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Abstract

We have used an approximate method developed by Barrett, Wilson, and Tsui for finding the 

ensemble statistics of the Maximum Likelihood-Expectation Maximization algorithm to compute 

task-dependent figures of merit as a function of stopping point. For comparison, human-observer 

performance was assessed through conventional psychophysics.

The results of our studies show the dependence of the optimal stopping point of the algorithm on 

the detection task. Comparisons of human and various model observers show that a channelized 

Hotelling observer with overlapping channels is the best predictor of human performance.
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1 Introduction

Studies of model-observer performance can generally be placed into one of two categories: 

studies in which statistical properties of the imaging system are well specified and hence 

model-observer performance is reported using ensemble statistics (mathematical formulas), 

and studies in which the statistical properties are not well specified and hence model-

observer performance is reported using sample statistics usually through Monte-Carlo 

studies. In studies where the samples (images) may be difficult to obtain either because of 

computational intensity or large-sample requirements, the ensemble approach is preferable if 

the ensemble statistics can be computed. The goal of this work is to use ensemble statistical 

approaches to analyze model-observer performance on images produced by the Maximum 

Likelihood-Expectation Maximization (ML-EM) algorithm. For comparison, we also report 

human performance measured by conventional psychophysics.

The ML-EM algorithm has received considerable attention as a method of image 

reconstruction and restoration ([1] – [4]). It has the theoretically attractive properties of 

converging to a maximum-likelihood solution, implicitly applying a positivity constraint, 

and enforcing better agreement with the data in subsequent iterations. However it is not clear 

that these mathematical considerations translate into improved performance in diagnostic 

tasks. In the past, it has been difficult to study the statistical properties of this algorithm 

because of its nonlinear nature. However, a recent article by Barrett, Wilson, and Tsui [5] 
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derives an approximate method for finding the necessary noise properties of this algorithm. 

We use these ensemble noise properties to compute model observer signal-to-noise ratios for 

task-based assessment of image quality. The present paper extends the work of Barrett, 

Wilson, and Tsui by considering stochastically defined image backgrounds in which the 

distribution of intensity within the object is presumed to follow a prior probability law.

Since humans are the end user of most medical images it is important to understand the 

effects of different choices made during the image reconstruction process on the resulting 

diagnostic performance. Due to the proliferation of reconstruction algorithms and the 

possibly large number of free parameters within a given algorithm, conventional 

psychophysical studies become infeasible for a thorough investigation of optimal 

processing. To this end, model observers and, specifically, linear model observers have been 

proposed as a more efficient way to optimize medical imaging systems for diagnostic 

performance.

In this work we consider the effect of stopping point on detection performance. Terminating 

the iterative scheme well before convergence is a simple way to reduce the high level of 

noise usually found in the unconstrained maximum-likelihood estimate of the reconstructed 

image ([6] – [8]). As with most methods of regularization, the strength with which the 

regularizer is applied (in this case the number of iterations the algorithm is allowed to run) is 

left to the user.

Our conclusions are twofold. Our observer studies indicate that the optimal stopping point is 

highly dependent on the task being considered. Similar results have been reported for linear 

iterative algorithms [9] using the ensemble statistical approach and for other forms of 

regularization in nonlinear algorithms [10] using Monte-Carlo methods. These results 

reinforce the argument that measures of image quality must take the diagnostic task into 

account. We also report on the ability of a number of proposed model observers to predict 

the outcome of human psychophysical studies.

2 Theory

In signal detection theory, one adopts the view that an image is a multidimensional random 

variable coming from one of two possible probability distributions. The distribution 

describing the image depends on whether the signal is actually present or absent in the 

image. The task of the observer is to decide from which distribution a given image comes. In 

theory, the observer makes its decision by forming a scalar response to the input image and 

subjecting this response to threshold. It is the statistics of this response variable that 

determine the observer performance. Detection performance measures are generally thought 

of as measures of separation between the distribution of responses to signal-present images 

and signal-absent images.

In this work we utilize the approach defined in [11] for objective assessment of image 

quality. Here the performance metric is the observer signal-to-noise ratio (SNR), the 

expected difference in the means of the two response distributions divided by their average 

variance. The model observers used in this work are all linear functions of the image data 
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and therefore the SNR can be computed directly from the first and second-order statistics of 

the images. The SNR of a linear observer is defined by the following formula,

(1)

where Δs is the vector difference in the expected signal-present and signal-absent images, K 
is the average covariance of the two classes of images, and w is a vector representing the 

linear observer.

The images analyzed in this work come from a simulated two-dimensional parallel-beam 

single photon emission computed tomography (SPECT) imaging system. The tomographic 

imaging system is modeled as a linear system

(2)

where f is a vector representing the object of interest, H is the system matrix, n is a vector 

representing the noise associated with the system due to the Poisson statistics of gamma-ray 

emission, and g is the measured data. The ML-EM algorithm approximates the object of 

interest by a vector f̂k+1 through the following iterative scheme

(3)

Approximate formulas for the statistical properties of images produced by ML-EM 

algorithm have been worked out in [5]. The basic approach is to linearize each step of the 

iterative algorithm. The statistical properties of the algorithm are computed from the 

resulting sequence of linear transformations. A related approach is used in [13] to 

investigate resolution properties of penalized-likelihood algorithms. The expected 

reconstruction at a given stopping point is approximated by the image produced when the 

ML-EM algorithm is run on noiseless projection data. This vector is denoted by ak+1. The 

image covariance is approximated by

(4)

where Kg is the data covariance and Uk+1 represents the effects linearizing (3). The 

interested reader is referred to [5] and [14] for expressions regarding the structure of Uk+1. 

Extensive Monte-Carlo studies of this approximate covariance were performed in [12] to 

test the validity of the first-order approximation required for (4). Generally good agreement 

was found in the range of 50,000 expected counts per data set corresponding to about 60 

expected counts per detector in the center of the image. In this range, the error in 

approximation was less than 10% at mid-range stopping points (more than 10 iterations and 

less than 200 iterations). In the present work, a much larger system is used (128 × 128 pixel 
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images reconstructed at 64 angles as opposed to 32 × 32 pixel images from 32 angles), but 

with 400,000 expected counts in the data set, there are still about 60 expected counts per 

detector.

The data covariance takes two forms in this work. For the background-known-exactly 

(BKE) study, the Poisson statistics of the data collection process are the only source of 

variation in the collected data. Hence the data covariance is given by

(5)

In the second study, the object f is also presumed to be random, creating a “lumpy” 

background of the sort used in [15]–[17]. In this case the data covariance is of the form

(6)

where f̄ and Kf are the object mean and covariance respectively. The key requirement which 

allows us to extend the approximate to lumpy background data is relatively small object 

covariance. The addition of object covariance adds a source of variance to each data point 

which is 16% of the size of the variance due to Poisson counting statistics.

Human observer performance was assessed through conventional psychophysics. Two-

alternative forced-choice experiments were conducted to estimate the probability of a correct 

identification (pc) in image pairs sampled from the signal-present and signal-absent 

distributions. The pc estimates were transformed to d′ – an estimated human signal-to-noise 

ratio – by the formula [18]

where Φ−1 is the inverse cumulative normal transformation.

3 Experimental results

The task considered was detection of a centered Gaussian bump against a flat or lumpy 

background. The radius of the signal – measured as the standard deviation of the Gaussian – 

was 4.0 pixels. Images were reconstructed within a window of radius 64 pixels inscribed in 

128 × 128 pixel images. The signal contrast was 19.8% in the BKE images and 29.7% in the 

lumpy-background images. These contrasts were determined from pilot psychophysical 

studies to give an acceptable range of d′ values for human performance [18]. Parallel-beam 

projections were collected at 64 angles equally spaced within a semicircle around the object. 

Because our objective was analysis of the reconstruction algorithm, perfect collimation of 

the projection data was assumed. Poisson noise in the data was set at 400,000 expected 

counts per data set.
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Performance was assessed for a number of different model observers for comparison to the 

psychophysical results. One notable omission from the following list of observers is that of 

the Hotelling or optimal linear observer ([19] and [20]). Computation of the template w for 

this observer involves computing the pseudo-inverse of Kf̂k+1, a 16,384 × 16,384 element 

matrix. While direct inversion of this matrix can be avoided by an iterative search for w 
[20], the large number of evaluations involving products with Kf̂k+1 make this approach 

difficult as well. In addition, the Hotelling observer is independent of stopping point for a 

large class of linear algorithms [9].

The model observers considered here were:

1. A region-of-interest (ROI) observer

This observer has a template w whose elements are 0 for pixels outside the region of interest 

and 1 for pixels inside the region of interest. For our studies, the region was a disk of radius 

5.67 pixels corresponding to the standard deviation of point the signal profile. This observer 

model is similar to that used by Hanson [21] to analyze the ART algorithm.

2. The Nonprewhitening Matched Filter (NPW)

This observer is given by the expected profile of the signal after reconstruction. From the 

results of [5], the observer template is well approximated by computing noiseless signal-

present and signal-absent reconstructions and taking their difference. This expected signal 

difference, which we shall denote Δsk+1 is also used for Δs in Equation (1) for evaluating all 

model observer SNRs. The NPW observer is known to be optimal in stationary Gaussian 

white noise [22].

3. Channelized Hotelling Observers

This observer uses a bank of frequency-selective filters to reduce the image to a much 

smaller number of filter responses. Optimal linear discrimination is then performed on this 

reduced set of responses. The channel model can be thought of as a bank of image templates 

represented by the matrix T. The template in each column of T is one of the channel filters 

represented in the spatial domain33. The observer template associated with a channelized 

Hotelling observer is given by [9]

(7)

Two channelized Hotelling observers are used here, each being defined by the radial 

frequency profile of its image templates. The first uses has four square non-overlapping 

channels (SQR). The second uses three channels with overlapping difference-of-Gaussian 

(DOG) profiles. Plots of the frequency profiles are seen in Figure 1. Channel models have 

been analyzed in ([23], [24], and [9]) as predictors of human performance.

Performance of the various model observers as a function of stopping point is given in 

Figure 2. The different observer models show marked differences in performance. Some 

observers – most noticeably the SQR observer – show improved performance in the lumpy 
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background experiments. This is solely due to the increased contrast in these experiments. In 

lumpy backgrounds, all observers exhibited degraded performance relative to fixed 

backgrounds when the signals were of equal contrast.

Average human-observer performance results are plotted in Figure 3. Six observers 

participated in the studies, which consisted of 200 image pairs for each stopping point in 

both the fixed and lumpy backgrounds. All observers had participated in previous studies 

with similar images and were trained on an independent sample of 50 image pairs before 

taking each test. The experiments were randomized both in the order in which the image 

pairs were shown within a given test and in the order of the tests taken by each observer. 

The images were scaled for constant contrast across stopping point. In the fixed-background 

studies, the expected signal contrast was held constant at 7 grey levels of 256 in the display. 

In the lumpy background studies, the signal contrast was 10 grey levels.

The plots show a strong dependence on task in human performance. The fixed-background 

studies show a fairly consistent decrease in performance with subsequent iterations. The 

lumpy background studies indicate peaked performance in the range of 16 to 32 iterations.

The DOG observer was the only model observer that provided a reasonably consistent fit to 

the human-observer data in both backgrounds. Figure 3 also contains plots of the DOG SNR 

multiplied by a scale factor chosen to best fit the human data. Scaling of model-observer 

performance has been discussed in [25] as a way to incorporate degradation due to internal 

noise in the human observer when detecting localized signals. The least-squares scale values 

required for the DOG SNRs to fit the human data were 0.84 for the fixed background and 

0.64 for the lumpy background. The χ2 goodness-of-fit statistics based on the error bars in 

the plots were 4.78 (p = 0.57) and 6.63 (p = 0.36) for the fixed and lumpy backgrounds 

respectively. These χ2 values must be interpreted carefully. While these goodness-of-fit 

statistics do not permit rejection at the usual p < 0.05 level, the relatively small sample sizes 

leave open the possibility that the experiments simply lacked the necessary statistical power 

to reject the fitted curves. In addition, this statistical analysis has not included the fact that 

the number, shape, and frequency range of the channels can all be adjusted. Hence the χ2 

values only apply to resolving whether any channel model can provide a reasonable fit to 

our human data.

Visual inspection of the fitted curves is similarly ambivalent. While the model observer 

performance curves capture the general trends exhibited by the human data, closer 

inspection reveals a number of possible discrepancies. In both studies the fitted curves seem 

to undershoot human performance at the first iteration. The fit in the lumpy background 

experiments also seems to overestimate the high-iteration human performance. These 

differences are not statistically significant, but nevertheless they remain a source of concern 

and merit further study.

4 Conclusions

We have used the approximate ensemble statistical properties of the ML-EM algorithm to 

quantify detection performance of model observers for two different tasks – detection of a 

Gaussian bump in fixed and lumpy backgrounds. Standard psychophysical methods have 
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been used to assess human performance. Our primary contribution is to have quantified the 

effect of the two tasks on optimal stopping point. All observers, both model and human, 

exhibit optimal performance at different stopping points in the different tasks. The more 

complex lumpy-background task requires more iterations of the ML-EM algorithm to 

achieve optimal performance. Similar behavior has been found in previous work on a 

different reconstruction algorithm [9]. Our results highlight the need for task-based methods 

to answer questions involving the optimal processing of medical images.

Our second conclusion regards the ability of model observers to reliably predict (and 

therefore remove the necessity of assessing) human performance. As we have pointed out, 

the only model that was at all consistent with the human data in both backgrounds was the 

DOG observer. While this observer does fit the data within standard statistical tolerances, 

visual discrepancies between the human observer results and the scaled model observer 

performance leave some doubt of the prospects of generalizing to larger sample sizes and 

other tasks without further psychophysical evaluations. Furthermore, there is not yet a 

systematic way to choose parameters of the channel model that guarantee good agreement 

with human performance. In short, the DOG channelized Hotelling observer is not yet a 

predictive tool.

Future directions of this work will pursue the conclusions of the present work. Since the task 

has been shown to have a fundamental effect on observer performance, new tasks need to be 

explored. Perhaps most important of the future tasks will be those in which the signal is not 

confined to the center of the reconstruction. Other tasks of interest include varying the 

lumpy background parameters, size and shape of the signal, and quantifying the effect of 

penalty functions on Maximum-Likelihood reconstructions.

New model observers need to be considered as well as new tasks. This work underscores the 

limited capacity of conventional linear observers to predict human performance on 

tomographic reconstructions. Observers based on nonlinear estimation of signal parameters 

have been proposed as models for signal detection [25], [26]. The ability of these observers 

to predict human performance in a wide range of detection tasks remains to be seen.
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Figure 1. 
Plots of the channel profiles for the two channelized Hotelling observers used. The plots 

range from 0 to the Nyquist frequency of 0.5 pixels−1. The channels for the SQR observer 

are non-overlapping and confined to a limited radial band of spatial frequencies. The DOG 

observer has overlapping channel profiles, each spanning a broad range of radial 

frequencies.
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Figure 2. 
Model observer performance as a function of stopping point. These plots represent the 

performance of the model observers for the fixed and lumpy background detection tasks. 

The observer plots are identified as follows: ROI – Region of Interest, NPW – Non-

prewhitening, SQR – Square channel Hotelling, DOG – Difference of gaussian Hotelling.
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Figure 3. 
studies and a constant scale parameter fit of DOG SNRs. Error bars represent one unit of the 

standard error in average performance.
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