
Journal of Data Science 3(2005), 69-83

Observer Variability: A New Approach in Evaluating
Interobserver Agreement

Michael Haber1, Huiman X. Barnhart2, Jingli Song3 and James Gruden1

1Emory University, 2Duke University and 3Eli Lilly and Company

Abstract: Existing indices of observer agreement for continuous data, such
as the intraclass correlation coefficient or the concordance correlation co-
efficient, measure the total observer-related variability, which includes the
variabilities between and within observers. This work introduces a new in-
dex that measures the interobserver variability, which is defined in terms
of the distances among the ‘true values’ assigned by different observers on
the same subject. The new coefficient of interobserver variability (CIV ) is
defined as the ratio of the interobserver and the total observer variability.
We show how to estimate the CIV and how to use bootstrap and ANOVA-
based methods for inference. We also develop a coefficient of excess observer
variability, which compares the total observer variability to the expected to-
tal observer variability when there are no differences among the observers.
This coefficient is a simple function of the CIV . In addition, we show how
the value of the CIV , estimated from an agreement study, can be used in
the design of measurements studies. We illustrate the new concepts and
methods by two examples, where (1) two radiologists used calcium scores to
evaluate the severity of coronary artery arteriosclerosis, and (2) two methods
were used to measure knee joint angle.
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1. Introduction

In a typical observer agreement study one is interested in comparing the
readings made by the same J observer on each of I subjects. When the variable
of interest is continuous, observer agreement is usually evaluated via one of the
many versions of the intraclass correlation coefficient (Bartko, 1966; McGraw and
Wong, 1996) or the concordance correlation coefficient (Lin, 1989). We believe
that the choice of a proper measure of observer agreement should be based upon
the investigator’s objectives. In this work we assume that (i) the ultimate goal
is to obtain an accurate and precise estimate of the true value of the variable
of interest for each study subject (as opposed to, for example, estimating the
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population mean), and (ii) the investigator is interested in assessing the actual
differences between observers. In Section 2 we show that the existing agreement
coefficients measure the total observer-related variability (or disagreement), which
is the sum of the inter- and intra-observer sources of variability. Since we are
mainly interested in the between observer disagreements, we introduce a new
coefficient based on the interobserver variability which is defined as the mean
(over subjects) sum of the squared distances of the ‘true’ measurements made
by different observers on the same subject from the mean (over observers) of
these ‘true’ measurements. The ‘true’ measurement of an observer on a subject is
defined as the mean of all the values that would be assigned by the observer to the
subject if the observer could make an infinite number of replicated measurements
on that subject.

Evaluation of the interobserver variability is important when one is interested
in the ‘true’ differences among observers reporting different values of the same
quantity. In other words, the interobserver variability, rather than the total
observer variability, should be used to explore the causes of disagreements among
observers. The total observer variability masks these sources of disagreement as
it contains both interobserver variability (true differences among observers) and
intraobserver variability (random error among the observations made by the same
observer on the same subject).

We define the coefficient of interobserver variability (CIV ) as the ratio of the
interobserver variability to the total observer-related variability. It varies between
0 and 1, and a higher value of the CIV indicates a lower level of interobserver
agreement. If CIV = 0, then one does not expect any ‘true’ differences among
the observers, in the sense that all the observers have the same distribution over
the subjects. The quantity 1-CIV can be used as a coefficient of interobserver
agreement.

Section 2 highlights the differences between the proposed coefficient and exist-
ing coefficients of agreement for continuous data. The definition and estimation
of the CIV are presented in Section 3. We provide different (but very similar)
coefficients for the fixed and random observers situations, and we show that in
both cases the CIV is estimated by the same statistic. In Section 4 we introduce
the coefficient of excess observer variability, defined as that ratio of the actual
total observer variability to the expected value of this variability under the as-
sumption of no true differences among observers. This coefficient is a simple
function of the CIV . Section 5 shows how the CIV can be applied to help in
designing studies that use measurements made by different observers in order to
estimate the subjects’ true values. In Section 6 we provide further understand-
ing of the proposed concepts and methods when observations follow a two-way
ANOVA model. These concepts and methods are illustrated in Section 7 by two
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examples where (1) two radiologists used calcium scores to evaluate the severity
of coronary artery arteriosclerosis, and (2) two methods were used to measure
knee joint angle. We conclude with a discussion in Section 8.

2. The Need for a New Coefficient of Agreement

Traditionally, observer agreement has been measured via the intraclass corre-
lation coefficient (ICC). The ICC was introduced by Fisher (1925) as a measure
of the correlation between measurements made on pairs of brothers. Bartko
(1966) introduced three versions of the ICC for the evaluation of observer reli-
ability. However these, as well as most other forms of the ICC that have been
proposed since then, measure correlation between observers rather than differ-
ences between observations made by different observers. McGraw and Wong
(1996) presented an excellent summary of the various versions of the ICC and
pointed out that one version, which we will refer to as the ‘agreement ICC’, is
appropriate for evaluating agreement among observers. Using the ANOVA ter-
minology, we denote the variabilities attributed to subjects, observers, subject
by observer interactions and error (within observer) by σ2

S , σ
2
0 , σ

2
S0 and σ2

E re-
spectively. Then the between and within observer variabilities are σ2

0 + σ2
S0 and

σ2
E , respectively, and the total observer-related variability is σ2

0 + σ2
S0 + σ2

E . The
agreement ICC is defined as σ2

S/(σ
2
S + σ2

0 + σ2
S0 + σ2

E). Hence, the agreement
ICC compares the total observer variability to the between subjects variability
and therefore it measures the total observer agreement. Lin (1989) introduced
the concordance correlation coefficient (CCC) between two observers. Barnhart
et al. (2002) generalized the CCC to the case of more than two observers and
showed that under the ANOVA model, the CCC coincides with the agreement
ICC. Hence, this is again a measure of the total agreement. As stated in Section
1, we are interested in measuring the interobserver component, i.e., σ2

0 +σ2
S0 rela-

tive to the total (between and within) observer-related variability σ2
0 +σ2

S0 +σ2
E.

Therefore, the new coefficient of interobserver variability (CIV ) introduced in
this work is (σ2

0 + σ2
S0)/(σ

2
0 + σ2

S0 + σ2
E). The new agreement coefficient is then

defined as 1 − CIV .
Besides the fact that the CIV measures a different parameter than the ICC,

there are other important differences between the current and traditional ap-
proached to evaluation of observer agreement.

• The CIV has a simple intuitive definition in terms of the difference between
the values assigned by different observers to the same subject (see Section 3).
The traditional approach uses correlations to evaluate observer agreement.

• The ICC is always defined in terms of variances of the effects in an ANOVA
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model. Thus, it is based upon the assumption that the true value of an observer
on a given subject is the sum of independent effects attributable to the subject,
the observer and the subject-by-observer interaction. It also assumes that the
within subject-observer variance (σ2

E) is the same for all subjects and observers.
The approach used in this paper does not make these assumptions.

• The agreement measures based on the traditional approach depend on the
between-subjects variability. As we will see in the examples (Section 7), when
there is substantial between-subjects variability then the agreement ICC may be
very close to unity even when there are important differences between observers.
As we pointed out earlier, we assume that the main purpose of the study is to
estimate the ’true’ value of each subject and hence the between-subjects variabil-
ity does not affect the CIV .

3. Definition and Estimation of the Coefficient of Interobserver Vari-
ability

We denote by Y the variable being observed. In Sections 3-5 we do not make
any assumptions regarding the distribution of Y , other than the existence of the
second moment. Suppose that there are I subjects and J observers. Each ob-
server makes K ≥ 1 replicated observations on each subject. Let Yijk denote the
k-th observation (k = 1, 2, . . . ,K) made by observer j(j = 1, 2, . . . , J) on subject
i(i = 1, 2 . . . , I). For a fixed subject-observer combination, these K replicated
observations are assumed independent and identically distributed (iid) random
variables. By ‘independent’ we mean that when an observer makes replicated
observations on the same subject, then she/he is blinded to her/his previous
observations on the same subject.

We will always assume that the subjects are drawn at random from a large
population. As to the observers, they may be regarded either as a fixed set or
as a random sample from the population of all potential observers. Since we
have more than one source of variation, we must indicate the source of variation
when we refer to the expectation or variance of a random quantity. We will
denote by EY the expectation with respect to the distribution of the Yijk’s (for
fixed i, j). The expectation with respect to the subjects’ sampling distribution
will be denoted ES , and the expectation with respect to the observers’ sampling
distribution (in the random observers case) will be denoted E0. The operator E
without a subscript denotes the expectation over all sources of variation. Similar
notations will be used for the variances.

Let µij = EY (Yijk) and σ2
ij = V arY (Yijk). We consider µij as the ‘true’ value

that observer j would assign to subject i if s/he could make an infinite number of
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replicated observations. The σ2
ij is the variance of these replicated observation,

i.e., it is the intraobserver variability. We will use · to denote the arithmetic mean
with respect to the relevant index. For quantities that depend only on the µ’s
and σ’s, we will also use ∗ to denote the expectation with respect to the sampling
distribution associated with the relevant index. For example µI· is always the
arithmetic mean of all the µij ’s for the J observers in the study. In the random
observers case we also denote by µi∗ the expectation of µij over all the possible
samples of observers, i.e., µi∗ = E0(µij). We will now consider separately the
cases of fixed and random observers.

3.1 Fixed observers

Let τ2
i =

∑
j(µij − µi·)2/(J − 1) denote the variability among the observers’

true values for subject i. The (mean) interobserver variability will be defined as
τ∗ = ES(τ2

i ). In order to define a coefficient that varies between zero and one,
we realize that the interobserver variability is a fraction of the total variability
associated with the observers. For subject i, the total observer variability is
the sum of the variability among the observers’ true values, τ2

i , and the average
variability about the true values (the intraobserver or error variability), σi·. Hence
the mean total observer variability is τ2∗ + σ2∗·, where. σ2∗· is the mean of σi· over
all the subjects. Therefore, we define the coefficient of interobserver variability
(CIV ) as the ratio of the interobserver variability to the total observer variability:

ξ = τ2
∗ /(τ

2
∗ + σ2

∗·) (3.1)

Obviously, the CIV is always between 0 and 1, with higher values indicating more
variability, i.e., less agreement. A natural coefficient of interobserver agreement
is ψ = 1 − ξ. One should note that CIV = 0, which is equivalent to τ2∗ = 0,
means that there are no true differences among the observers. It does not imply
that the observations made by different observers on the same subject must be
equal, due to the presence of the intraobserver variances σ2

ij.
It is interesting to note that when there are only two observers, the interob-

server variability is

τ2
∗ =

1
2
ES(µi1 − µi2)2.

When there are more than two observers, it is easy to show that the overall inter-
observer variability equals to the arithmetic mean of all the pairwise interobserver
variabilities.

We now turn to the estimation of CIV . One would expect the observed
within-subject variability among the observers’ means (Yij· for j = 1, 2, . . . , J) to
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play a major role in this estimation problem. Therefore, let

Vi =
1

J − 1

∑

j

(Yij· − Yi··)2

denote the observed between-observers variability for subject i. Then it is easy
to show that EY (Vi) = τ2

i + σ2
i·/K and E(V·) = τ2∗ + σ2∗·/K. Estimation of the

variances σ2
ij depends upon whether K = 1 or K ≥ 2. When each observer makes

at least two observations on each subject, we define Uij =
∑

k(Yijk−Yij·)2/(K−1),
so that EY (Uij) = σ2

ij and E(U··) = σ2∗·. Then, an unbiased estimator of the
interobserver variability is τ̂2∗ = V· − U··/K and the CIV is estimated as:

ξ̂ =
KV· − U··

KV· + (K − 1)U··
(3.2)

When K = 1, estimation may be possible under further assumptions. For exam-
ple, estimation is possible if the µij’s follow an additive ANOVA model and the
σij ’s are equal (see Section 6). In general, one can replace Uij by any consistent
estimator of σ2

ij.

3.2 Random observers

When we assume that the J observers were selected at random from a larger
population, we define τ2

i = V ar0(µij) as the interobserver variability for subject
i, and τ2∗ = ES(τ2

i ) as the (mean) interobserver variability. The total observer
variability is ES(V ar0.Y (Yijk)) = τ∗ + σ2∗∗, and we define the CIV as

ξ =
τ2∗

τ2∗ + σ2∗∗
(3.3)

In order to estimate the CIV in this case, we note that for a fixed subject, Vi

depends on the sample of observers. For a fixed subject and a fixed sample of
observers, it is easy to show that

EY (Vi) =
1

J − 1

∑

j

(µij − µi·)2 +
1
K
σ2

i·

Hence, for a fixed subject

E0(EY (Vi)) = V ar0(µij) +
1
K
σ2

i∗ = τ2
i +

1
K
σ2

i∗.

Finally, taking the expectation with respect to the subjects’ sampling distribu-
tion, we have E(V·) = τ2∗ + σ∗∗/K. The remaining considerations involving the
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estimation of the CIV are almost the same as in the fixed rater case. Thus, when
K ≥ 2 the CIV is again estimated by (3.2).

3.3 Inference on the CIV

In the absence of any distributional assumption, the most obvious inference
method is the nonparametric bootstrap. Each of the M bootstrap samples is
taken from Ỹ1, Ỹ2, . . . , ỸI , where Ỹi is the array of the JK observations on subject
i, and provides an estimate of the CIV using (3.2). The mean and standard
deviation of these M estimates are then used to obtain the bootstrap estimate
of the CIV and its standard error. A confidence interval for the CIV can be
obtained from the standard error, assuming that the estimator is approximately
normally distributed. Alternatively, one can obtain a confidence interval from
the percentiles of the empirical distribution of the M estimates. Parametric
methods for inference on the CIV can be used when the observations are normally
distributed and follow a two-way ANOVA model (see Section 6).

4. The Coefficient of Excess Observer Variability

In this section we introduce an alternative coefficient related to interobserver
agreement, the coefficient of excess observer variability (CEOV ), and we show
that it is closely related to the CIV . Let Yijk denote a single observation made
by observer j on a randomly selected subject i. Then, we define for each subject

Wik =
∑

j

(Yijk − Yi··)2/(J − 1),

which is the estimated total observer variability. We then define the CEOV as:

η =
ES(Wik)

ES(Wik|µi1 = · · · = µiJ)
(4.1)

The denominator is the expected value of Wik when there is no true interobserver
variability, i.e., when τ2∗ = 0. Thus, the CEOV is the excess variability due to the
true differences among the observers. The CEOV varies between 1 and infinity,
with η = 1 indicating no excess observer variability. From Section 3 it follows
that in the fixed observers case, ES(Wik) = τ2∗ + σ2∗·. Therefore

η =
τ2∗ + σ2∗·
σ2∗·

=
1

1 − ξ
.

We see that the CEOV is a one-to-one function of the CIV . The result, which
also holds when the observers are random, provides an alternative interpretation
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of the CIV . One should also note that 1/η = ψ, which is the coefficient of
interobserver agreement proposed in Section 3.

In the case of random observers, the CEOV can also be interpreted in the
context of estimation. Suppose thatK = 1 and we are interested in estimating the
true value, µi∗, of each subject by Yi·. Then the mean (over subjects) variance
of this estimator is (τ2∗ + σ2∗∗)/J . Therefore, the CEOV is the excess in the
estimation variance due to the interobserver variability. (One should note that
the interobserver variability does not depend on the number of observers used in
the study).

5. An Aplication in Study Design

In the previous sections we considered data from an agreement study, which
is a study designed for the purpose of evaluating the agreement among observers.
In many cases, an agreement study is followed by a more comprehensive study,
a measurement study, in which investigators are interested in estimating the
true value of Y for each subject. The measurement studies usually involve a
limited number of observers, as well as a smaller number of replications (or no
replications). In this section we show how the results from an agreement study
can be used to help in the design of a measurement study when it is assumed
that both studies are based on samples from the same population. We confine
the discussion to the case of random observers.

We define the true value of Y on subject i, µi∗, as the mean of all the true
evaluations µij that could be made if we had an infinite number of observers. If
the measurement study involves J observers and each observer makes K mea-
surements of each subject, then Yi·· is an unbiased estimator of µi∗. Then the
squared error for subject i, i.e., the expectation of squared distance between the
estimated and the true value, is: V ar(Yi··) = (τ2

i +σ2
i∗/K)/J . The mean squared

error (over all the subjects) is D2
JK = (τ2∗ + σ∗∗/K)/J . Suppose that the inves-

tigator plans to make a total of M measurements per subject, and has to choose
between two designs: (i) each of M observers makes one measurement on each
subject, or (ii) a single observer makes M measurements on each subject. Then
the ratio of the mean squared errors for these designs is:

D2
M1

D2
1M

=
1

1 + (M − 1)ξ

Thus, design (i) is always more efficient (i.e., involves a smaller error) than design
(ii), and the relative efficiency of design (i) compared to design (ii) (the reciprocal
of the above ratio) is an increasing linear function of the CIV .
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6. Interobserver Agreement in the Two-way ANOVA Model

In this section we assume that the observations follow a two-way ANOVA
model and we write the estimator (3.2) of the CIV is terms of the ANOVA sums
of squares. We also show that the F statistic for testing the hypothesis CIV = 0
(under the assumption of normality) is a simple function of the CIV estimator.

6.1 Fixed observers

We first assume that K ≥ 2. In this case the ANOVA model will include a
term for the subject by observer interaction. Thus, the appropriate model is a
2-way mixed model with interaction:

Yijk = µ+ αi + βj + γij + εijk = µij + εijk (6.1)

where the α’s, γ’s and ε’s are iid with E(αi) = E(γij) = E(εijk) = 0, V ar(αi) =
σ2

S , V ar(γij) = σ2
S0, V ar(εijk) = σ2

E . The parameters β1, . . . , βJ are the fixed
observer effects with β· = 0. Let s20 =

∑
j β

2
j /(J − 1). Then, it is easy to see that

for subject i:

τ2
i = s20 +

1
J − 1

∑

j

(γij − γi·)2 +
2

J − 1

∑

j

βj(γij − γi·)

Taking the expectation with respect to subjects, the interobserver variability is
τ2∗ = s20 + σ2

S0 Noting that σ2∗· = σ2
E , the CIV is

ξ =
s20 + σ2

S0

s20 + σ2
S0 + σ2

E

.

The estimator (3.2) of the CIV can be derived from the usual ANOVA sums of
squares. Let

SSBOWS = K
∑

i

∑

j

(Yij· − Yi··)2

be the sum of squares between observers within subjects. It is easy to show that
this is the sum of the sum of squares between observers and the sum of squares for
interaction. The corresponding mean square, MSBOWS = SSBOWS/I(J−1),
equals to KV· in the notation of Section 3. Also, U·· = MSE, the mean squares
for error. Therefore:

ξ̂ =
MSBOWS −MSE

MSBOWS + (K − 1)MSE
(6.2)

The equations (3.2) and (6.2) always produce the same value of the estimated
CIV .
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When K = 1, we have to assume that there is no subject by observer inter-
action (σ2

S0 = 0), and modify the expression for CIV accordingly. In this case,
the sum of squares for error (SSE) is calculated as the sum of the squares of the
residuals from the additive model, and the error variance (σ2

E) is estimated by the
corresponding mean square for error (MSE). Also, SSBOWS can be obtained as
the sum of the sum of squares between observers and the sum of squares for error,
and the corresponding mean square equals V·. Hence, ξ̂ = 1−MSE/MSBOWS.
(This is identical to the expression (6.2) with K = 1, but one must remember
that MSE is defined differently when K = 1.)

6.2 Random observers

When K ≥ 2, the two way model (6.1) becomes a random effects model where
βj is a random variable with mean 0 and variance σ2

0 Then

τ2
∗ = τ2

i = V ar0(µij) = σ2
0 + σ2

S0, σ2
∗∗ = σ2

E ,

and the CIV is defined as:

ξ =
σ2

0 + σ2
S0

σ2
0 + σ2

S0 + σ2
E

All the arguments we made in deriving the estimator (6.2) of the CIV in the
fixed observers case remain valid when the observers are random. Similarly,
when K = 1 and there is no subject by observer interaction, the estimator of
CIV in the random observers case is the same as in the fixed raters case.

6.3 Testing the hypothesis CIV = 0

In the setting dealt with in the work, one may wish to test the hypothesis of no
interobserver variability, i.e., CIV = 0. This can be easily done when we assume
that the observations follow the two-way ANOVA model, all the random effects
are normally distributed and the usual independence requirements are satisfied.

When K = 1, one can use the standard ANOVA methods to test the hy-
pothesis s0 = 0 (for fixed observers) or σ0 = 0 (for random observers). When
K ≥ 2 and the observers are considered fixed, then the hypothesis of interest is
H0 : s20 = σ2

S0 = 0. It is easy to see that

E(MSBOWS) = K(s20 + σ2
S0) + σ2

E .

Also, the corresponding sum of squares is the sum of the sum of squares between
observers and the sum of squares for interaction, each of which has an independent
σ2

Eχ
2 distribution under H0. Hence under H0, MSBOWS is distributed as a
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σ2
Eχ

2 divided by its number of degrees of freedom and is independent of the
MSE. This implies that an F statistic for H0 is:

F =
MSBOWS

MSE
=

1 + (K − 1)ξ̂

1 − ξ̂
.

The corresponding degrees of freedom are I(J − 1) and IJ(K− 1). All the above
considerations remain valid in the random observers case when s20 is replaced by
σ2

0 .

7. Examples

Example 7.1 Coronary artery calcium scoring gives an indication as to the
presence or absence of coronary artery arteriosclerosis and its severity. The pres-
ence of CT-detected calcium indicates the presence of underlying arteriosclerosis.
The actual score, which is known as AJ130, is based on the area of the calcified
plaque multiplied by a weighting factor which depends on the highest density in
the area of the plaque. Various software programs use the AJ130, and the score
is applied by drawing rectangles around operator-selected regions. Each vessel is
scored independently, and a total is given.

The data used for this example are the total AJ130 scores from 12 patients.
Each patient was scored twice by each of two radiologists. The radiologists are
labeled A and B, and the replications are labeled 1 and 2. Table 1 presents the
four scores for each patient. We see that there is considerable variability among
subjects but the within-subject variability is relatively small.

Table 1: Calcium scores on 12 patients

Patients
1 2 3 4 5 6 7 8 9 10 11 12

A1 7 29 1 5 38 40 53 23 70 16 114 43
A2 6 31 1 6 32 29 49 23 70 15 116 43

B1 6 30 0 5 40 30 50 23 70 16 120 43
B2 6 30 0 5 40 29 51 24 70 16 120 43

The agreement ICC and the CCC for these data are both equal to 0.997,
which means that there is practically a perfect agreement between the two ra-
diologists. On the other hand, the CIV is 0.246, hence the new coefficient of
interobserver agreement is ψ̂ = 0.754. The CEOV equals 1.33, which means that
the total observer variability is 33% higher than one would expect if there were
no differences between the two radiologists. The data indeed suggests that the
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agreement between the two radiologists is less than perfect, and that the values
of the ICC and the CCC are inflated as a result of the large between-subjects
variability. This example demonstrates that the ICC and the CCC are unable
to reflect observer disagreement when the between-subject variability is substan-
tially higher than the within-subject variability.

Example 7.2 The concepts and methods developed in this work can be used
in comparing different methods or instruments for measuring a certain quantity
on a sample of study subjects, rather than comparing different human observers.
Eliasziw et al. (1994) presented data from a study conducted to compare a large
universal manual goniometer and a Lamoreux-type electrogoniometer for measur-
ing the knee joint angle. Twenty-nine subjects were measured three consecutive
times on each of the two goniometers. The measurements ranged from −14 to
+19 degrees, with the means for the two methods calculated as 1.44 and 0.05,
respectively. The point estimate (3.2) of the CIV is 0.713, and the percentile-
based bootstrap 95% confidence interval (with 1000 replications) is [0.571, 0.824].
The estimated interobserver agreement coefficient is ψ̂ = 1 − 0.713 = 0.287 and
the estimate of the CEOV is 3.48, i.e., the total observer variability is almost
3.5 times higher than one would expect if the two goniometers were equiva-
lent. Using the ANOVA notations, the following sums of squares were obtained:
between subjects, 8757.862, between observers (goniometers), 84.144, interac-
tion, 126.023 and error, 99.333. From these sums of squares we calculated
SSBOWS = 84.144 + 126.023 = 210.167, MSBOWS = 210.167/29 = 7.247,
MSE = 99.333/116 = 0.856. These mean squares yield an estimated CIV of
(7.247 − 0.856)/(7.247 + 2 × 0.856) = 0.713. If we assume normality, then the F
statistic for testing CIV = 0 is 7.247/0.856 = 8.463, with 29 and 116 degrees of
freedom (p < 0.001). This indicates that there is a substantial variability between
the two goniometers. For comparison, the value of the ICC reported by Eliasziw
et al. is 0.961.

8. Discussion

This work presents a new index for assessing the agreement between ob-
servers. It is based on the squared distances between the true values assigned
by different observers to the same subject, i.e., the interobserver variability. The
CIV measures the interobserver component of the total disagreement between
observers, while existing indices of observer agreement measure the total (inter +
intra) observer-related disagreement. In other words, our approach distinguishes
between true disagreements among observers and the variability resulting from
the differences among (real or hypothetical) observations made by the same ob-
server on the same subject. This simple idea of separating the total observer
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disagreement to components representing the between and within observer dis-
agreements has not received much attention in the literature. Recently, Barnhart
et al. (2004) used the concept of interobserver variability to define an interob-
server version of the CCC as a measure of agreement between observers who make
replicated measurements on each subject. The approach used in the present work
is more general than the traditional approach as we do not assume that the obser-
vations follow an ANOVA model. The new approach also seems more intuitive
and there is a simple relationship between the interobserver variability among
several observers and the mean of all the pairwise differences.

The ICC and CCC compare the (total) observer variability to the within-
subject variability. As we have seen in the examples, these coefficients may
produce unreasonably high estimates of observer agreement when there is sub-
stantial variability among study subjects. On the other hand, the CIV compares
the between-observers variability to the total observer-related variability. In other
words, it uses the error variance, which is based upon the within subject-observer
variabilities as reference. This is consistent with the common approach used in
statistical inference. The error variance is most precisely estimated when each
observer makes replicated observations on each subject. When using replicated
observations, one must ensure to the extent possible that they are independent
for a given subject-observer combination in the sense that the observer should
not be able to recall her/his previous readings for the same subject. Estimation
of the CIV when there are no replications requires additional assumptions, such
as the assumption of additivity in the 2-way ANOVA model.

We also introduced the concept of excess observer variability. The CEOV ,
which is a simple function of the CIV , compares the actual total observer variabil-
ity to what one would expect if the observers were equivalent. The new coefficient
of interobserver agreement (ψ) is the reciprocal of the CEOV . In addition, we
showed how the CIV and the CEOV are related to the estimation variance in
studies designed to estimate the true value of each study subject.

In this work we focused on evaluating the agreement between different ob-
servers, or measurements methods. The same concepts can be used to evaluate
the agreement between observers and a known gold standard. For example, if we
want to compare the measurements of a single observer with the corresponding
true values, we can set J = 2, define Yi1k for each k as the true value of subject i,
and define Yi2k as the k-th measurement of the observer. In this case it is natural
to assume σi1 = 0 for all i. The interobserver variability for subject i, τ2

i , is
one-half the squared difference between the true value of this subject (Yi1k = µi1)
and the ‘true value’ of the observer on this subject (µi2). The overall observer
variability, τ2∗ , is the mean over all the subjects.
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Future Research

We plan to explore generalizations of the concepts and methods developed
in this work. Possible extensions include: (a) using methods based on general-
ized estimation equations (GEE) and on mixed linear models for inference; (b)
unequal number of replications and missing observations; (c) more complicated
designs, such as having different subsets of observers evaluating different subjects,
or multifactor studies were each observer uses each of several measuring methods
to evaluate each subject.

Acknowledgement

We would like to thank the Editor and a referee for helpful comments. This
research was supported in part by the University Research Committee of Emory
University.

References

Barnhart, H. X., Haber, M. and Song, J. (2002). Overall concordance correlation
coefficient for evaluating agreement among multiple observers. Biometrics 58,
1020-1027.

Barnhart, H. X., Song, J. and Haber, M. (2004). Assessing agreement in studies de-
signed with replicated readings. Statistics in Medicine, (in print).

Bartko, J. J. (1966). The intraclass correlation coefficient as a measure of reliability.
Psychological Reports 19, 3-11.

Eliasziw, M., Young, S. L., Woodbury, M. G. and Fryday-Field, K. (1994). Statistical
methodology for the concurrent assessment of interrater and intrarater reliability:
Using goniometric measurements as an example. Physical Therapy 74, 777-788.

Fisher, R. A. (1925). Statistical Methods for Research Workers. Oliver and Boyd Ltd.

Lin, L. (1989). A concordance correlation coefficient to evaluate reproducibility. Bio-
metrics 45, 255-268.

McGraw, K. O. and Wong, S. P. (1996). Forming inferences about some intraclass
correlation coefficients. Psychological Methods 1, 30-46.

Received June 14, 2003; accepted September 6, 2003.



Evaluation of Interobserver Agreement 83

Michael Haber
Department of Biostatistics
Rollins School of Public Health
Emory University, 1518 Clifton Rd. N.E.
Atlanta, GA 30322, USA
mhaber@sph.emory.edu

Huiman X. Barnhart
Department of Biostatistics and Bioinformatics
Duke University Medical Center
Durham, NC, USA

Jingli Song
Eli Lilly and Company
Indianapolis, IN, USA

James Gruden
Department of Radiology
Emory University School of Medicine
Atlanta, GA, USA


