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Abstract. This paper considers the verification of continuous-time Mar-
kov decision process (CTMDPs) against single-clock deterministic timed
automata (DTA) specifications. The central issue is to compute the max-
imum probability of the set of timed paths of a CTMDP C that are
accepted by a DTA A. We show that this problem can be reduced to
a linear programming problem whose coefficients are maximum timed
reachability probabilities in a set of CTMDPs, which are obtained via a
graph decomposition of the product of the CTMDP C and the region
graph of the DTA A.

1 Introduction

Markov decision processes (MDPs) are a prominent mathematical system model
for modeling decision-making—modeled as nondeterministic choices—in situ-
ations where outcomes are partly random and partly under the control of a
decision maker [24]. MDPs, also referred to as turn-based 1 1

2 -player games, are
intensively used in decision making and planning with a focus on optimiza-
tion problems which are typically solved via dynamic programming. They are
a discrete-time stochastic control process where at each time step, the decision
maker (i.e., the scheduler) may select any action α that is enabled in the current
state s. The MDP reacts on this choice by probabilistically moving to state s′

with probability P(s, α, s′). A discrete-time Markov chain (DTMC) is an MDP
where for each state only a single action is enabled. Since the mid-eighties, MDPs
(and DTMCs as special subclass) have been the active subject of applying model
checking. Whereas the initial focus was on qualitative properties (e.g., “can a
state be reached almost surely, i.e., with probability one?”), the emphasis soon
shifted towards quantitative properties. Several specification formalisms have
been adopted, such as LTL [34,19], probabilistic versions of CTL [9,6], as well
as automata [19,21]. The key issue in the quantitative verification of MDPs is to
determine the maximum, or dually, minimum probability of a certain event of in-
terest, such as �G, ��G, and so forth, where G is a set of states which is either
given explicitly or as a state formula. For finite-state MDPs, it is well-known
that e.g., extremum reachability probabilities can be obtained by solving linear
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programming (LP) problem and that memoryless schedulers suffice to obtain
such extrema. If the reachability event is constrained by the maximum number
of allowed transitions, one has to resort to finite-memory schedulers, but still a
simple value iteration technique suffices to compute the extremum probabilities
with the required accuracy. Such techniques have been implemented in model
checkers such as Prism1 and LiQuor [18] and successfully applied to several
practical case studies such as randomized distributed protocols.

Continuous-time Markov decision processes (CTMDPs) [32] extend MDPs by
associating a random delay in state s on selecting action α by the scheduler.
Choosing action α in state s yields a random delay in s by the CTMDP which
is governed according to an exponential distribution with rate rα(s). Thus, the
probability to wait at most d time units in state s on choosing α is 1− e−rα(s)·d.
After delaying, a CTMDP evolves like an MDP probabilistically to state s′ with
probability P(s, α, s′). A continuous-time Markov chain (CTMC) is a CTMDP
where for each state only a single action is enabled. The state residence time in
a CTMC is thus independent of the action chosen. CTMCs have received quite
some attention by the verification community since the late nineties. This work
has primarily focused on CSL (Continuous Stochastic Logic), a timed proba-
bilistic version of the branching-time temporal logic CTL. The key issue in CSL
model checking is to compute the probability of the event �≤T G where T ∈ R≥0

acts as a time bound. It has been shown that such probabilities can be character-
ized as least solution of Volterra integral equation systems and can be computed
in a numerically stable and efficient way by reducing the problem to transient
analysis of CTMCs [4]. This has been implemented in model checkers such as
Mrmc [25]2 and Prism, and has been applied successfully to several cases from
systems biology and queueing theory, to mention a few.

Recently, the verification of CTMCs has been enriched by considering linear-
time properties equipped with timing constraints. In particular, [15,16] treat
linear real-time specifications that are given as deterministic timed automata
(DTA) [2]. DTA are automata equipped with clock variables that can be used to
measure the elapse of time, can be reset to zero, and whose value can be inspected
in transition guards. The fact that these automata are deterministic means that
for any clock valuation and state, the successor state is uniquely determined.
Whereas timed automata are typically used as system models describing the
possible system behaviors, we use them—in analogy to [1]—as objectives that
need to be fulfilled by the system. In our context, DTA specifications include
properties of the form “what is the probability to reach a given target state
within the deadline, while avoiding unsafe states and not staying too long in
any of the dangerous states on the way?”. DTA have recently also been adopted
as specification language for generalized semi-Markov processes (and their game
extensions) in [11,12]. The central issue in checking a DTA specification is com-
puting the probability of the set of paths in a CTMC that are accepted by the
DTA. This can be reduced to computing the (simple) reachability probability

1 http://www.prismmodelchecker.org/
2 http://www.mrmc-tool.org/trac/

http://www.prismmodelchecker.org/
http://www.mrmc-tool.org/trac/
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Fig. 1. An example 1-clock DTA that goes beyond timed reachability

in a (somewhat simplified variant of) piecewise deterministic Markov process
(PDP, [20]), basically a stochastic hybrid model which is obtained by a syn-
chronous product construction between the CTMC and the region graph of the
DTA [16]. A prototypical implementation of this technique has recently been
presented [7] and has led to the efficient verification of CTMCs of several hun-
dreds of thousands of states against one-clock DTA specifications. The appealing
properties of this algorithm are that it resorts to standard computational proce-
dures, i.e., graph analysis, region graph construction, solving systems of linear
equations, and transient analysis of CTMCs for which efficient algorithms exist.

In contrast to MDPs, CTMDPs have received far less attention by the ver-
ification community; in fact, the presence of nondeterminism and continuous
time makes their analysis non-trivial. CTMDPs have originated as continuous-
time variants of finite-state probabilistic automata [26], and have been used for,
among others, the control of queueing systems, epidemic, and manufacturing
processes. Their analysis is mainly focused on determining optimal schedulers
for criteria such as expected total reward and expected (long-run) average re-
ward, cf. the survey [23]. The formal verification of CTMDPs has mostly con-
centrated on computing extremum probabilities for the event �≤T G with time
bound T ∈ R≥0. Whereas memoryless schedulers suffice for extremum reachabil-
ity probabilities in MDPs, maximizing (or minimizing) timed reachability prob-
abilities requires timed schedulers, i.e., schedulers that “know” how much time
has elapsed so far [29,28,8]. As these schedulers are infinite objects, most work
has concentrated on obtaining ε-optimal schedulers—mostly piecewise-constant
schedulers that only change finitely often in the interval [0, T ]—that approximate
the extremum probability obtained by a timed scheduler up to a given accuracy
ε > 0 [31,33]. Recently, the use of adaptive uniformization has been proposed
as an alternative numerical approach to obtain such ε-optimal schedulers [13].
Another approach is to concentrate on sub-optimal schedulers, and consider the
optimal time-abstract scheduler [5,10]. This is a much simpler and efficient pro-
cedure that does not rely on discretization, and in several cases suffices. Some of
the techniques for both timed and time-abstract schedulers have recently been
added to the model checker Mrmc [25].

In this paper, we concentrate on a larger class of properties and consider the
verification of CTMDPs against linear real-time specifications given as single-
clock DTA. Note that single-clock DTA cover a whole range of safety and liveness
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objectives and naturally include timed reachability objectives such as �≤T G. We
believe that DTA are a very natural specification formalism that captures a rich
set of practically interesting properties. For instance, Fig. 1 presents an example
1-clock DTA that goes beyond timed reachability properties. It asserts “reach
a given target G (modeled by state qG) while not staying too long (at most T1

and T2 time units in respective zones D1 and D2) in any of the two “dangerous
zones on the way”. For simplicity, we assume the dangerous zones D1 and D2 are
not adjacent. In case the system stays too long in one of the dangerous zones, it
resides in either location qD1 or qD2 forever, and will never reach the goal state.
This property can neither be expressed in CSL nor in one of its existing dialects
[3,22]. The central issue now in checking such a DTA specification is computing
the extremum probability of the set of paths in a CTMDP C that are accepted
by the DTA A. We show that the approach in [15,16,7] can be adapted to this
problem in the following way. We first establish that the extremum probability of
CTMDP C satisfying DTA A can be characterized as the extremum reachability
probability in the product of C and the region graph of A. Here, the region graph
is based on a variant of the standard region construction for timed automata [2].
The product C ⊗ G(A) is in fact a simple instance of a piecewise deterministic
Markov decision process (PDDP, [20]). The extremum reachability probabilities
in C ⊗ G(A) are then characterized by a Bellman equation. These results so
far are also applicable to DTA with an arbitrary number of clocks (although
formulated in this paper for single-clock DTA only). For 1-clock DTA, we then
show that solving this Bellman equation can be reduced to an LP problem whose
coefficients are extremum timed reachability probabilities in the CTMDP C, i.e.,
events of the form �≤T G. The size of the obtained LP problem is in O(|S|·|Q|·m),
where S is the state space of CTMDP C, Q is the state space of DTA A, and m
is the number of distinct constants appearing in the guards of A.

To put in a nutshell, this paper shows that the verification of CTMDPs against
1-clock DTA objectives can be done by a region graph construction, a product
construction, and finally solving an LP problem whose coefficients are extremum
timed reachability probabilities in CTMDPs. 1-clock DTA objectives model a
rich class of interesting properties in a natural manner and include timed reach-
ability. To the best of our knowledge, this is the first work towards treating linear
real-time objectives of CTMDPs. The main appealing implication of our result is
that CTMDPs can be verified against 1-clock DTA objectives using rather stan-
dard means. The availability of the first practical implementations for timed
reachability of CTMDPs paves the way to a realization of our approach in a
prototypical tool.

Organization of this paper. Section 2 defines the basic concepts for this paper:
CTMDPs, DTA, and formalizes the problem tackled in this paper. Section 3
shortly recapitulates a mathematical characterization of maximum timed reach-
ability probabilities in CTMDPs. Section 4 introduces the product C ⊗ G(A)
and provides a Bellman equation for reachability events in this product. Sec-
tion 5 is the core of this paper, and shows that for 1-clock DTA, the solu-
tion of the Bellman equation can be obtained by solving an LP problem whose



6 T. Chen et al.

coefficients are extremum timed reachability probabilities in CTMDPs obtained
from C⊗G(A). Section 6 concludes the paper. The proof of Theorem 2 is included
in the appendix.

2 Preliminaries

Given a set H , let Pr : F(H) → [0, 1] be a probability measure on the measurable
space (H,F(H)), where F(H) is a σ-algebra over H .

2.1 CTMDP

Let AP be a fixed, finite set of atomic propositions.

Definition 1 (CTMDP). A continuous-time Markov decision process is a tu-
ple C = (S, s0,Act,P, r, L), where

– S is a finite set of states;
– s0 is the initial state;
– Act is a finite set of actions;
– P : S ×Act×S → [0, 1] is a transition probability matrix, such that for any

state s ∈ S and action α ∈ Act,
∑

s′∈S P(s, α, s′) ∈ {0, 1};
– r : S × Act → R≥0 is an exit rate function; and
– L : S → 2AP is a labeling function.

The set of actions that are enabled in state s is denoted Act(s) = {α ∈ Act |
rα(s) > 0 } where rα(s) is a shorthand for r(s, α). The operational behavior of
a CTMDP is as follows. On entering state s, an action α, say, in Act(s) is non-
deterministically selected. The CTMDP now evolves probabilistically as follows.
Given that action α has been chosen, the residence time in state s is exponen-
tially distributed with rate rα(s). Hence, the probability to leave state s via
action α in the time interval [l, u] is given by

∫ u

l
rα(s)·e−rα(s)·t dt and the aver-

age sojourn time in s is given by 1
rα(s) . We say that there is an α-transition from

s to s′ whenever Pα(s, s′)·rα(s) > 0 where Pα(s, s′) is shorthand of P(s, α, s′).
If multiple outgoing α-transitions exist, they compete: the probability that tran-
sition s α−−→ s′ is taken is Pα(s, s′). Putting the pieces together, this means that
the CTMDP transits from state s to s′ on selecting α in s in the time interval
[l, u] with a likelihood that is given by:

Pα(s, s′) ·
∫ u

l

rα(s)·e−rα(s)·t dt.

Note that the probabilistic behavior of a CTMDP conforms to that of a CTMC;
indeed, if Act(s) is a singleton set in each state s ∈ S, the CTMDP is in fact
a CTMC. In this case, the selection of actions is uniquely determined, and the
function P can be projected to an (S × S)-matrix, the transition probability
matrix. If we abstract from the exponential state residence times, we obtain a
classical MDP. For CTMDP C = (S, s0,Act,P, r, L), its embedded MDP is given
by emb(C) = (S, s0,Act,P, L).
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Example 1. Fig. 2 shows an example CTMDP with AP = {a, b} and initial
state s0. The state-labelings are indicated at the states, whereas the transition
probabilities are attached to the edges. Rates are omitted from the figure and
are defined as: rα(s0) = 10, rβ(s0) = 5, and rβ(s3) = rβ(s1) = rγ(s2) = 1. In
s0, there is a nondeterministic choice between the actions α and β.

Definition 2 (CTMDP paths). A sequence π = s0
α0,t0−−−−→ s1

α1,t1−−−−→ · · · is an
infinite path in a CTMDP C = (S, s0,Act,P, r, L), where for each i ≥ 0, si ∈ S
is a state, αi ∈ Act is an action, and ti ∈ R>0 is the sojourn time in state si. A
finite path is a fragment of an infinite path ending in a state.

The length of an infinite path π, denoted |π|, is ∞; the length of finite path π with
n+1 states is n. For a finite path π = s0

α0,t0−−−−→ s1
α1,t1−−−−→ · · · αn−1,tn−1−−−−−−−−→ sn, let

π↓ = sn be the last state of π. Let Paths(C) (respectively Pathss(C)) denote the
set of infinite paths (respectively starting in state s) in C; let Pathsn(C) (respec-
tively Pathsn

s (C)) denote the set of finite paths of length n (respectively starting
in state s). To simplify notation, we omit the reference to C whenever possible.

An example path in the CTMDP of Fig. 2 is π = s0
α,2.5−−−−→ s2

γ,1.4−−−−→ s0
α,

√
2−−−−→

s1
β,2.8−−−−→ s1 · · · .

s0

s1

s2

s3

α, 0.9

α, 0.1

β, 1

γ, 1

β, 1

β, 1

{b} {a} {a}

{b}

Fig. 2. An example CTMDP

In order to construct a measurable space
over Paths(C), we define the following sets:
Ω = Act × R≥0 × S and the σ-field J =
σ(2Act×JR×2S), where JR is the Borel σ-field
over R≥0. The σ-field over Pathsn is defined
as JPathsn = σ({S0 ×M0 × S1 × · · · ×Mn−1 |
Si ⊆ S, Mi ∈ J }). A set B ∈ JPathsn is a
base of a cylinder set C if C = Cyl(B) =
{π ∈ Paths | π[0 . . . n] ∈ B}, where π[0 . . . n] is the prefix of length n of
the path π. The σ-field JPaths of measurable subsets of Paths(C) is defined
as JPaths = σ(∪∞

n=0{Cyl(B) | B ∈ JPathsn}). Hence we obtain a measurable
space (Paths(C),JPaths).

Schedulers. Nondeterminism in a CTMDP is resolved by a scheduler. In the
literature, schedulers are sometimes also referred to as adversaries, policies, or
strategies. For deciding which of the next actions to take, a scheduler may “have
access” to the current state only or to the path from the initial to the current
state (either with all or with partial information). Schedulers may select the next
action either deterministically, i.e., depending on the available information, the
next action is chosen in a deterministic way, or randomly, i.e., depending on the
available information, the next action is chosen probabilistically. In our setting,
deterministic schedulers suffice to achieve extremum probabilities and can base
their decision on a complete information of the current path so far. Moreover, it
is not evident how to define the probability measure for randomized schedulers,
as exit rates depend on the actions. Hence we only consider deterministic rather
than randomized schedulers in this paper. Furthermore, like in [35], we consider
measurable functions as schedulers. Formally,



8 T. Chen et al.

Definition 3 (Schedulers). A scheduler for CTMDP C = (S, s0,Act,P, r, L)
is a measurable function D : Paths(C) → Act such that for n ∈ N,

D(s0
α0,t0−−−−→ s1

α1,t1−−−−→ · · · αn−1,tn−1−−−−−−−−→ sn) ∈ Act(sn). (1)

We denote the set of all schedulers of C as DC .

Remark 1. According to the above definition, we consider schedulers that make
a decision as soon as a state is entered. In particular, the sojourn time in the
current state sn is not considered for selecting the next action. Such schedulers
are called early schedulers in [30]. In contrast, a late scheduler will choose an
action upon leaving a state, i.e., besides the history s0

α0,t0−−−−→ · · · αn−1,tn−1−−−−−−−−→ sn,
it will consider also the elapsed time so far in state sn. Late schedulers suffice for
determining extremum reachability probabilities for a certain class of CTMDPs,
the so-called locally uniform ones, i.e., CTMDPs in which the exit rate for any
enabled action in a state is the same [30].

Probability measure. For a path π ∈ Paths(C) and m ∈ Ω = Act × R≥0 × S, we
define the concatenation of π and m as the path π′ = π ◦ m. Below we define
a probability measure over the measurable space (Paths(C),JPaths) under the
scheduler D.

Definition 4 (Probability measure). Let C = (S, s0,Act,P, r, L) be a CT-
MDP, n ∈ N and D a scheduler in DC. The probability Prn

s,D : JPathsn → [0, 1]
of sets of paths of length n > 0 starting in s is defined inductively by:

Prn+1
s,D (B) =

∫

Pathsn

Prn
s,D(dπ)

∫

Ω

1B(π ◦ m)
∫

R≥0

rα(π↓)·e−rα(π↓)·τ

·
∑

s′∈S

1m(α, τ, s′)·Pα(π↓, s′) dm dτ,

where

– α = D(π), the action selected by scheduler D on the path π of length n,
– B ∈ Pathsn+1 and for n = 0 we define Pr0s(B) = 1 if s ∈ B, and 0 otherwise,
– 1B(π ◦ m) = 1 when π ◦ m ∈ B, and 0 otherwise,
– 1m(α, τ, s′) = 1 when m = (α, τ, s′), and 0 otherwise.

Intuitively, Prn+1
s,D (B) is the probability of the set of paths π′ = π ◦ m of length

n+1 defined as a product between the probability of the set of paths π of length
n and the one-step transition probability to go from state π↓ to state π′↓ by the
action α as selected by the scheduler D. For a measurable base B ∈ JPathsn

s
and

cylinder set C = Cyl(B), let Prs,D(C) = Prn
s,D(B) as the probability of subsets

of paths from Pathss. Sometimes we write PrD(C) to when the starting state s
is clear from the context.
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2.2 Single-Clock DTA

Let x be a clock, which is a variable in R≥0
3. A clock valuation is a function η

assigning to x the value η(x) ∈ R≥0. A clock constraint on x is a conjunction of
expressions of the form x �� c, where ��∈ {<,≤, >,≥} is a binary comparison
operator and c ∈ N. Let Bx denote the set of clock constraints over x and let g
range over Bx.

Definition 5 (DTA). A single-clock deterministic timed automaton (DTA)
is a tuple A = (Σ, Q, q0, QF ,→) where
– Σ is a finite alphabet;
– Q is a nonempty finite set of locations;
– q0 ∈ Q is the initial location;
– QF ⊆ Q is a set of accepting locations; and
– → ∈ (Q \ QF )×Σ×Bx×{∅, {x}}×Q is an edge relation satisfying:

q a,g,X−−−−→ q′ and q a,g′,X′−−−−−→ q′′ with g �= g′ implies g ∧ g′ ≡ False.

We refer to q a,g,X−−−−→ q′ as an edge, where a ∈ Σ is an input symbol, the guard
g is a clock constraint on x, X = {∅, {x}} is the set of clocks that are to be reset
and q′ is the successor location. Intuitively, the edge q a,g,X−−−−→ q′ asserts that the
DTA A can move from location q to q′ when the input symbol is a and the
guard g on clock x holds, while the clocks in X should be reset when entering q′.
DTA are deterministic as they have a single initial location, and outgoing edges
of a location labeled with the same input symbol are required to have disjoint
guards. In this way, the next location is uniquely determined for a given location
and a given clock valuation, together with an action. In case no guard is satisfied
in a location for a given clock valuation, time can progress. If the advance of
time will never reach a situation in which a guard holds, the DTA will stay in
that location ad infinitum. Note that DTA do not have location invariants, as
in safety timed automata. However, all the results presented in this paper can
be adapted to DTA with invariants without any difficulties.

Runs of a DTA are timed paths. In order to define these formally, we need
the following notions on clock valuations. A clock valuation η satisfies clock
constraint x �� c, denoted η |= x �� c, if and only if η(x) �� c; it satisfies
a conjunction of such expressions if and only if η satisfies all of them. Let 0
denote the valuation that assigns 0 to x. The reset of x, denoted η[x := 0], is
the valuation 0. For δ ∈ R≥0 and η, η+δ is the clock-valuation η′′ such that
η′′(x) := η(x)+δ.

Definition 6 (Finite DTA path). A finite timed path in DTA A is of the
form θ = q0

a0,t0−−−−→ q1
a1,t1−−−−→ · · · an,tn−−−−→ qn+1, such that for all 0 � i ≤ n, it

holds ti > 0, x0 = 0, xj+tj |= gj and xj+1 = (xj+tj)[Xj := 0], where xj is the
clock evaluation4 on entering qj, gj is the guard on the uniquely enabled edge in
3 Throughout this paper, we use x for the clock variable of the 1-clock DTA under

consideration.
4 As there is only a single clock we sometimes write x for the value of clock x as

shorthand for η(x).
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the DTA leading from qj to qj+1 when xj+tj |= gj, and Xj is the set of clocks
on that edge that needs to be reset. Path θ is accepted whenever qn+1 ∈ QF .

The concepts defined on CTMDP paths, such as |θ|, will be applied to timed
DTA paths without modification.

Regions. We consider a variant of the standard region construction for timed
automata [2] to DTA. As we consider single-clock DTA, the region construction
is rather simple. We basically follow the definition and terminology of [27]. Let
{c0, . . . , cm} be the set of constants appearing in the guards of DTA A with
c0 = 0. W.l.o.g. we assume 0 = c0 < c1 < · · · < cm. Regions can thus be
represented by the intervals: [c0, c0], (c0, c1), . . . , [cm, cm] and (cm,∞). (In fact,
these regions are also sometimes called zones.) In the continuous probabilistic
setting of this paper, the probability of the CTMC taking a transition in a point
interval is zero. We therefore combine a region of the form [ci, ci] with a region
of the form (ci, ci+1) yielding [ci, ci+1). In the rest of the paper, we slight abuse
nomenclature and refer to [ci, ci+1) as a region. As a result, we obtain the regions:
Θ0 = [c0, c1), . . . , Θm = [cm,∞). Let Δci = ci+1 − ci for 0 � i < m and let RA
be the set of regions of DTA A, i.e., RA = {Θi | 0 ≤ i ≤ m}. The region Θ
satisfies a guard g, denoted Θ |= g, iff for all η ∈ Θ we have η |= g.

Definition 7 (Region graph). The region graph of DTA A = (Σ, Q, q0, QF ,
→), denoted G(A), is the tuple (Σ, W, w0, WF , ���) with W = Q × RA the set
of states; w0 = (q0,0) the initial state; WF = QF × RA the set of final states;
and ���⊂ W × ((Σ × {∅, {x}}) � { δ }) × W the smallest relation such that:

– (q, Θi)
δ��� (q, Θi+1) for 0 ≤ i < m;

– (q, Θi)
a,{x}
��� (q′, Θ0) if ∃g ∈ Bx such that q

a,g,{x}−−−−−→q′ with Θi |= g; and

– (q, Θi)
a,∅��� (q′, Θi) if ∃g ∈ Bx such that q a,g,∅−−−−→q′ with Θi |= g.

States in G(A) are thus pairs of locations (of the DTA A) and a region on
clock x. The initial state is the initial location in which clock x equals zero. The
transition relation of G(A) is defined using two cases: (1) a delay transition in
which the location stays the same, and the region Θi is exchanged by its direct
successor Θi+1, (2) a transition that corresponds to taking an enabled edge in
the DTA A. The latter corresponds to the last two items in the above definition
distinguishing the case in which x is reset (second item) or not (third item).

Example 2. Fig. 3(a) depicts an example DTA, where q0 is the initial state and
q1 is the only accepting state. In q0, the guards of the two a-actions are disjoint,
so this TA is indeed deterministic. The part of the region graph of the DTA that
is reachable from (q0,0) is depicted in Fig. 3(b).

2.3 Problem Statement

We now are settled to formalize the problem of interest in this paper. Recall that
our focus is on using DTA as specification objectives and CTMDPs as system
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q0 q1

a, x < 1, ∅

a, 1 < x < 2, {x}

b, x > 1, ∅

(a) An example DTA

q0, [0, 1) q0, [1, 2) q0, [2,∞)

q1, [2,∞)q1, [1, 2)

δ

a, {x}

δ

δ

b b

a

(b) Region graph

Fig. 3. Example DTA and its region graph

models, and our aim is to determine the probability of the set of timed paths of
the CTMDP C that are accepted by A. Let us first define what it means for a
CTMDP path to be accepted by DTA A.

Definition 8 (Acceptance). Given a CTMDP C = (S, s0,Act,P, r, L) and
a single-clock DTA A = (Σ, Q, q0, QF ,→), we say that an infinite timed path
π = s0

α0,t0−−−−→ s1
α1,t1−−−−→· · · in C is accepted by A if there exists some n ∈ N such

that the finite fragment of π up to n, i.e., s0
α0,t0−−−−→ s1 · · · sn−1

α0,tn−1−−−−−−→ sn, gives
rise to an “ augmented” timed path θ = q0

L(s0),t0−−−−−−→ q1 · · · qn−1
L(sn−1),tn−1−−−−−−−−−→ qn

of A with qn ∈ QF . Let Pathss0(C |= A) denote the set of paths in CTMDP C
that start in s0 and are accepted by A.

Note that the labels of the states that are visited along the CTMDP path π
are used as input symbols for the associated timed path in the DTA. Thus, the
alphabet of the DTA will be the powerset of AP, the set of atomic propositions.
The aim of this paper is to determine the maximum probability of Pathss0(C |=
A) over all possible schedulers, i.e.,

sup
D∈DC

Prs0,D(Pathss0(C |= A)).

In the remainder of this paper, we will show that these maximum probabilities
can be characterized as a solution of an LP problem, whose coefficients are given
as timed reachability probabilities in a set of CTMDPs. Let us first briefly recall
such reachability probabilities.

3 Timed Reachability in CTMDP

Given a CTMDP C = (S, s0,Act,P, r, L), a set of goal states G ⊆ S, and a time
bound T ∈ R≥0, let Pathss0(�≤T G) denote the set of timed paths reaching G
from the initial state s0 within T time units. Formally,

Pathss0(�
≤T G) = {π ∈ Paths(s0) | ∃t ≤ T. π@t ∈ G}

where π@t denotes the state occupied by π at time t, i.e., π@t = π[i] where i

is the smallest index i such that
∑i

j=0 tj > t. The timed reachability problem
amounts to computing
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sup
D∈DC

Prs0,D(Pathss0(�
≤T G)).

This problem has been solved, to a large extent, forty years ago by Miller [29],
and has recently been revisited in the setting of formal verification by, amongst
others, [5,31]. We briefly recapitulate the main results. Let Ψ(s, x) be the max-
imum probability to reach G, within T time units, starting from state s given
that x time units have passed so far. It follows that Ψ(s, x) can be characterized
by the following set of Bellman equations:

Ψ(s, x) = max
α∈Act(s)

{∫ T−x

0

∑

s′∈S

rα(s)·e−rα(s)·τ ·Pα(s, s′)·Ψ(s′, x+τ) dτ

}

,

if s /∈ G and x ≤ T ; and 1 if s ∈ G and x ≤ T ; and 0, otherwise. The term on
the right-hand side takes the action that maximizes the probability to reach G
in the remaining T−x time units from s by first moving to s′ after a delay of τ
time units in s and then proceeding from s′ to reach G with elapsed time x+τ .

There are different ways to solve this Bellman equation. One straightforward
way is by applying discretization [28,31,17]. An alternative approach is to reduce
it to a system of ordinary differential equations (ODEs) with decisions. To that
end, let Pi,j(t) be the maximum probability to reach state sj at time t starting
from state si at time 0. For any two states si and sj we obtain the ODE [8]:

dPi,j(t)
dt

= max
α∈Act(si)

{

rα(si) ·
∑

sk∈S

Pα(si, sk) · (Pk,j(t) − Pi,j(t))

}

.

which using Rα(s, s′) = rα(s) ·Pα(s, s′) can be simplified to:

dPi,j(t)
dt

= max
α∈Act(si)

{
∑

sk∈S

Rα(si, sk) · (Pk,j(t) − Pi,j(t))

}

.

For t � T , we obtain the following system of ODEs in matrix form:

dΠ(t)
dt

= max
α∈Act

{Π(t) ·Qα} ,

where Π(t) is the transition probability matrix at time t, i.e., the element (i, j)
of Π(t) equals Pi,j(t), Π(0) = I, the identity matrix, Qα = Rα−rα is the in-
finitesimal generator matrix for action α where Rα is the transition rate matrix,
i.e., the element (i, j) is rα(si)·Pα(si, sj), and rα is the exit rate matrix in which
all diagonal elements are the exit rates, i.e., rα(i, i) = rα(si) and its off-diagonal
elements are all zero. Recently, [13] showed that the above system of ODEs can
be solved by adopting a technique known as adaptive uniformization.

4 Product Construction

Recall that our aim is to compute the maximum probability of the set of paths
of CTMDP C accepted by the DTA A, that is,

sup
D∈DC

Prs0,D(Pathss0(C |= A)).
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In this section, we show that this can be accomplished by computing maximum
reachability probabilities in C⊗G(A), i.e., the product between C and the region
graph of A.

Definition 9 (Product). The product of CTMDP C = (S, s0,Act,P, r, L)
and DTA region graph G(A) = (Σ, W, w0, WF , ���), denoted C ⊗ G(A), is the
tuple (Act, V, v0, VF , Λ, ↪→) with V = S × W , v0 = (s0, w0), VF = S × WF , and

– ↪→ ⊆ V × ((Act× [0, 1] × {∅, {x}})� {δ}) × V is the smallest relation s.t.:

• (s, w)
δ

↪→ (s, w′) iff w
δ��� w′; and

• (s, w)
α,p,X
↪→ (s′, w′) iff p = Pα(s, s′) with p > 0, and w

L(s),X
��� w′.

– Λ : V × Act → R�0 is the exit rate function where:

Λ(s, w, α) =

{
rα(s) if (s, w)

α,p,X
↪→ (s′, w′) for some (s′, w′) ∈ V

0 otherwise.

Example 3. The product of the CTMDP in Fig. 2 and the DTA region graph
in Fig. 3(b) is depicted in Fig. 4.

v0=
(
s0,q0,[0,1)

)

v1=
(
s3,q0,[0,1)

)

v2=
(
s1,q0,[0,1)

)

v6=
(
s0,q0,[1,2)

)

v5=
(
s3,q0,[1,2)

)

v3=
(
s2,q0,[0,1)

)
v7=

(
s2,q0,[1,2)

)

v8=
(
s1,q0,[1,2)

)

v4=
(
s3,q1,[1,2)

)

v9=
(
s1,q1,[1,2)

)

v10=
(
s3,q1,[2,∞)

)

v11=
(
s3,q0,[2,∞)

)

v12=
(
s1,q0,[2,∞)

)

v13=
(
s1,q1,[2,∞)

)

β, 1

α, 0.9

α, 0.1

β, 1

δ

δ

δ

δ

γ, 1, {x}

β, 1

δ

δ

β, 1

δ

δ

β, 1

γ, 1

α, 0, 9, {x}

α, 0.1, {x}

β, 1, {x}

P0 P1 P2

Fig. 4. The product of CTMC and DTA region graph (the reachable part)

Vertex v in the product C ⊗ G(A) is a triple consisting of a CTMDP state s, a
DTA state q and a region Θ. Let v�i denote the i-th component of the triple v;
e.g., if v = (s, q, Θ), then v�2 = q. Furthermore, let Act(v) be the set of enabled

actions in vertex v, i.e., Act(v) = Act(v�1). Edges of the form v
δ

↪→ v′ are called

delay edges, whereas those of the form v
α,p,X
↪→ v′ are called Markovian edges.
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The product C ⊗ G(A) is essentially a (simple variant of a) PDDP, i.e., a
decision variant of a PDP. The notions of paths and schedulers for a PDDP
can be defined in a similar way as for CTMDP in Section 2; we do not dwell
upon the details here. For the sake of brevity, let P = C ⊗ G(A). In the sequel,
let DP denote the set of all schedulers of the product P . A scheduler D ∈ DP
on the product P induces a PDP which is equipped with a probability measure
PrPv0,D over its infinite paths in a standard way; for details, we refer to [20]. Let
Pathsv0(�VF ) denote the set of timed paths in P that reach some vertex in VF

from vertex v0 starting with clock-valuation 0 ∈ Θ0.

Lemma 1. Given CTMDP C and DTA A,

sup
D∈DC

Prs0,D(Pathss0(C |= A)) = sup
D∈DP

PrPv0,D(Pathsv0(�VF )).

Proof (Sketch). We first show that there is a one-to-one correspondence between
Pathss0(C |= A) and PathsPs0

(�VF ).

(=⇒) Let π = s0
α0,t0−−−−→ s1 · · · sn−1

αn−1,tn−1−−−−−−−−→ sn with π ∈ Pathss0(C |= A). We
prove that there exists a path ρ ∈ PathsPs0

(�VF ) with π = ρ�1. We have x0 = 0
and for 0 ≤ i < n, xi+ti |= gi with xi+1 = (xi+t1)[Xi := 0]. Here xi is the clock
valuation in A on entering state si in C. We now construct a timed path θ in A
from π such that θ = q0

L(s0),t0−−−−−−→ q1 · · · qn−1
L(sn−1),tn−1−−−−−−−−−→ qn, where the clock

valuation on entering si and qi coincides. Combining timed paths π and θ yields:

ρ = 〈s0, q0〉 t0−−→〈s1, q1〉 · · · 〈sn−1, qn−1〉 tn−1−−−−→〈sn, qn〉,
where 〈sn, qn〉 ∈ LocF . It follows that ρ ∈ PathsPs0

(�VF ) and π = ρ�1.

(⇐=) Let ρ = 〈s0, q0〉 α0,t0−−−−→ · · · αn−1,tn−1−−−−−−−−→〈sn, qn〉 ∈ PathsPs0
(�VF ). We prove

that ρ�1 ∈ Pathss0(C |= A). Clearly, we have that 〈sn, qn〉 ∈ LocF , x0 = 0, and
for 0 ≤ i < n, xi+ti |= gi and xi+1 = (xi+ti)[Xi := 0], where xi is the clock
valuation when entering location 〈si, qi〉. It then directly follows that qn ∈ QF

and ρ�1 ∈ Pathss0(C |= A), given the entering clock valuation xi of state si.

Following this path correspondence, it is not difficult to show that for each
scheduler D of the CTMDP C, one can construct a scheduler D′ of the prod-
uct P , such that the induced probability measures Prs0,D and Prv0,D′ on the
corresponding paths coincide. The detailed arguments are quite similar to (and
actually simpler than) those of [16, Thm. 4.3]. ��
Thanks to this lemma, it suffices to concentrate on determining maximum reach-
ability probabilities in the product P = C ⊗ G(A). It is well-known [20] that in
this case, memoryless schedulers suffice. This basically stems from the fact that
the elapsed time is “encoded” in the state space of the product P ; recall that
any vertex in P is of the form (s, q, Θ) where Θ is the current region of the single
clock x. Namely, the decision solely depends on (s, q, Θ, x) where (s, q, Θ) is a
vertex in P , and x is the actual clock value.

Now we introduce the Bellman equation on the product P that characterizes
supD∈DP PrPv0,D(Pathsv0(�VF )). The following auxiliary definition turns out to
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be helpful. For a vertex v ∈ V with v�3 = Θi and clock value x, we define the
boundary function �(v, x) = ci+1−x if i < m; and ∞ if i = m. Intuitively, �(v, x)
is the minimum time (if it exists) to “hit” the boundary of the region of vertex v
starting from a clock value x. Let Ψ(v, x) be the maximum probability to reach
VF starting from vertex v given clock value x. Then it follows from [20] that
Ψ(v, x) = 1 if v ∈ VF , and otherwise:

Ψ(v, x) = max
α∈Act(v)

{
∑

v
α,p,X

↪→ v′

∫ 
(v,x)

0

Λα(v)·e−Λα(v)·τ ·p
︸ ︷︷ ︸

(�)

·Ψ(v′, (x+τ)[X := 0]) dτ

+
∑

v
δ

↪→v′

e−Λα(v)·
(v,x)

︸ ︷︷ ︸
(��)

·Ψ (v′, x+�(v, x))

}

, (2)

The term (�) represents the probability to take the Markovian edge v
α,p,X
↪→ v′

while the term (��) denotes the probability to take the delay edge v
δ

↪→ v′. (Note
that there is only a single such delay edge, i.e., the second summation ranges
over a single delay edge.)

Theorem 1. For P = (Act, V, v0, VF , Λ, ↪→) we have:

Ψ(v0,0) = sup
D∈DP

PrPv0,D(Pathsv0(�VF )).

Together with Lemma 1, we thus conclude that our problem—determining the
maximum probability that CTMDP C satisfies the DTA specification A—
reduces to determining Ψ(v0,0) for the Bellman equation (2) on the product
P = C ⊗ G(A).

5 Reduction to a Linear Programming Problem

In this section, we show that the solution Ψ(v0,0) of the Bellman equation (2)
coincides with the solution of an LP problem whose coefficients are maximum
timed reachability probabilities in a set of CTMDPs that are obtained by a
graph decomposition of the product P = C ⊗G(A). Let us first define the graph
decomposition of the product P . The operational intuition can best be explained
by means of our running example, see Fig. 4. The idea is to group all vertices
with the same region, i.e., we group the vertices in a column-wise manner. In
the example this yields three sub-graphs P0 through P2. A delay in Pi (with
i = 0, 1) yields a vertex in Pi+1, taking an edge in the DTA in which clock x is
unaffected (i.e., not reset) yields a vertex in Pi (for all i), whereas in case clock
x is reset, a vertex in P0 is obtained. This is formalized below as follows.

Definition 10 (Graph decomposition). The graph decomposition of P =
(Act, V, v0, VF , Λ, ↪→) yields the set of graphs {Pi | 0 ≤ i ≤ m} where Pi =
(Act, Vi, VFi , Λi, ↪→i) with:
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– Vi = {(s, q, Θi) ∈ V } and VFi = Vi ∩ VF ,
– Λα

i (v) = Λα(v), for v ∈ Vi, and
– ↪→i =

(⋃
α∈Act{Mα

i ∪ Bα
i }
) ∪ Fi where:

• Mα
i is the set of Markovian edges (without reset) within Pi labeled by α,

• Bα
i (backward) is the set of Markovian edges (with reset) from Pi to P0,

• Fi (forward) is the set of delay edges from the vertices in Pi to Pi+1.

As the graph Pm only involves unbounded regions, it has no outgoing delay
transitions.

Example 4. The product P in Fig. 4 is decomposed into the graphs P0,P1, P2 as
indicated by the dashed ovals. For P1, e.g., we have Mβ

1 = {v5 ↪→ v4, v8 ↪→ v9};
Bα

1 = {v6 ↪→ v3, v6 ↪→ v2}, Bβ
1 = {v6 ↪→ v1}, and Bγ

1 = {v7 ↪→ v0}. Its delay
transitions are F1 = {v4 ↪→ v10, v5 ↪→ v11, v8 ↪→ v12, v9 ↪→ v13}.
For graph Pi (0 ≤ i ≤ m) with |Vi| = ki, define the probability vector

�Ui(x) = [u1
i (x), . . . , uki

i (x)]T ∈ R(x)ki×1,

where uj
i (x) is the maximum probability to go from vertex vj

i ∈ Vi to some
vertex in the goal set VF (in M) at time point x. Our aim is to determine �U0(0).
In the sequel, we aim to establish a relationship between �Ui(0) and �Uj(0) for
i �= j. To that end, we distinguish two cases:

Case 0 ≤ i < m. We first introduce some definitions.

– Pα,M
i ∈ [0, 1]ki×ki and Pα,B

i ∈ [0, 1]ki×k0 are probability transition matri-
ces for Markovian and backward transitions respectively, parameterized by

action α. For α ∈ Act(v), let Pα,M
i [v, v′] = p, if v

α,p,∅
↪→ v′; and 0 other-

wise. Similarly Pα,B
i [v, v′] = p if v

α,p,{x}
↪→ v′; and 0 otherwise. Moreover, let

Pα
i =

(
Pα,M

i Pα,B
i

)
. Note that Pα

i is a stochastic matrix, as:

∑

v′
Pα,M

i [v, v′] +
∑

v′′
Pα,B

i [v, v′′] = 1.

– Dα
i (x) ∈ R

ki×ki is the delay probability matrix, i.e., for any 1 ≤ j ≤ ki,
Dα

i (x)[j, j] = e−rα(vj
i )x. Its off-diagonal elements are zero;

– Eα
i ∈ R

ki×ki is the exit rate matrix, i.e., for any 1 ≤ j ≤ ki, Eα
i [j, j] = rα(vj

i ).
Its off-diagonal elements are zero;

– Mα
i (x) = Eα

i ·Dα
i (x)·Pα,M

i ∈ R
ki×ki is the probability density matrix for

Markovian transitions inside Pi. Namely, Mα
i (x)[j, j′] indicates the pdf to

take the α-labelled Markovian edge without reset from the j-th vertex to the
j′-th vertex in Pi;

– Bα
i (x) = Eα

i ·Dα
i (x)·Pα,B

i ∈ R
ki×k0 is the probability density matrix for the

reset edges Bα
i . Namely, Bα

i (x)[j, j′] indicates the pdf to take the Markovian
edge with reset from the j-th vertex in Pi to the j′-th vertex in P0;
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– Fi ∈ R
ki×ki+1 is the incidence matrix for delay edges Fi. Thus, Fi[j, j′] = 1

iff there is a delay edge from the j-th vertex in Pi to the j′-th vertex in Pi+1.

Example 5 (Continuing Example 4). According to the definitions, we have the
following matrices for P0 and P1. Let rα

i be a shorthand of the exit rate rα(si):

Mα
0 (x) =

⎛

⎜
⎜
⎜
⎝

rα
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
E0

⎛

⎜
⎜
⎜
⎝

e−rα
0 x 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
D0(x)

⎛

⎜
⎜
⎜
⎝

0 0 0.9 0.1

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

P
α,M
0

=

⎛

⎜
⎜
⎜
⎝

0 0 0.9rα
0 e−rα

0 x 0.1rα
0 e−rα

0 x

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎠

Similarly,

Bβ
1 (x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 0 0 0

0 1·e−r
β
0 x 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and F0 =

⎛

⎜
⎜
⎜
⎝

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

⎞

⎟
⎟
⎟
⎠

By instantiating (2), we obtain the following for 0 ≤ i < m:

�Ui(x) = max
α∈Act

{∫ Δci−x

0

Mα
i (τ) · �Ui(x+τ)dτ

︸ ︷︷ ︸
(�)

+
∫ Δci−x

0

Bα
i (τ) dτ · �U0(0)

︸ ︷︷ ︸
(��)

+Dα
i (Δci−x) · Fi

�Ui+1(0)

}

,

(3)

Let us explain the above equation. First of all, recall that �(v, x) = Δci−x for
each state v ∈ Vi with i < m. Term (�) (resp. (��)) reflects the case where clock
x is not reset (resp. is reset and returned to P0). Note that Mα

i (τ) and Bα
i (τ) are

the matrix forms of the density function (�) in (2). The matrix Dα
i (Δci−x) indi-

cates the probability to delay until the “end” of region i, and Fi·�Ui+1(0) denotes
the probability to continue in Pi+1 (at relative time point 0), and Dα

i ·(Δci−x)·Fi

is the matrix form of the term (��) in (2).

Case i = m. In this case, �Um(x) is simplified as follows:

�Um(x) = max
α∈Act

{∫ ∞

0

M̂α
m(τ)·�Um(x+τ) dτ + 1̃F +

∫ ∞

0

Bα
m(τ)dτ · �U0(0)

}
, (4)

where M̂α
m(τ)[v, ·] = Mα

m(τ)[v, ·] for v /∈ VF , 0 otherwise. 1̃F is a characteristic
vector such that 1̃F [v] = 1 iff v ∈ VF .

Our remaining task now is to solve the system of integral equations given by
equations (3) and (4). First observe that, due to the fact that Pi only contains
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v6

v7

v1

v2

v3

v5 v4

v8 v9

β, 1

β, 1

β, 1, {x}

α, 0.9, {x}

α, 0.1, {x}

1

1

1

v01
γ, 1, {x}

Fig. 5. Augmented CTMDP C�
1

Markovian edges, the struc-
ture (Vi, Λi, Mi) forms a CT-
MDP, referred to as Ci. For
each Pi, we define the aug-
mented CTMDP C�

i with
state space Vi ∪ V0 such that
all V0-vertices are made ab-
sorbing (i.e., their outgoing
edges are replaced by a self-
loop) and all edges connecting
Vi to V0 are kept. The aug-
mented CTMDP C�

1 for P1 in Fig. 4 is shown in Fig. 5.
By instantiating (2), we have the following equation (in the matrix form) for

the transition probability:

Π(x) = max
α∈Act

{∫ x

0

M̃α(τ)·Π(x−τ) dτ

}

+ Dα(x), (5)

where M̃α(τ)[v, v′] = rα(v)·e−rα(v)·τ ·p if there is a Markovian edge v
α,p,∅
↪→ v′; 0

otherwise. In fact, the characterization of Ψ(s, x) in Section 4 is an equivalent
formulation of Eq.(5). For augmented CTMDP C�

i , M̃α(τ) we have:

M̃α(τ) =
(

Mα
i (τ) Bα

i (τ)
0 I

)

,

where 0 ∈ R
k0×ki is the matrix with all 0’s and I ∈ R

k0×k0 is the identity matrix.
Now given any CTMDP Ci (resp. augmented CTMDP C�

i ) corresponding to
Pi, we obtain Eq. (5), and write its solution as Πi(x) (resp. Π�

i (x)). We then
define Π̄�

i ∈ R
ki×k0 for an augmented CTMDP C�

i to be part of Π�
i , where Π̄�

i

only keeps the probabilities starting from Vi and ending in V0. As a matter of
fact,

Π�
i (x) =

(
Πi(x) Π̄�

i (x)
0 I

)

.

The following theorem is the key result of this section. Its proof is technically
involved and is given in the Appendix.

Theorem 2. For sub-graph Pi of P, it holds:

�Ui(0) = Πi(Δci) ·Fi · �Ui+1(0) + Π̄�
i (Δci) · �U0(0), if 0 ≤ i < m (6)

where Πi(·) and Π̄�
i (·) are defined on CTMDP Ci and (augmented) C�

i as above.

�Um(0) = max
α∈Act

{
P̂α

m · �Um(0) + �1F + B̂α
m · �U0(0)

}
, if i = m (7)

with P̂α
m(v, v′) = Pα

m(v, v′) if v /∈ VFm ; 0 otherwise, and B̂α
m =

∫∞
0 Bα

m(τ) dτ .
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Recall that we intend to solve the system of integral equations given by the
equations (3) and (4) so as to obtain the vectors �Ui(0) for 0 ≤ i ≤ m. Theorem 2
entails that instead of accomplishing this directly, one alternatively can exploit
equations 6 and 7, where �Ui(0) (0 ≤ i ≤ m) can be regarded as a family of vari-
ables and the coefficients Πi(·) can be obtained by computing the corresponding
maximum timed reachability probabilities of CTMDPs C�

i . It is not difficult
to see that the set of equations in Theorem 2 can be easily reduced to an LP
problem, see, e.g., [9].

6 Conclusion

We showed that the verification of CTMDPs against 1-clock DTA objectives
can be reduced to solving an LP problem whose coefficients are extremum timed
reachability probabilities in CTMDPs. This extends the class of timed reacha-
bility properties to an interesting and practically relevant set of properties. The
main ingredients of our approach are a region graph and a product construction,
computing timed reachability probabilities in a set of CTMDPs, and finally solv-
ing an LP problem. The availability of the first practical implementations for
timed reachability of CTMDPs paves the way to a realization of our approach
in a prototypical tool. Like in [7], our approach facilitates optimizations such as
parallelization and bisimulation minimization. Such implementation and exper-
imentation is essential to show the practical feasibility of our approach and is
left for further work.

Another interesting research direction is to consider other acceptance criteria
for DTA, such as Muller acceptance. We claim that this can basically be done
along the lines of [16] for CTMCs; the main technical difficulty is that one
needs to resort to either finite memory schedulers or randomized schedulers, see
e.g. [14].
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A Proof of Theorem 2

Theorem 2. For subgraph Pi of M with ki states, it holds:

– For 0 ≤ i < m,

�Ui(0) = Πi(Δci) ·Fi
�Ui+1(0) + Π̄�

i (Δci) · �U0(0), (8)

where Πi(Δci) and Π̄�
i (Δci) are for CTMDP Ci and (augmented) C�

i , re-
spectively.

– For i = m,

�Um(0) = max
α∈Act

{
P̂α

m · �Um(0) + �1F + B̂α
m · �U0(0)

}
, (9)

where P̂α
m(v, v′) = Pα

m(v, v′) if v /∈ VFm ; 0 otherwise, and B̂α
m =

∫∞
0

Bα
m(τ)dτ .

Proof. We first deal with the case i < m. If in Pi, for some action α there
exists some backward edge, namely, for some j, j′, Bα

i (x)[j, j′] �= 0, then we shall
consider the augmented CTMDP C�

i with k�
i = ki+k0 states. In view of this,

the augmented version of the integral equation �Vi(x) is defined as:

�V �
i (x) = max

α∈Act

{∫ Δci−x

0

Mα,�
i (τ)·�V �

i (x+τ)dτ + Dα,�
i (Δci−x) · F�

i · �̂
V i(0)

}

,

where

– �V �
i (x) =

(
�Vi(x)
�V ′

i (x)

)

∈ R
k�

i ×1, where �V ′
i (x) ∈ R

k0×1 is the vector representing

reachability probabilities for the augmented states in Pi;
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– Mα,�
i (τ) =

(
Mα

i (τ) Bα
i (τ)

0 0

)

∈ R
k�

i ×k�
i . The exit rate of augmented states

is 0 for all actions.

– Dα,�
i (τ) =

(
Dα

i (τ) 0
0 I

)

∈ R
k�

i ×k�
i .

– F�
i =

(
F′

i B′
i

) ∈ R
k�

i ×(ki+1+k0) such that

• F′
i =

(
Fi

0

)

∈ R
k�

i ×ki+1 is the incidence matrix for delay edges and

• B
′
i =

(
0
I

)

∈ R
k�

i ×k0 .

– �̂
V i(0) =

(
�Ui+1(0)
�U0(0)

)

∈ R
(ki+1+k0)×1.

In the sequel, we prove two claims:

Claim 1. For each 0 ≤ j ≤ ki, �Ui[j] = �V �
i [j].

Proof of Claim 1. According to the definition, we have that

�V �
i (x) = max

α∈Act

{∫ Δci−x

0

(
Mα

i (τ) Bα
i (τ)

0 0

)

· �V �
i (x+τ)dτ

+
(

Dα
i (Δci−x) 0

0 I

)

·
(

Fi 0
0 I

)

·
(

�Ui+1(0)
�U0(0)

)}

.

It follows immediately that �V ′
i (x) = �U0(0). For �Vi(x), we have that

�Vi(x)

= max
α∈Act

{∫ Δci−x

0

Mα
i (τ)�Vi(x+τ)dτ +

∫ Δci−x

0

Bα
i (τ)�V ′

i (x+τ)dτ

+Dα
i (Δci−x)·Fi·�Ui+1(0)

}

= max
α∈Act

{∫ Δci−x

0

Mα
i (τ)�Vi(x + τ)dτ +

∫ Δci−x

0

Bα
i (τ)dτ · �U0(0)

+Dα
i (Δci − x) ·Fi · �Ui+1(0)

}

= �Ui(x) .

♣
Claim 2.

�V �
i (x) = Π�

i (Δci − x) · F�
i
�̂
V i(0) ,

where

Π�
i (x) = max

α∈Act

{∫ x

0

Mα,�
i (τ)Π�

i (x − τ)dτ + Dα,�
i (x)

}

.
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Proof of Claim 2. Standard arguments yield that the optimal probability corre-
sponds to the least fixpoint of a functional and can be computed iteratively. Let
ci,x = Δci − x. We define

�V
�,(0)
i (x) = �0

�V
�,(j+1)
i (x) = max

α∈Act

{∫ ci,x

0

Mα
i (τ)�V �,(j)

i (x+τ)dτ + Dα,�
i (ci,x) ·F�

i
�̂
V i(0)

}

.

and

Π�,(0)
i (ci,x) = 0

Π�,(j+1)
i (ci,x) = max

α∈Act

{∫ ci,x

0

M�
i (τ)Π�,(j)

i (ci,x−τ)dτ + Dα,�
i (ci,x)

}

.

By induction on j, we prove the following relation:

�V
�,(j)
i (x) = Π�,(j)

i (ci,x) · Fi
�̂
V i(0) .

– Base case. �V
�,(0)
i (x) = �0 and Π�,(0)

i (ci,x) = 0.
– Induction hypothesis.

�V
�,(j)
i (x) = Π�,(j)

i (ci,x) · F�
i
�̂
U i(0) .

– Induction step. We have that

�V
�,(j+1)
i (x)= max

α∈Act

{∫ ci,x

0

M�,α
i (τ)�V �,(j)

i (x + τ)dτ + Dα,�
i (ci,x) ·F�

i
�̂
U i(0)

}

.

It follows that

�V
�,(j+1)

i (x)

= max
α∈Act

{∫ ci,x

0

M�,α
i (τ )�V

�,(j)
i (x + τ )dτ + Dα,�

i (ci,x) · F�
i
�̂
V i(0)

}

I.H.
= max

α∈Act

{∫ ci,x

0

M�,α
i (τ ) · Π�,(j)

i (ci,x−τ ) · F�
i
�̂
V i(0)dτ + Dα,�

i (ci,x) · F�
i
�̂
V i(0)

}

= max
α∈Act

{(∫ ci,x

0

M�,α
i (τ )Π

�,(j)
i (ci,x − τ )dτ + D�

i (ci,x)

)

· F�
i
�̂
V i(0)

}

= max
α∈Act

{∫ ci,x

0

M�,α
i (τ )Π

�,(j)
i (ci,x − τ )dτ + Dα

i 	 (ci,x)

}

· F�
i
�̂
V i(0)

= Π
α,(j+1)
i (ci,x) · F�

i
�̂
V i(0) .

Clearly,
Π�

i (ci,x) = lim
j→∞

Π�,(j)
i (ci,x) ,

and
�V �

i (x) = lim
j→∞

�V
�,(j)
i (x) .

It follows the conclusion. ♣
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We now proceed with the main proof. Let x = 0 and we obtain

�V �
i (0) = Π�

i (ci,0) ·Fi
�̂
Vi(0) .

We can also write the above relation for x = 0 as:
(

�Vi(0)
�V ′

i (0)

)

= Π�
i (Δci)

(
F′

i B′
i

)
(

�Ui+1(0)
�U0(0)

)

=
(

Πi(Δci) Π̄�
i (Δci)

0 I

)(
Fi 0
0 I

)(
�Ui+1(0)
�U0(0)

)

=
(

Πi(Δci)Fi Π̄�
i (Δci)

0 I

)(
�Ui+1(0)
�U0(0)

)

=

(
Πi(Δci)Fi

�Ui+1(0) + Π̄�
i (Δci)�U0(0)

�U0(0)

)

.

As a result we can represent �Vi(0) in the following matrix form

�Vi(0) = Πi(Δci)Fi
�Ui+1(0) + Π̄a

i (Δci)�U0(0) ,

by noting that Πi is formed by the first ki rows and columns of matrix Π�
i and

Π̄�
i is formed by the first ki rows and the last k�

i − ki = k0 columns of Π�
i . (8)

follows from Claim 1.

For the case i = m, i.e., the last graph Pm, the region size is infinite, therefore
delay transitions do not exist. Recall that

�Um(x) = max
α∈Act

{∫ ∞

0

M̂α
m(τ)�Um(x + τ)dτ +�1F +

∫ ∞

0

Bα
m(τ)dτ · �U0(0)

}

.

We first prove the following claim:

Claim 3. For any x ∈ R≥0, �Um(x) is a constant vector function.

Proof of Claim 3. We define

�U (0)
m (x) = �0

�U (j+1)
m (x) = max

α∈Act

{∫ ∞

0

M̂α
m(τ)�U (j)

m (x + τ)dτ +�1F +
∫ ∞

0

Bα
m(τ)dτ · �U0(0)

}

.

It is not difficult to see that �Um(x) = limj→∞ �U
(j)
m (x). We shall show, by induc-

tion on j, that �U
(j)
m (x) is a constant vector function.

– Base case. �U
(0)
m (x) = �0, which is clearly constant.

– Induction Hypothesis. �U
(j)
m (x) is a constant vector function.
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– Induction step.

�U (j+1)
m (x)

= max
α∈Act

{∫ ∞

0

M̂a
m(τ)�U (j)

m (x + τ)dτ +�1F +
∫ ∞

0

Bα
m(τ)dτ · �U0(0)

}

I.H.= max
α∈Act

{∫ ∞

0

M̂a
m(τ) · �U (j)

m (x)dτ +�1F +
∫ ∞

0

Bα
m(τ)dτ · �U0(0)

}

= max
α∈Act

{∫ ∞

0

M̂a
m(τ)dτ · �U (j)

m (x) +�1F +
∫ ∞

0

Bα
m(τ)dτ · �U0(0)

}

.

The conclusion follows trivially. ♣

Since �Um(x) is constant vector function, we have that

�Um(x) = max
α∈Act

{∫ ∞

0

M̂α
m(τ)dτ · �Um(x) +�1F +

∫ ∞

0

Bα
m(τ)dτ · �U0(0)

}

.

Moreover, it is easy to see that
∫∞
0

M̂α
m(τ)dτ boils down to P̂α

m and
∫∞
0

Ba
m(τ)dτ

boils down to B̂α
m. Also we add the vector �1F to ensure that the probability to

start from a state in GF is one. Hence, (9) follows trivially. ��
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