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Materials and Methods 

Lead filled ZnO nanotubes were synthesized as previously described (17). Briefly, a 1x1 mm 

piece of zinc foil was immersed into a 1 mM aqueous solution of Pb(NO3)2 after its surface had 

been thoroughly scratched with a razor blade. After several minutes when a dense forest of 

whiskers had formed on its surface, the zinc foil was carefully removed, washed by dipping into 

deionized water, and dropped into 0.5 ml methanol. The nanotubes were detached from the 

surface by gentle shaking. Typically, 5 µl of the resulting suspension were then deposited onto a 

TEM grid (1-6 monolayer thick graphite film on 2000 mesh copper, Graphene Supermarket), and 

the solvent was allowed to evaporate. 

 

Time-resolved single-shot experiments were carried out with the UEM-1 instrument (15). Unless 

otherwise noted, the sample was held at 363 K. Dynamics were initiated with a 532 nm pulsed 

picosecond laser that was focused onto the specimen (16 ps FWHM, 20 µm FWHM spot size, 

and 150 nJ pulse energy, unless otherwise noted). The structure was then imaged at a given time 

delay with a probe electron pulse generated by a 266 nm nanosecond laser (10 ns FWHM) that 

was synchronized to the pump laser with a digital delay generator. In order to eliminate the 20 ns 

jitter between the pump and probe pulse, both laser pulses were monitored with fast photodiodes, 

and their precise delay was determined for every experiment. 

 

A bandpass filter was applied to the single-shot images and any images recorded with a pulsed 

electron beam. Occasionally, a small shift between the images recorded before and after the 

pump laser pulse was observed, which may be due to some deformation of the substrate. The 

images are shown without correction for this shift. In general, we have limited our discussion to 

displacements much larger than typical image drift or to observations that could not possibly be 

explained by a movement of the entire sample. We also note that the tubes are attached to the 

substrate and therefore do not undergo any large-amplitude mechanical movement induced by 

the laser pulse, so that one could mistake such a motion for an expansion of the lead column. 

Moreover, when irregularities of the tube walls are recognizable in the single-shot images, it is 



 3 

evident that the liquid column moves past these points, which could not be explained by a 

movement of the entire tube. 

 

In order to measure the expansion of a laser heated lead column as a function of time (see Fig. 4 

of the main text), we determine the center of the meniscus in the images recorded before and 

shortly after the laser pulse. The displacement of the center is then projected onto the tube axis, 

and the norm is taken to obtain the expansion. The center of the meniscus is first guessed for 

every image. Subsequently, an intensity profile is taken at this point orthogonal to the tube axis. A 

fit with a top hat shaped function serves to obtain the exact location of the tube axis, and the 

guess for the center of the meniscus is updated accordingly. Finally, an intensity profile is 

calculated at this new location, this time parallel to the tube axis. A fit with an error function then 

serves to update the position of the meniscus parallel to the axis. The error bars shown in Fig. 4 

of the main text are derived from the standard errors of the fit. Occasionally, bad fits result in 

errors larger than 20 nm, and the corresponding data points are discarded. It should be noted that 

this procedure gives the displacement of the meniscus averaged over its width.  

 

Supplementary Text 

Estimation of the temperature-jump and cooling rate 

The transient temperature of a sample can be conveniently determined from a time-resolved 

diffraction experiment by means of the Debye-Waller effect, which predicts an exponential 

decrease of the scattered intensity with temperature (34). However, non-Debye-Waller behavior 

is observed if the sample undergoes a phase transition. We therefore estimate the transient 

temperature of the lead filled ZnO nanotubes from an experiment conducted at lower laser 

fluences and extrapolate to the fluence used in the single-shot experiments. In order to obtain a 

diffraction pattern with a sufficient signal-to-noise ratio, it is necessary to average the results of 

many individual experiments. However, the delicate nanotubes would not be able to withstand 

exposure to millions of laser shots at a high fluence. Moreover, such a stroboscopic 

measurement requires that the sample does not undergo irreversible changes, which would 
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obscure the dynamics. This is not the case at high laser fluence, where we observe that the 

ordered domains of the lead core become mobile and randomly change their orientation. It is 

found that such irreversible processes can only be sufficiently suppressed when the pulse energy 

is limited to 15 nJ (one tenth of the energy used for the single-shot experiments). 

 

Figure S1A shows a partially filled nanotube with an average outer diameter of 85 nm of the filled 

sections. An aperture was inserted to record the selected-area diffraction (SAD) pattern of fig. 

S1B. It shows reflections of the graphite substrate as well as the circled groups of diffractions 

spots, which arise from domains of the lead core that fulfill the Bragg condition. The diffraction 

intensity was determined by radially averaging the corresponding sections of the diffraction 

pattern and fitting the obtained intensity profiles in the vicinity of the peaks with the sum of a 

Lorentzian and a quadratic background function. 

 

 

Fig. S1.  Estimation of the temperature-jump and cooling rate for two different nanotubes. (A, E) 

Micrographs of the nanotubes; the laser polarization is indicated with a double headed arrow. 

(Scale bars, 500 nm.) (B, F) The corresponding selected-area diffraction patterns show groups of 

reflections (circled in red) arising from domains of the lead core that fulfill the Bragg condition. 

(Scale bars, 2 nm
-1

.) (C, G) Integrated intensity of these groups of diffraction peaks as a function 

of the time delay between the laser pump and electron probe pulse. The blue curve represents a 
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fit with an exponential function, broadened to account for the temporal jitter and the finite width of 

the probe pulse. (D, H) Plot of the diffraction intensity as a function of the sample temperature in 

the absence of the pump laser. Error bars indicate ±1 SEM of 20 measurements for every data 

point. 

 

 

Figure S1C shows the summed intensity of both groups of reflections as a function of delay 

between the laser pump and electron probe pulses. Unlike in the single-shot experiments 

discussed in the main text, which were carried out at 363 K, the sample was held at room 

temperature. We find that the observed cooling dynamics, which represent an average over the 

length of the tube, can be well described by a single exponential with a time constant of 112 ns 

(blue line). This result is obtained by forward convolution taking into account the jitter between the 

pump and probe of 20 ns and the Gaussian profile of the electron pulse with 10 ns FWHM. We 

also measured the diffraction intensity as a function of the sample temperature (in the absence of 

laser irradiation), which is shown in fig. S1D. A linear fit of the logarithm of the diffraction intensity 

provides a calibration for the transient data, which allows us to determine that the nanotube 

undergoes an initial temperature-jump of 81 K. 

 

By fitting the logarithm of the diffraction intensity with a straight line, Debye-Waller behavior is 

implied. However, partial melting of the sample (non-Debye-Waller behavior) or movement of the 

diffracting domains may also contribute to the observed intensity changes. The linear relationship 

may nevertheless serve to estimate the transient temperature profile, assuming that any 

processes leading to a change in diffraction intensity are fast compared with the cooling rate, i.e. 

the lead core is always in a state of quasi-equilibrium. 

 

Figures S1E-G show data for a second nanotube with an average outer diameter of 61 nm, for 

which we determine a temperature-jump of 106 K. Cooling occurs with a time constant of 226 ns. 
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The first tube dissipates heat faster, likely because it is located closer to the copper bars of the 

TEM grid (fig. S1A, left and bottom), which act as a heat sink. 

 

For nanoparticles, thermal equilibriation occurs on a timescale of 100 ps (35), much faster than 

heat dissipation. Thus the lead column and ZnO shell reach thermal equilibrium promptly after the 

laser pulse. For a nanotube initially at temperature T0 and reaching T1 after the temperature-jump, 

the energy ΔQ absorbed by a small section of length Δx is then given by, 

 

 

(1) 

where r is the radius of the lead core and w the thickness of the tube wall; Cp
Pb(s)

 and Cp
ZnO

  are 

the specific heat capacities of solid lead (36) and ZnO (37), respectively; and ρ
Pb

 = 11343 kg/m
3
 

and ρ
ZnO

 = 5606 kg/m
3
 are their densities. The average outer diameters 2(r + w) of the nanotubes 

in fig. S1A and E (85 and 61 nm, respectively) were deduced from intensity profiles taken 

orthogonal to the tube axis along the full length of the filled sections. The mean width of the tube 

was then determined from fits with top hat profiles. For the thickness of the ZnO shell, we deduce 

w = 10 nm for both tubes. Using Equation (1), we find that the first tube (fig. S1A) absorbs about 

40 % more energy per unit length than its counterpart of fig. S1E, which is consistent with its 

larger geometric cross section. It is oriented parallel to the laser polarization, which is indicated 

with a double headed arrow in fig. S1A. However, most nanotubes that we investigated happened 

to be oriented parallel to the second tube (fig. S1E), i.e. nearly orthogonal to the laser 

polarization. We therefore used the data gathered for the second tube (fig. S1E-H) for the 

temperature-jump calculation. We note that estimates obtained with the first data set are 

qualitatively similar, and the differences are insubstantial for any of the conclusions drawn in the 

main text. 

 

We estimate the temperature of a given nanotube in a single-shot experiment by extrapolating to 

a high fluence while taking the geometry of the tube into account. In our calculation, it is assumed 

that the energy absorbed per unit length ΔQ/Δx is proportional to the laser fluence and that we do 
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not saturate the optical transition. This should be a good approximation, given that electron-

electron scattering occurs on the fs time scale, much faster than the duration of our pump laser 

pulse of 16 ps FWHM (38). Indeed, it was found that the temperature of a laser heated Pb(111) 

surface increases linearly with the fluence until melting sets in, albeit at a longer laser pulse 

duration of 180 ps (34). The same observation was made for gold nanoparticles, this time with 

150 fs laser pulses (35). The absorption cross section is taken to be proportional to the geometric 

cross section of the lead core, i.e. to its radius r. Numerical simulations of the absorption cross 

section of an infinitely long lead nanowire coated with a ZnO shell suggest that this is a 

reasonable approximation for tube radii close to the one determined in fig. S1E and when the 

incident laser is polarized orthogonal to the tube axis. 

 

For a nanotube heated above the melting point of lead, the energy absorbed per unit length 

ΔQ/Δx is thus given by, 

 

 

(2) 

where Tm = 600.64 K is the melting point of lead (18), ΔHf = 23.1 kJ/kg its specific heat of fusion 

(39), and Cp
Pb(l)

 the specific heat capacity of liquid lead (18). By calculating ΔQ/Δx using the 

assumptions discussed above and then solving Equation (2) for T1, we obtained the temperature 

of the nanotube after the laser pulse. 

 

Model of the expansion dynamics of a lead column inside a nanotube 

We model the laser driven expansion and subsequent contraction of liquid lead inside a nanotube 

in analogy with the derivation of Washburn's law, which successfully describes the filling 

dynamics of a vertical capillary brought into contact with a liquid (22). The vertical liquid column of 

mass m, moving with velocity v, is drawn into the capillary by the capillary force F, while the 

weight of the column W and the viscous friction force Fη oppose its progression. 
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(1) 

The friction force Fη is derived from Poiseuille's law for laminar flow of an incompressible 

Newtonian fluid through a pipe with circular cross section 

 , (2) 

where η is the dynamic viscosity and z the length of the column. 

 

 

Fig. S2.  Schematic drawing of a liquid filled nanotube and definition of relevant parameters. 

 

In a horizontal nanotube (fig. S2), we can neglect the weight W.  Moreover, we can neglect the 

capillary force F, which is small and remains constant. However, we have to choose a continuum 

treatment to describe the expansion of the liquid. The forces acting on a short section of the 

column with length Δx are  

 
, 

(3) 

where u is the displacement field, A the cross section of the column, ρ the density of lead, f the 

friction coefficient, and E the resistance of the liquid column to compression in the axial direction. 

For a rigid tube, E can be identified with the bulk modulus K 

 
, 

(4) 

where V is the volume and p the pressure of the column. If the tube expands at high temperature 

and high internal pressure, E is effectively reduced. We neglect the volume viscosity of lead since 

its effect on the dynamics is small as we verified by solving Equation 3 numerically while including 

the volume viscosity. As discussed in more detail below, we also neglect the energy cost of 

l x

0

el/2

A
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displacing and deforming the meniscus as well as other forms of energy dissipation which reduce 

the speed of the expanding column. 

 

Simplifying Equation 3 gives 

 
 . 

(5) 

The initial displacement is  

 
, 

(6) 

where e is the compression per unit length of the column with respect to l, its equilibrium length at 

the temperature it reaches immediately after the laser pulse. Moreover, the system is initially at 

rest 

  . (7) 

We observe that the lead column returns to its initial temperature on a time scale of about 300 ns 

(fig. S1). It is nevertheless instructive to solve Equations 5-7 assuming that no cooling takes place 

after the laser pulse, so that the equilibrium length l does not change with time. The solution 

provides a good approximation for the initial expansion of the column, where the temperature can 

be assumed to be constant. In order to model the dynamics at later times, we then to resort to 

numerical simulations. 

 

It should be noted that under the assumption of constant temperature, Equations 5-7 also 

describe the damped oscillations of an initially compressed free prismatic bar, where E then 

represents Young's modulus of its material (40). The solution is found by setting 

 
, 

(8) 

where qn are time dependent coefficients. One obtains a set of differential equations for the 

coefficients 

 
 

(9) 
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with the characteristic equations 

 

 . 

(10) 

For small damping, the roots λn are complex, so that we can write 

 
 . 

(11) 

In the undamped case (f = 0), the roots λn are 

 

 . 

(12) 

This yields the general solution for qn 

 , (13) 

where the coefficients An and Bn can be determined by using the initial conditions (Equations 6 

and 7). For small f, Bn ≈ 0, and one obtains 

 
 . 

(14) 

For the displacement of the meniscus (x = l), we obtain 

 
, 

(15) 

which for small damping (ω'n ≈ ωn) becomes 

 
 . 

(15b) 

Equation 15b is a product of a triangle wave ftriangle 

 

, 

(16) 

which describes the motion in the absence of friction (f = 0) with an exponential function that 

describes frictional damping. The triangle wave has an amplitude of el/2 and a period 𝜏  

 
 . 

(17) 

The meniscus therefore initially moves with a speed v0 
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, 

(18) 

and we can express its displacement from its initial position Δux=l as 

 

 . 

(19) 

Equation 19 expresses an intuitive result. Friction slows the initial expansion so that Δux=l 

deviates from linearity. Our experimental data (Fig. 4 of the main text) suggest that frictional 

damping must be small since the expansion curve does not deviate strongly form a straight line. 

We estimate the friction coefficient f by fitting the expansion curve with the expression 

 

 , 

(20) 

where the parameter t0 allows for a delayed onset of the expansion; the cross section of the 

column A and density ρ are known, the velocity v0 is obtained from a linear fit of the expansion 

curve, and el/2 is estimated to be the maximum displacement of the meniscus. We verified this 

procedure by fitting simulated expansion curves with Equation (20). The fit reproduces the friction 

coefficient of the simulation well and rather overestimates it in the case of very small fricition. We 

find that the fit is not very sensitive to different values of el/2, which allows us to simply estimate 

el/2 from the maximum expansion. Estimates of the friction coefficient in Fig. 4 of the main text 

using different values of el/2 fall within the indicated range. We note that in the regime of small f, 

Equation 20 becomes 

 . 
(21) 

 

In the following, we compare the analytical expressions derived above as well as the results of 

numerical simulations with the experimental data. Figure S3A shows the measured expansion of 

a lead column inside a nanotube of 55 nm inner diameter as a function of the time after the 

heating pulse. As described in the main text (see the discussion of Fig. 4), we estimate the friction 
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coefficient from a fit (Equation 20, blue line) of the initial expansion (data points in blue). To 

validate this procedure, we show that our model can reproduce the observed dynamics. 

 

  

Fig. S3.  Simulation of the expansion dynamics of a liquid lead column inside a nanotube 

following impulsive laser heating. (A) Experimental data for a nanotube of 55 nm inner diameter. 

The friction coefficient f is estimated from a fit (blue line) of the initial expansion (blue dots). The 

gray lines provide a guide for the eye. Error bars indicate the standard error of the fit used to 

extract the displacement of the meniscus. (B) Simulation using the analytical solution of Equation 

9 assuming a fixed temperature after the laser pulse for f = 0 (black) and f = f0 = 8πη (blue); the 

column length was chosen to be l = 15 µm. (C) Numerical simulations for column lengths l = 15 

µm (black) and l = 10 µm (blue); f = 0.5·f0. The equilibrium column length is assumed to decrease 

exponentially after the laser pulse. The curves are convoluted with a Gaussian function of 10 ns 

FWHM to account for the finite electron pulse duration. (D) Numerical simulations for f = 0.1·f0 

(black) and f = 0.01·f0 (blue); l = 15 µm. 

 

In the following, the diameter of the lead column is 55 nm, as determined from the micrograph of 

fig. S6. The length l of the column cannot be measured since the nanotube extends beyond the 

transparent region of the specimen support. We assume a typical value of l = 15 µm and assess 

the effect of a variation of the column length. Using the procedure outlined above, the 
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temperature of the tube immediately after the laser pulse is estimated to be 1700 K, well above 

the melting point of lead Tm = 600.64 K (18). The bulk modulus of lead at this temperature K(1700 

K) = 23.5 GP (33) can serve as an upper limit of the resistance of the liquid column to 

compression E. The upper limit for the initial compression per unit length is e = 1-ρl/ρs, where ρl = 

9309 kg/m
3
 is the density of liquid lead at 1700 K (33), and ρS = 11343 kg/m

3
 the density of solid 

lead. The values of both E and e are effectively reduced if the tube expands under pressure or if 

the lead column does not fully return to its low-temperature equilibrium length upon cooling. Both 

E and e determine the speed of the initial expansion v0 via Equation 18, which can also be 

obtained from energy conservation by equating the elastic energy stored in a short section of the 

column of length Δx to its kinetic energy after it has expanded, 

 
 . 

(22) 

While our model accounts for viscous friction, the expanding column may also dissipate energy 

for displacing and deforming the meniscus and possibly for detaching from the tube wall, which 

may be associated with a significant energy cost if an oxide skin covers the liquid column (27). All 

these additional sources of energy dissipation, when added to Equation 22, reduce the amount of 

energy available for accelerating the column and thereby decrease v0, leading to lower effective 

values of E and e. We note that in Equation 20, which we use to extract the friction coefficient 

from our experimental data, v0 becomes a mere fit parameter incorporating both e and E. When 

we set E = 0.1·K(1700 K) and e = 0.2·(1 – ρl/ρs), the simulated speed of the initial expansion v0 

closely matches the experimental data. With these parameters, our simulations also predict the 

maximum expansion reasonably well, which among other factors depends on e. For the density 

of lead, we take ρ = ρS. 

 

Figure S3B displays expansion dynamics simulated using the analytical solution of Equation 9 

with a fixed temperature after the laser pulse. Without damping (f = 0, black curve), elastic 

oscillations occur, which are described by a triangle wave with amplitude el/2 and period 𝜏 = 2l· 

(ρ/E)
1/2

 (Equation 17). If we set f = f0 = 8πη, where η = 8.53·10
-4

 Pa·s is the dynamic viscosity of 

lead at 1700 K (33), we obtain the overdamped blue curve. 
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Solving Equation 9 numerically allows us to simulate the complete dynamics of expansion and 

contraction. We neglect that the lead core undergoes a phase transition upon cooling and 

assume that the equilibrium length of the column decreases exponentially from l to an asymptotic 

value of (l-el) with a time constant of 100 ns (a typical 1/e time for cooling of a nanotube in close 

proximity to a copper bar of the TEM grid, see above). The friction coefficient f is taken to be 

constant. When f = 0.5·f0, we obtain the black curve in fig. S3C, which basically reproduces the 

experimental data. When the equilibrium length is decreased to 10 µm, the blue curve is 

obtained. The velocity of the meniscus during the initial expansion v0 is identical, as predicted by 

Equation 18, which states that v0 is independent of the column length l. Moreover, the maximum 

expansion decreases only by about 20%. The small changes of the column length that 

sometimes occur in the course of an experiment therefore only lead to a minor distortion of the 

measured dynamics. Most importantly, they will not affect the initial expansion, which we use to 

estimate the friction coefficient f. 

 

In fig. S3D, the friction coefficient is further reduced to f = 0.1·f0 (black curve) and f = 0.01·f0 (blue 

curve), which is close to the estimate obtained from the experimental data. At such low damping, 

oscillations of the meniscus are predicted to occur. It is possible that these oscillations contribute 

to the increased scatter of the data points that we observe once the lead column has reached its 

maximum expansion. However, several effects that our model neglects might suppress such 

elastic oscillations. For example, we assume that the liquid column always fills the entire cross 

section of the tube. This might not be true if the column is stretched beyond its equilibrium length 

and give rise to an additional process in which the kinetic energy is dissipated. It is also 

conceivable that static friction might set in once the velocity of the advancing column has dropped 

below a critical value, thus altering the observed dynamics. Finally, if the slip length should 

indeed depend nonlinearly on the shear rate, as discussed in the main text, the friction coefficient 

f would be higher during the slow contraction of the column, which would lead to fast damping of 

the oscillations. 
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The important point here is that the friction coefficient can be measured experimentally, and in 

this case from the measured (in the image) expansion as a function of time, we can ascertain that 

this coefficient is small, being at most 10 % of the bulk value of liquid lead (see the main text). 
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Fig. S4. Volume of the extrusion in Fig. 1B-F of the main text and Movie S2 as a function of time. 

The volume is estimated from the particle diameter assuming spherical shape. A linear fit (blue 

line) yields an average flow rate of about 4 yoctolitres per second. 
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Fig. S5. Lead leaking from the open end of a ZnO nanotube in a series of single-shot 

experiments. (A1, B1, ...) Images of the nanotube before each pump laser pulse, acquired by 

accumulating over 600 electron pulses. (A3, B3, ...) Single-shot images taken at short delays 

after the heating pulse. (A2, B2, ...) Difference images obtained by subtracting the images 

recorded before each pump laser pulse from the single-shot images. Negative and positive 

intensity are indicated by blue and red, respectively. (A4, B4, ...) Difference images obtained by 

subtracting the single-shot images from the images recorded after each pump pulse. (Scale bar, 

200 nm.)  
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Fig. S6. Micrograph of the nanotube in Fig. 4 of the main text. On the left, two other tubes were 

damaged during laser irradiation. The copper mesh of the TEM grid is visible at the top. (Scale 

bar, 300 nm) 
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Movie S1. Movie of a lead filled ZnO nanotube during irradiation with a picosecond pulsed laser. 

Images were recorded every 4 s with a continuous electron beam and 1 s acquisition time, while 

the nanotube was irradiated at 0.5 Hz repetition rate with a pulse energy of 150 nJ. In order to 

correct for any drift, the images were aligned using cross correlation with a reference. (Scale bar, 

100 nm.) 
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Movie S2. Movie of a lead filled ZnO nanotube reabsorbing a spherical extrusion. The extrusion 

had been created by a single laser pulse, which had forced part of the molten core through a leak 

in the tube wall. Images were recorded every 5 s with a pulsed electron beam (2 kHz repetition 

rate) and 0.3 s acquisition time. The sample was held at 363 K and was not irradiated with the 

pump laser while the movie was recorded. (Scale bar, 200 nm.) 
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