in L and

M cones (SL and SM) and peak optical density in L and M cones

(PL and PM). Instead, these 4 parameters likely cause another

color variation, such as a reddish-cyanish variation. Another no-

table finding is that the effects of all the physiological parameters

and age decrease on the broad-band primary display. In partic-

ular, the exceptional four parameters become barely effective on

the broad-band primary display. Indeed, this change makes sense

as the degree of observer metamerism tends to decrease with in-

creasing the spectral bandwidth of color stimuli. Nonetheless, it

should be also noted that lens density and age are the two biggest

effects. It is plausible because the lens density particularly tends

to be the largest source of individual variation even within an age

group. Besides, the simulation result also shows that these two

parameters obviously move along with the pinkish-greenish vari-

ation, and they are dominant enough to take over the effects of

the other parameters. To be more precise, increasing lens density

(towards the direction of positive standard deviations) or/and age

results in the pinkish variation. On the other hand, decreasing

lens density (towards the direction of negative standard devia-

tions) or/and age arises the greenish variation. Also, it is inter-

esting to see that all these parameters move along constant hue

lines as the parameters increase or decrease. For example, as in

Figure 7-(a), a lens density of 3 σ distance from the mean (cen-

ter) is on the same hue line as a lens density of 1 σ and 2 σ .

This finding indeed underpins what we additionally found

from the simulation result on all the possible primary combina-

tions. Figure 8 illustrates color variations on the two different

primary combinations, a 3-primary combination, and 5-primary

combination. It shows that the two primary combinations result

in the pinkish-greenish variation. Besides, interestingly, the ob-

servers clustered into four groups were found from more than

half of the primary combinations. This clustering is likely at-

tributed to the two primary parameters, lens density, and age, as

described in Table 1. For example, all four observers in Group #1

are the 30s, and their lens densities are commonly less than those

mean value. On the other hand, the three observers in Group

#2 are similar ages as Group #1; however, their lens densities are

larger than those mean value. Again, these results emphasize that

8 Society for Imaging Science and Technology



Figure 3: GUI implemented for the simulations.

Table 1: Specifications of physiological parameters and age used in the work and the 10-categorical observers. Note that all the values except for age are in

numbers of standard deviation (σ ), and the range values of the 8 physiological parameters in the first column are in percentage (%), which indicate an 1σ of

each individual parameters.

Group #1 Group #2 Group #3 Group #4

1-SD (σ ) #2 #4 #7 #9 #1 #5 #6 #3 #8 #10

ine Age 20 ∼ 80 30 33 31 35 38 38 45 56 51 78

Lens 18.70 -1.23 -0.45 -1.82 -0.98 0.00 0.09 0.38 0.91 0.80 0.58

Macula 36.50 0.19 -1.19 0.99 -0.33 0.00 1.50 -0.97 -0.30 0.84 -0.44

PL 9.00 -1.23 0.65 0.81 -0.27 0.00 0.41 0.53 0.07 0.27 0.08

PM 9.00 -0.55 0.50 0.82 -0.78 0.00 1.78 1.29 -0.61 -0.97 -1.15

PS 7.40 1.03 0.03 -0.62 -1.34 0.00 -0.28 -0.60 -0.14 -0.01 1.26

SL 2.00 -0.05 -0.52 -0.31 0.17 0.00 0.57 -0.30 0.43 0.25 0.37

SM 1.50 0.22 -0.94 0.10 -0.39 0.00 -0.75 -0.85 0.34 0.06 0.28

SS 1.30 -0.61 0.04 0.61 -0.07 0.00 0.18 -0.05 0.55 0.10 0.33

Figure 4: Spectral power distributions (SPDs) of two simulated display.

lens density and age give the biggest impact on the inter-observer

variability and pinkish-greenish variation.

Finally, the question posed in the title is answered by ex-

amining the interaction between the SPDs of the primary stimuli

and changes in cone fundamentals with age or lens density, as

illustrated in Figure 9. When lens density / age increases, the

response of the S and L cones increase together for the blue and

red primaries, while the response of the M cones is essentially

unchanged. This would generally represent a shift toward the

pinkish perceptions. The opposite occurs when lens density/age

Figure 5: Color variations of the CIE D65 metamer for the CIE 2006 32-

years-old 10◦ observer on the a*-b* plane of the CIELAB color space that

the Asano’s 10 categorical observers see on the two different displays.

decreases, producing shifts toward green perceptions. Thus it is

the interaction between the SPDs of display primaries and the

most significant changes in cone fundamentals across individual

observers that produce the commonly observed pinkish-greenish

shifts.

Seeking an observer who sees yellowish-bluish
The final simulation was run to investigate whether people

can perceive a yellowish-bluish variation of the white metamer.

The idea to generate observers to see a yellowish-bluish variation

928th Color and Imaging Conference Final Program and Proceedings



Figure 6: Normalized cumulative magnitudes from the simulation of all the

possible primary combinations on the (a) hue-chroma plot and (b) bar chart.

Figure 7: Effects of the 8 physiological parameters and age on the

purple(pink)-green variation. The circles, diamonds, and pentagons, in turn,

represent that the values of the physiological parameters are 3, 2, and 1

σ distance from the means. The filled shapes indicate positive standard

deviations while the empty shapes indicate negative standard deviations.

Note that changes in all the physiological parameters except for SL, SM,

PL, and PM result in the pinkish-greenish variation. On the other hand,

the four secondary parameters likely cause other color variations, such as

reddish-cyanish variation.

was based on the observation depicted in Figure 7 that both L

and M cone modifications could lead to the reddish-cyanish vari-

ation. In contrast, the cone alterations of the other parameters

result in the pinkish-greenish variation. Thus, a yellowish-bluish

variation could be created by mixing the two different color vari-

ations. In order for this, four parameters that arise the reddish-

cyanish variation: Peak optical density in L, Peak optical density

in S, Peak wavelength shift in L, and Peak wavelength shift in

S, and one parameter that yields the pinkish-greenish variation:

Lens density were selected, although lens density could be re-

placed with other parameters which cause the pinkish-greenish

variation. To represent a distinguishable yellowish-bluish vari-

ation, somewhat extreme values for the parameters were deter-

mined as described in Table 2. Note that all the values in Table

2 are n-σ distance from the means, and two different observers

were generated for each color variation (yellowish or bluish).

Figure 10 and 11 represent the cone fundamentals of these

observers and the reference observer and what colors these ob-

servers can perceive. There are several points noteworthy. First,

the cone modifications for the selected physiological parameters

solely impact on the relative responses of only L and S cones

to the display primaries. In particular, the cone modification for

the Y 3-SD observer induces that the response of L cones to the

red primary increases while that of S cones to the blue primary

Figure 8: The pinkish-greenish variation on two different simulated displays,

(a) a 3-primary combination and (b) a 5-primary combination. Note the

observers clustered as well.

Table 2: Values of 8 physiological parameters in the σ distance for a

yellowish-bluish variation. Note that Y n-SD obs are for a yellowish vari-

ation while B n-SD obs are for a bluish variation.

Y 1-SD ob. Y 3-SD ob. B 1-SD ob. B 3-SD ob.

Lens -0.33 -1 +0.33 +1

Macula 0 0 0 0

PL +1 +3 -1 -3

PM 0 0 0 0

PS -1 -3 +1 +3

SL +1 +3 -1 -3

SM 0 0 0 0

SS -1 -3 +1 +3

decreases. However, the response of S cones barely changes.

Therefore, this modification would cause a shift toward the yel-

lowish perceptions. On the other hand, the cone modification for

the B 3-SD observer lead to the responses of L and S cones in the

opposite way, which would result in the bluish perceptions.

Second, the Y 3-SD and B 3-SD observers clearly perceive

yellowish and bluish variations, respectively, on the narrow-band

primary display but not on the broad-band primary display. Also,

the 1-SD observers seem to be able to recognize yellowish and

bluish variations, respectively, on the narrow-band primary dis-

play but may not be significant. This result indicates that the

observer-variability would heavily depend on the primaries of

displays or color stimuli, as mentioned above. Furthermore, +3

or -3 indicates that the value of the parameter is a 3σ away either

towards a positive or negative direction from the mean. By the

definition of standard deviation in a normal distribution, those

values mean that the value is what only 0.15% of the color-

normal populations could have for each parameter. Therefore,

it implies that the 3-SD observers are not likely color-normal ob-

servers in terms of probability. Besides, the significant L and

S cone shifts suggest that these observers would be anomalous

trichromats.

Conclusion
In this paper, a peculiar question, “Why do observer

metamers of white usually appear pinkish or greenish?”, trig-

gered by a visual demonstration, is addressed based on simu-

lations. The simulation results indicate that lens density and age

10 Society for Imaging Science and Technology



Figure 9: Cone fundamentals with the narrow-band primary display

(Rec.2020) superimposed. (a): Three observers: the reference 10◦ ob-

server, an observer with a lens density of +3σ , an observer with a lens

density of -3σ . (b): Three observers: the reference 10◦ observer (32-y), an

observer in his/her 20s, an observer in his/her 80s.

are the two biggest effects on the pinkish-greenish variation. Im-

portantly, it was found that the pinkish-greenish variation is a

result of the interaction between these two most prominent ef-

fects and color stimuli primaries. Also, an extra simulation re-

vealed that the possibility of perceiving yellowish-bluish varia-

tions would be less likely in a color normal population. How-

ever, it should also be noted that all these simulations indicate

these variations have strongly to do with the primary selection of

color stimuli as well as the physiological variation of observers.

An interactive demonstration to help understand what this

paper describes can be found: http://www.rit-mcsl.org/

Research/WhyNeutralsVaryFromPinkToGreen/
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