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Abstract
Mass collaboration efforts can increase innovation and design possibilities. Incorporation
of open innovation into the product development process allows for a vast array of
unique perspectives and ideas. However, with the broad expansion of design possibilities,
coordination of these development processes is paramount. To best make use of open
innovation in product development, increased organizational efforts must be considered.
The mass collaboration of individuals must account for individual intellectual abilities
(competencies), working experience and even personality traits or idiosyncrasies.
Approaches to this problem require the fusion of social network analysis with quantifiable
design impacts. This work proposes a simulation framework that evaluates the design
potential of a project team based on individual attributes and the team network structure.
The overall contribution of this work comes from the exploration of team structure,
focusing on network composition metrics such as centrality and network density, while
attempting to understand the role of individual ability and positioning on the success of
the design process. This work aims to garner a more thorough understanding of how the
network structure of design teams correlates with their potential performance through a
generalized simulation framework, applicable to future crowd and design initiatives.
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1. Introduction

Mass collaboration efforts have been applied using a variety of techniques.
Crowdsourcing has been employed by numerous organizations as a method to
garner ideas from the masses through the use of design challenges (Howe 2006).
Thismethod ofmass collaboration generally places the organizational structure of
the effort under the sponsoring company, only allowing for the crowd to generate
potential solutions without complete engagement in the design process (Brabham
2008).Open-innovationmethods have helped to increase the crowd’s contribution
by actively engaging individuals throughout the design process. These challenges
are still carried out under the umbrella of the sponsoring organization; however,
there is greater collaboration between the individuals within the organization
and those supporting the open-innovation process (Shirky 2008). Continuing
with increased individual engagement, open source projects allow for the greatest
inclusion of individuals, as these projects allow for direct contribution to the
design effort.
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From crowdsourcing to open source projects, an increase of the labor force on
a project opensmany additional channels for unique perspectives.With the cost of
communication drastically decreasing, individuals across the globe can virtually
communicate instantaneously. The increase in communication possibilities has
led to the promotion of the spread of knowledge and ideas where previously
these initiatives were either too organizationally complex or cost prohibitive.
The guiding idea of this phenomenon is that solutions gathered from the many
increase innovation and variety when compared with solutions obtained from
a single source (Surowiecki 2005; Tapscott & Williams 2008). This idea has
been successful in many product design, innovation and social change initiatives
(Change.org 2017; InnoCentive 2017; NASA NOIS 2017; OpenIdeo 2017).

The production of products or software can be generally categorized into two
main approaches, namely traditional production and user production (Brabham
2013). Traditional production focuses on a top-down process contained within
an organization in a hierarchical form. User production focuses on a bottom-up
approach, allowing the community to generate content without much level of
organization, in a somewhat self-governing manner (Panchal & Fathianathan
2008). Our work primarily focuses on user production while supplementing the
organizational component of traditional production with social network analysis
to allow for greater user production while also minimizing expensive managerial
overhead (Hamel 2011).

The success of open-innovation efforts requires a shared design initiative, a
pool of incentivized individuals and the organization of individual efforts (Chiu,
Liang & Turban 2014). The shared design initiative can come from many sources
such as consumers or even the crowd itself; however, the specifics of the project
being developed and its inception are topics for future work. The individual labor
pool must be composed of large masses who are willing to contribute, hinging
on a provided incentive (Brabham 2010; Panchal 2015). For example, Amazon’s
Mechanical Turk boasts having over 500,000 workers, emphasizing the number
of individuals willing to contribute to shared projects. While these projects are
generally repetitive and simplistic crowdsourcing efforts, they do highlight the
number of individuals willing to contribute.

One of the less developed components of current mass collaboration efforts,
which is needed to develop complex projects, is increased structure and
organization, backed with rigorous network development. In order to take full
advantage of all that mass collaboration has to offer, the organizational structure
behind the crowd must be fully understood and managed. For that, this work
explores social network analysis (SNA) metrics and their potential application
toward design networks.

Social network analysis makes use of the analysis of network graphs, which
consist of a combination of nodes and edges. The nodes can represent individuals,
groups or locations while the edges represent flows of information such as
ideas, concepts or even physical items such as packages. Edges within a network
can also be directed and weighted depending on the network that is being
analyzed. In directed networks, the direction of the information flow along edges
is considered. In weighted networks, these edges can carry higher or lower
importance depending on what information is being passed. The combination
of nodes and edges also leads to network and individual metrics that describe
the network and the roles of the individuals within it. The use of SNA to study
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mass collaboration initiatives allows for the visualization and understanding of
individual efforts on specific portions of the design initiative (Wu et al. 2016).
Social network analysis also allows for the potential identification of cognitive
biases. One potentially destructive area in group decision making is ‘group
think’, which can corner a design team into one solution (Esser 1998). With this
knowledge, efficiently placed information streams can be opened to increase the
collaboration efforts and thus increase the design potential of the group.

This work evaluates simulated teams of individuals working on a shared
design initiative, all while monitoring the network structure of each group. The
teams comprise subsets of individuals within a crowd made up of members with
unique experiential and educational backgrounds. The outcome of this work
is demonstrated through the use of randomly developed networks, using three
network generation models to simulate varying personality characteristics of
crowd members. These networks are measured on the probability of product
development success, while also being used to understand the effect of various
social network metrics within each network.

The precise quantification of individual or collaborative design improvements
is difficult to measure given the key performance indicators (KPIs) being studied.
With this in mind, a predicted design score is evaluated based on the assumption
that individuals with greater domain knowledge and experience will generally
map to more effective design solutions. The total project success in this work is
based on KPIs characterized within four fundamental domains: demand (sales),
innovation, manufacturability and quality. Within this work, these four areas are
of equal importance; however, they can be adjusted based on the project being
proposed and the KPIs that are identified as having greater significance to the
stakeholders.

The result of this work links team composition and network structure with
predicted design success. The overall outcome of each project design team is
compared against these network statistics to observe any correlations that could
help to guide the future development of design teams. This work aims to simulate
a design scenario that relies on the self-organization of openly formed mass
collaboration efforts based on individual characteristics. This type of scenario
would be similar to an open source software development project, but translated
into an engineering design context. In this new context, CAD models and
design variables become equivalent to the source code in an open source project.
The results found within this work highlight the potential of this simulation
framework, while any correlations found are specifically attributed to the group
of individuals utilized within the analysis.

2. Motivating work

The primary motivation for this work is derived from the analysis of mass
collaboration design projects in addition to the use of SNA and team formation
concepts.

2.1. Mass collaboration

Mass collaboration can be found in many forms, from companies or governments
utilizing crowdsourcing to individuals grouping together on open source software
projects. Schenk and Guittard performed a review of mass collaboration
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opportunities (Schenk & Guittard 2009), where they highlighted geographical
mapping throughOpenStreetMap, the digitization of archives though ReCaptcha,
and content analysis through Amazon’s Mechanical Turk. Each of these requires
virtually no previous training or background knowledge, forcing the crowd
participation to remain simplistic and the success of the projects to be based on
the number of participants performing similar tasks. These tasks are considered
to be micro tasks and are open to anyone who wishes to participate.

This concept is extended through the use of ‘gamification’. Here, complex
problems are presented to the crowd in the form of a game in which players
are rewarded for better solutions, also considered as an application of ‘crowd
science’ (Franzoni & Sauermann 2014). One significant example is the game
Foldit, where the crowd was tasked to develop protein structures. Launched in
May 2008, the game had attracted 50,000 users by September 2008 and had
already outperformed one of the top algorithms in the field (Cooper et al. 2010).
The process of ‘gamification’ has even seen applications in vehicle design (Ren,
Bayrak & Papalambros 2015). The application of these tasks requires a brute force
approach that demands a large number of individuals to participate. Moreover,
due to the lack of cross-communication between individuals, no organizational
network needs to be established. This concept, however, does not lend itself well
to complex system design where the required actions of each individual can take
significant time and collaboration, all while incorporating specialized skill sets.

While tasks such as these represent the majority of current crowdsourced
projects due to their ease of implementation,more complex tasks are also currently
being performed. Focus has also been placed on tasks that require some previous
knowledge or a specific skill (Brabham2008). Thiswork studies previous examples
of successful crowdsourced designs such as t-shirt design on Threadless, image
capture through iStockphoto andmore complex design tasks through InnoCentive,
which ismore closely described as open innovation. Crowdsourcing has even seen
applicationswithin the realmof public policy generation and infrastructure design
(Brabham 2009; Aitamurto & Landemore 2015; Certoma, Corsini & Rizzi 2015).
These projects require more industry-specific knowledge to complete; however,
they still remain open to anyone who would like to participate. The concept of
open access is paramount to the mass collaboration process. While it may be
beneficial to have experience in photography to submit photos to iStockphoto,
it is not required. By not limiting those who can contribute, these projects all open
the door for potentially very unique and innovative solutions (Surowiecki 2005).
These examples highlight the potential for individual competency requirements
on participants; however, since they still primarily rely on crowdsourcing, the
network of individuals does not need to be established.

The quantification of individual competency has been approached by
analyzing current crowd development platforms. Recent effort has been made to
understand which ideas/users should carry higher weight and which ideas/users
should be given less consideration. Burnap et al. examined this idea by attempting
to identify the experts within a heterogeneous crowd (Burnap et al. 2015). They
made the underlying assumption that low-expertise members are more likely to
guess toward a solution while expert members will be much more consistent
in their evaluations. While a cluster of experts was identified, multiple other
clusters were identified which skewed the results. Due to the difficulty of assigning
ability based on previous projects, our work assumes that individuals within the
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crowd have known levels of experience and ability. In this work, decomposition of
abilities is applied in a manner similar to the process used in Takai (2010). Here,
Takai estimated the complementary abilities of two individuals by decomposing
their individual skills into vectors composed of knowledge domains. The degree
of orthogonality between the two competency vectors was calculated to determine
the degree to which they complemented each other’s domain-specific knowledge.
By evaluating the collaborative abilities of all members within a group, the
combined ability of large groups could be estimated as a culmination of the
individual skills of eachmember, and the combined abilities of each collaboration.
This concept leads to the evaluation of the overall ability of a network of
individuals based on their individual competencies and network ties.

2.2. Network analysis

Current network analysis research primarily focuses on analyzing developed
networks to discover what characteristics are observed and then attempting to
explain the causes of these characteristics and their subsequent outcomes. Borgatti
and Foster performed a comprehensive review of current network structures from
an organizational standpoint (Borgatti & Foster 2003). Some key aspects of their
review highlight research carried out in social capital theory and the effects of
relating individual connections with overall organizational performance. This
idea is further exemplified in their discussion of organizational networks and the
idea of what industry conditions can lead to stronger connections.

In subsequentwork, Borgatti continued on to emphasize the flow characteristics
as they relate to various network centrality measures (Borgatti 2005). The flow
characteristics of information or ideas are very different from the flow of physical
items such as packages. Certain centrality metrics may be better suited based
on the flow characteristics being observed. This idea is addressed during the
discussion of the centrality measures applied in our work.

Application of the idea of network analysis to a crowdsourcing network has
been performed on an already successful crowdsourcing platform, OpenIDEO
(Fuge & Agogino 2014; Fuge et al. 2014). These works evaluate the community
structure of multiple OpenIDEO projects by looking into the network
composition, determining the overall structure of these networks and how they
compare with other social networks. However, members within these networks
do not specify individual competency levels.

The application of SNA to design initiatives must also be complemented with
an understanding of team formation concepts. The team formation problem has
been addressed most frequently in operational and managerial research and has
been proven to be NP-hard (Lappas, Liu & Terzi 2009). These problems are
best suited to a more heuristic approach such as genetic algorithms or agent
based modeling (Panchal 2009). In addition, Farasat and Nikolaev presented a
mathematical framework for the optimization of the team formation problem
with the inclusion of social network theory (Farasat & Nikolaev 2016). This work
highlighted some of the key components in team development such as social
exchange theory (Wasserman&Faust 1994; Contractor,Wasserman&Faust 2006)
and homophily (McPherson, Smith-Lovin & Cook 2001).

Team formation based on previous knowledge and collaboration potential
has also seen recent development (Fitzpatrick & Askin 2005; Hahn et al. 2008;
Wi et al. 2009; Dorn & Dustdar 2010; Feng et al. 2010). However, these works
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do not approach the problem from a mass collaboration perspective. One notable
development in this field is the skill extraction method (Dorn & Dustdar 2010).
In this work, expert behavior was observed from online posts to determine
which skills each member possessed, which then could be used for competency
assignment. The matching of individual skills to project difficulty has also
been explored to build near-optimal teams based on skill coverage and team
connectivity (Zhu, Huang & Contractor 2013).

The product side of engineering design has also seen applications of SNA to
determine consumer–product relations (Wang et al. 2015), mine product features
(Tuarob & Tucker 2015) and model distributed designs (Cormier, Literman &
Lewis 2011). Our work applies a basic product model to assess the design ability
of each network; however, further development of this approach could support
the addition of a network driven product model resulting in a multi-dimensional
network including both the connected product components and individuals.

The contribution of this work lies in the development of mass collaboration
initiatives driven by the network structure of individuals with known abilities and
experience. The combination of these components allows for a comprehensive
network evaluation for open and distributed design efforts.

3. Simulation framework for organizing and
quantifying design efforts

3.1. Network development

Before we can begin to analyze team network structures, a pool of individuals
must be available with known background characteristics such as educational
attainment, previous work experience or individual characteristics. These
characteristics help to describe the potential for value added work in each design
initiative. Each individual must have a corresponding skill set to denote their
abilities as they relate to team functions. The set of individual abilities is defined
as the individual’s competency vector, to be introduced in Section 3.3.

3.1.1. Definitions and notation

First, we must define the individuals and their corresponding skill sets. Let S be
a set of all individuals i , where i = 1, 2, . . . , N . Here, N represents the total
number of individuals within the data set and we define M as the total number
of individuals on each team. Let C represent a matrix of corresponding skills,
where ci is the competency vector of individual i . Each individual also has a
corresponding trait vector Ti to be utilized in the development of communication
links between individuals. Each design team is represented as a network graph
G(V, E), where V represents the set of individuals and E represents the set of
edges between individuals for each design team.

Graph theory allows for the observation of pairwise connections between
various components (Wilson 1996). In an unweighted graph, a connection
between node vi and node v j is represented by ei j = 1 and an absence of a
connection is given by ei j = 0. Throughout this work, all graphs represented
are unweighted. Weighted graphs apply a stronger or weaker connection between
nodes for instances where the amount of information traveling among the edges
depends onwhich nodes they pass between.However, since this work supports the
development of newly formed design teams, previous communication history is
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disregarded. Throughout this work, nodes represent individual actors within the
networks and the edges between them represent information flows, such as shared
design variables or design components.

When an edge exists between two nodes, those nodes are considered to be
adjacent. Each graph has an associated adjacency matrix represented by a binary
n × n matrix A (Borgatti & Everett 2006). Within the adjacency matrix node,
vi is adjacent to node v j if both ai j = 1 and a j i = 1. For undirected graphs,
the adjacency matrix is symmetric. Graphs can be either directed or undirected;
however, for this work, undirected graphs will be utilized, as the information
flowing between two members is assumed to be mutually available.

Non-adjacent nodes can pass information between one another by traversing
through intermediary nodes. This information can follow a walk, a path or a trail.
A walk from node vi to node v j follows a sequence of adjacent nodes, beginning
with node vi and ending on node v j . A trail is similar to a walk; however, each
edge can only be used once; a path is similar to a trail; however, each node and
edge cannot be repeated (Borgatti & Everett 2006). A geodesic represents a walk
between two nodes in which the length of the walk is the shortest possible between
these two nodes. Different modes of travel are beneficial for specific pieces of
information and measures of centrality (Borgatti 2005).

Within a crowd based design project, relations between members are very
ill-defined as the crowd is theoretically composed of thousands of individuals
who have most likely not worked together on previous design projects. Because of
this, communication among members of the crowd must be simulated to develop
network groupings. For this work, random intersection models are employed.

3.1.2. Random intersection model

A random intersection graph is utilized to develop modes of communication
between members (Karonski, Scheinerman & Singer-Choen 2013). As the
members of an open-innovation project are unknown to one another at initial
conception, this method of network generation is used to generate connections
based on matching personality traits of individuals within the crowd. Random
intersection graphs can provide purely random connections betweenmembers, as
well as guided connections based on individual preferences or previously known
characteristics (Deijfen & Kets 2009). This concept is explored by developing
communication flows between members based on three network development
techniques.

First, a random network is developed, where each individual is randomly
assigned a set of 12 possible traits. These traits are represented by binary values,
with one indicating that an individual exhibits the specific trait and zero indicating
that they do not possess that specific trait. Twelve traits are used as the network
pool for this work consists of six unique disciplines, thus allowing for a mapping
of two traits to each discipline. Additional traits allow for a greater decomposition
of each individual personality, which is a topic of future work. Second, a guided
network is developed, where there exists a higher probability for individuals of
similar backgrounds to share similar traits. Finally, the third developed network
consists of connections where individuals only communicate with others who
have identical assigned skill vectors.

It is important to note that the random nature of the developed networks is a
result of the trait assignment and not edge allocation. The edge placement between
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Table 1. Sample trait matrix T for the full random intersection model

nodes is a result of the similarity between members, which, in the context of
open design, supports the notion that two individuals with common interests are
more likely to work with one another. In alternative random network generation
methods, such as the Erdös–Rényi model, the random nature of the network
comes directly from the assignment of edges (Erdös & Rényi 1960).

All three models work on the principle of developing information flows
between members with similar interests; however, the difference lies in the
assignment of those interests. Once the interests have been individually assigned,
we look for commonality of interests between members to determine whether a
connection should be made between these two individuals based on a threshold
of common interests. Threshold values represent how many traits individuals
must share in order for a link to be drawn between them. The effects of
different threshold values are studied further in Section 4.2. The specific degree
of commonality is variable, allowing for multiple combinations of network
connections. The explicit development of the three models is described below.

Full random model. The full random model assigns 12 discrete traits for each
individual, with equal probability of that individual having a specific trait. This
process ensures complete randomness, with respect to their design abilities,
when considering which individuals are able to communicate with one another.
During this process, all traits are treated equally, with no explicit regard to
their corresponding meaning. The result of this model when considering five
individuals with 12 traits leads to the creation of Table 1 which exhibits no obvious
pattern between individuals and their corresponding traits.

From Table 1, it is observed that individuals 1 and 2 share three trait
assignments. Assuming a threshold of three, a communication link would be
generated in this case. Individuals 4 and 5 only share two common traits,
indicating that with a threshold of three, a communication link would not be
generated.

Probabilistically guided model. The probabilistically guided model allows for
members of similar skill sets to have a higher probability of similar traits. For
this, each trait must exhibit a correlation between the individual’s skill set and
their specific traits. As this work focuses on six areas of background knowledge,
further described in Section 4, traitswill bemapped to the following: development,
marketing, production, qualitymanagement, research and sales.While these areas
are not all inclusive to a design process, they do provide a broad look at the
functional components of a design team. Further decomposition of the functional
processes of a team and trait mapping can be performed for networks of different
skill compositions. The mapping of these traits is shown in Table 2.
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Table 2. Mapping traits to background characteristics

Background Traits

Development 1, 2

Marketing 3, 4

Production 5, 6

Quality 7, 8

Research 9, 10

Sales 11, 12

Directed model. The directed model creates communication connections between
members of identical disciplines. Thismodel leads to the networkwith the greatest
segregation as only members with identical background knowledge communicate
with one another.

Following the completion of the trait matrix, individual communication links
can be formed based on the similarity of traits between individuals. These links
are shown through the development of the adjacency matrix.

3.1.3. Forming the adjacency matrix

Each trait matrix only gives insight into which traits each individual possesses.
To develop connections within the network, individuals with similar interests and
traits are connected with respect to an overall threshold of similar interests. As
this threshold increases, fewer connections become present, as individuals must
be extremely similar to one another in order to develop communications. With
a lower threshold, networks begin to increase in density, as the required trait
similarity between individuals looking to form a connection decreases. All three
aforementioned models of trait distribution follow the same process of adjacency
matrix formation shown below, with the only difference being that the directed
model must have a threshold of two, as each level of background information is
only mapped onto two traits.

The application of required trait similarity variances is used to observe
the effects of homophily. The principle of homophily is based on the idea
that individuals with similar characteristics are more likely to develop network
connections (McPherson et al. 2001). Individual characteristics such as age,
religion, education or occupation have all been observed to impact the dynamics
of networks. For example, the directed model exhibits high levels of occupational
homophily, as individuals are connected solely on their product development
abilities. As the number of required trait similarities increases, the homophily
within the network also increases.

Upon creation of the adjacency matrix for each network formation mode, we
can visually observe the formed team. The sample network, shown in Figure 1,
is developed using the probabilistically guided network, in which individuals
with similar competencies have a higher probability of sharing similar traits.
We observe clusters of individuals indicated by their node color; however,
unlike the directed network, we also observe cross-departmental network
communications.
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Figure 1. Sample network graph.

3.2. Network parameters

Upon completion of the random team formation, each team is analyzed for
key network attributes including closeness, betweenness, eigenvector centrality,
diameter and density. The degree of each member is taken into account, with
specific consideration to understand which group members communicate with
one another. Each of these metrics is averaged across an entire design team to
review any correlations between network composition and team performance.
The top performing and worst performing teams are given extra consideration to
understand the individual characteristics of those network graphs. The applicable
network parameters are summarized in Table 3.

3.3. Predicted design score

The calculated design score represents the potential design ability of each team.
The values from the design score are purely for comparative purposes and do not
have a real world correlation. These values serve as a surrogate for design success,
and while they present a greatly simplified estimation, they address core elements
of a design process for comparative purposes. The intent is for high design scores
to represent a strong development team with the incorporation of four major
KPIs within the design, while low design scores represent a design team with little
probability of success.Within this section, new notation and definitionsmust first
be explained before the methodology is presented.

3.3.1. Notations and definitions

For this work, let ci represent the competency vector of each individual. The
competency vector, as introduced in Takai (2010), presents the ability of each
individual based on a variety of distinguishing factors. The impact of the
competency vector is presented through the use of a value addedmetric, V , where
each individual, i , contributes to the value of the design through V(i). The total
value added metric is represented as VD,I,M,Q , representing the specific KPI of
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Table 3. Summary of network characteristics

Parameter Equation Design implication

Closeness C(G) =
1

Σ j [di j ]
, i 6= j Closeness centrality is calculated as the inverse of the sum

of distances, di j , between node i and all other nodes
within the network. This measure of centrality assumes
that information flows through the shortest possible
path. Closeness centrality has been linked to reduced
R&D times within organizations (Borgatti 2005). In the
context of information sharing in an open design network,
individuals of high closeness have more immediate access
to information developed by the other individuals within
the network.

Betweenness B(G) = ΣiΣ j

gik j

gi j

, i 6= j 6= k Betweenness centrality is calculated as the number of
geodesic paths that pass through node k divided by the
number of geodesic paths that exist between nodes i

and j . Like closeness centrality, betweenness assumes that
all information travels on the shortest path between two
nodes. From the standpoint of an open design network,
individuals with high levels of betweenness pass increased
levels of information throughout the network. The loss of
these members could significantly impact the network due
to their high level of information sharing.

Eigenvector λv = Av Eigenvector centrality is determined as the elements of
vector v, where A is the adjacency matrix and λ is the
eigenvalue. This measure of centrality indicates that a
node with a high eigenvector score is adjacent to other
nodes with high eigenvector scores. This would mean
that members that are well connected within the group
are also connected to other highly connected members.
Eigenvector centrality has been used to identify highly
influential members within a network.

Degree D(G) =
Σi [D(n∗) − D(i)]

[(N − 1)(N − 2)]
Degree centrality represents immediate influence within a
design team, as it is defined as the number of connections
incident upon a node. Higher levels of degree centrality
within a network indicate that each member has a greater
amount of incident information flow. Here, n∗ is the node
with the maximum degree, i is the current node and N is
the total size of the network.

Diameter dia(G) = maxi, j di j Diameter of a network is the maximum geodesic length
between two nodes in the graph. Larger, less connected
networks have a larger diameter. Networks containing
isolates exhibit an infinite diameter as all nodes are not
connected.

Density ρ(G) =
2e

N (N − 1)
Density represents the ratio of connections in a network
against all possible connections. A network with a density
of one contains all possible connections, indicating a
completely connected graph. With respect to a product
development team, higher density can increase knowledge
sharing. However, it can also hinder the pace of the
development process, as each member must share
information with an increased number of individuals.
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added value (D = demand, I = innovation, M = manufacturing, Q = quality).
The specific design under review may have alternate or additional motivations,
dependent upon the design or stakeholders involved, to determine the success of
each design. However, the components of the design must be able to map to the
abilities of the individuals within the crowd. Each component of the added value
also has a corresponding weight, represented by wD,I,M,Q .

During the calculation of the value added, each individual has a base score
which is denoted by α. The base score of each individual represents their overall
ability based on previous experience, while the competency vectors correspond
to their specific domain knowledge. Various values for α were tested, including
10, 50, 100 and 1000 and while the overall score scaled up proportionately, the
observed trends remained identical. Since the overall score is used for comparative
purposes only, the precise assignment of α proved to be insignificant. Before
beginning the development of the design scores, a few core assumptions must be
introduced.

Assumptions. Given that the objective of this work is to study the relationship
between design team formation and design success, some underlying assumptions
must be understood. These assumptions are based on observations from the
existing literature, but do not represent fully validated claims from an empirical
perspective.

(i) This simulation framework considers design improvements in a specific
discipline to occur with the greatest effect when two members of the same
discipline collaborate. Connections between dissimilar skill sets also improve
the design, butwith less overall impact.When there is no connection between
members, the collaborative impact on the design score is not affected (Haque,
Pawar & Barson 2000; Feng et al. 2010).

(ii) Individuals with higher levels of experience will have a more profound
impact on the overall design (McDaniel, Schmidt & Hunter 1988). Their
experience ismeasured by their overall time spent at the company orworking
in a specific discipline. This consideration is represented through the use of
each individual’s base score.

(iii) Additional individuals of the same discipline will follow a power law
distribution of diminishing returns on design improvements. The order in
which each individual of a specific discipline is added to the team determines
the potential value that said individual can provide. Power law distributions
have been shown to consistently prevail when observing social network
structures where users are allowed to contribute openly (Barabási & Albert
1999; Barábsi 2003). The use of the power law distribution causes members
who initially work on a design component to generate the greatest impact on
that component when compared against subsequent members.

Each team member has pre-assigned abilities and expertise based on their
current job title and department, as shown in Table 4. This work evaluates
six distinct and broad scope abilities. However, further decomposition of these
abilities can lead to a model with higher resolution. Because of the current
limitation of precise ability mapping, the competency matrix for this work is of
size (6 × 6), representing six dimensions of skill decomposition.

Each column of this matrix shows the title of each member, while each
row represents the corresponding ability. These columns form a competence
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Table 4. Competence matrix

Marketing Sales Research Development Quality Production

Marketing 10 6 1 1 1 1

Sales 6 10 1 1 2 1

Research 3 1 10 7 3 2

Development 2 1 8 10 5 3

Quality 1 2 4 6 10 5

Production 1 2 4 6 6 10

vector for each member where each skill is assigned from 1 to 10. In this work,
skills are assigned based on each individual’s working title, allowing for a slight
overlap of abilities between disciplines. The development of a more complete skill
decomposition is currently an active research topic (Kramer, Agogino&Roschuni
2016); however, it is outside the scope of this work.

The creation of the competency vectors allows for the evaluation of the
collaborative ability of each individual. This process accounts for the similarity
of abilities to develop the overall collaborative effect of individuals with different
backgrounds. The degree of collaboration is calculated based on an adaptation of
Takai’s degree of complementarity (Takai 2010), as follows:

θ = arccos

(

c1 · c2

|c1| × |c2|

)

, (1)

d =
θ

90
, (2)

l1,2 = e(1 − d). (3)

The degree of collaboration, l , is calculated from the degree of orthogonality,
d , between the competency vectors of individuals one, c1, and two, c2. While
Takai’s original work looked at the degree to which each individual was able to
complement the other individual’s skill set, this work takes (1 − d) to indicate the
ability of two individuals to collaborate on a specific design component. These
values are in the range [0–1]. If two members have identical competency vectors,
then they receive a degree of collaboration of l = 1, indicating that they have full
ability to collaborate. If two members have zero common abilities, then they will
have a degree of collaboration of l = 0, indicating that a collaboration effort on
a specific component would not provide any additional design improvement. The
final component, e, indicates whether a connection exists betweenmembers. This
component can take on a value of e = 1 when a communication link exists and
e = 0 when a communication link does not exist.

In the context of a design project, when two connected individuals share
project attributes, the level of commonality between each individual’s abilities
is directly related to their capacity to support the work of one another. If two
members have identical abilities, the information shared can be worked on
collaboratively by both parties, while if twomembers share zero common abilities,
the design component would be worked on independently by each member,
corresponding to a degree of collaboration of l = 0.
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Figure 2. Direct mapping of ability to design component.

3.3.2. Value added calculation

To calculate the overall value added, each individual is assigned a competency
vector based on their working title. The direct mapping of individual background
to design component is shown in Figure 2. As collaborations are formed through
network connections, we begin to observe overlap in these mappings accounting
for the collaborative abilities of individuals.

Each individual member receives a value added score based on how many
members of that discipline exist within that design team, following a power
law distribution, and their overall experience. The initial individual of a specific
discipline receives the most impactful score, while each subsequent individual
increases the score, with a decrease in impact, following the value added function

V(i)D,I,M,Q(x) =
α

x
+ αy. (4)

Here, x is the number of the individual in their corresponding discipline relative to
when they were added to the team and y is the normalized days of employment.
Days of employment are normalized between the most senior and the newest
members in the pool of individuals to account for the experiential effects of
individuals. The combination of value added across each individual and their
collaborations is given as

VD,I,M,Q =

i=T
∑

i=1

j=T
∑

j=i

V(i)D,I,M,Q · li, j . (5)

The inner loop calculates the sum of all collaborations for one individual, i ,
as they collaborate with the other individuals, represented by j . The outer loop
repeats this process for each individual value, V(i)D,I,M,Q , until all members of
the team and all collaborations have been accounted for within team size T . It is
worth noting that the index of the inner loop begins at j = i as the networks
developed are undirected, causing reciprocal collaborations to be identical.

The overall design improves as a result of the product of their individual
value added function and their degree of collaboration for each discipline. This
simulation framework supports strong collaborations between similar disciplines
while still accounting for added benefit from complementary skill sets. However,
connections between individuals with zero commonality are not supported as
their resulting contribution reduces to zero. The specific design components that
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increase in value are based on the title of the individual being analyzed and are
proportional to their collaborative skill set.

These values are then combined in a weighted sum function to calculate the
overall design score. For this work, all design attributes are weighted equally as
the specific nature of the design and desired outcomes is not explicitly specified,
as shown in Equation (6). For designs requiring higher aspects of innovation or
quality, their weights, wD,I,M,Q , could be adjusted accordingly.

DesignScore = wDVD + wI VI + wM VM + wQ VQ . (6)

Following this calculation of each team’s design score, the team structure is
then reviewed as a network graph and social network metrics are calculated. At
this point, each team can be evaluated for its composition and projected design
ability. Any conclusions are specific to the group of individuals being considered
and the assumptions being made, and the authors acknowledge the uncertainty
in mapping individual abilities to design outcomes. However, the intent of this
work is to develop a fundamental understanding of team dynamics in mass
collaboration product development to be leveraged in practical applications.

3.4. Model validation

Verification of the results of the model proves difficult as a result of some
of the simplifying assumptions applied in the calculation of the design score
and the collaborative impacts of individuals. Because of this difficulty, this
work looks toward Pedersen et al. (2000) to support the validation of this
framework. Pedersen et al. decompose design method validation into four
components: empirical performance validity, empirical structural validity,
theoretical performance validity and theoretical structural validity.

The theoretical structural validity element is supported through the
supporting literature for each assumption provided. This component requires
the framework to rest on accepted constructs, each of which has been outlined
where applicable. The empirical structural validity element is addressed using
an applicable case study within the bounds of the framework. As this work
aims to simulate design efforts in a mass collaboration environment, the case
study outlined in the following section satisfies the empirical structural validity
element of this framework. The application of the framework operating under
the proposed assumptions allows for satisfaction of the empirical performance
validity requirement.

The theoretical performance validity element arises from the ability to accept
this framework beyond the presented case study. Due to the limitations resulting
from the simplifying assumptions, this work is unable to satisfy the theoretical
performance validity element. The assumptions made in this work force a limited
applicability, and future work is required to observe whether this framework can
provide similar results outside the bounds of this application.

4. Application

To apply the proposed simulation, a simulated heterogeneous crowd of
approximately 180,000members is utilized (Wang&Zaniolo 2015). This database
is a simulated temporal data set used to model employees within an organization,
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originally created to test database systems. Information about individuals includes
their department, date of employment, age, salary and title. This information has
been used in this work to provide additional attributes to the individuals of our
generated crowd.

From the crowd, design teams are formed utilizing a subdivision of unique
members who focus on specific design initiatives. The results are reviewed with
distinct emphasis placed on network centrality, density and size. The following
simulation study also includes a parametric analysis to understand the overall
effects of the variation of team generation variables, such as team size and
communication link threshold, utilized within the development. The inclusion of
these variables allows for a more in-depth look at potential network structures
as the network characteristics change. While the results cannot guarantee strict
network development considerations, they highlight the usage of the simulation
framework and its potential for team design.

4.1. Individual organization

The design capability of each group is evaluated based on the combination of skills
in each developed team. While each individual may possess overlapping abilities
across a range of disciplines, the decomposition of their abilities is represented to
allow for a direct mapping between project goals and individual attributes.

To begin the analysis, we simulate 1,000 design teams, in which the
organizational structure is an outcome of the random intersection model being
applied. The first developed networks to be studied consist of 25 members, with
a complete random intersection model and a communication link generation
threshold of three. Application of a threshold of three indicates that two
individuals must have a commonality of 25% within their pre-assigned traits,
leading to networks of greater connectivity when compared to networks of higher
commonality requirements. A level of three was also chosen to obtain a better
understanding of how collaborations impact the design success. The following
sections explore the resulting design scores and their distribution; overall network
characteristics, including closeness, betweenness, eigenvector centrality, diameter,
density and degree; and the top and worst performing design teams.

The potential number of combinations of individuals with a team size of 25
from a pool of 180,000 unique members is approximately 2.405 × 10

131, which
does not even account for the possible connections that can be formed. The
authors recognize that the generation of 1,000 teams only captures a very small
fraction of the possible number of teams and connections available. Such a large
search space lends itself to a more directed search using heuristic algorithms to
intelligently search the solution space. This concept is currently being explored
in other work (Ball & Lewis 2017); however, the primary motivation of this work
is the exploration of network analysis metrics and how they relate to a variety of
team formations and information flow characteristics.

4.1.1. Design score

To demonstrate that the team generation captured a wide variety of team
compositions, Figure 3 shows the distribution of the design scores.

The distribution of the simulated design scores follows a normal distribution
with an average of 936.5 and a standard deviation of 159.6. The top score from
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Figure 3. Histogram of design scores.

this set of teams is 1415.5 and the worst performing team scores a 526.6. It is
important to obtain a complete coverage of design team potentials as this allows
for teams of widely varying abilities to be studied. While the sample of teams only
represent a limited portion of the potential combinations, given the approximate
normal distribution, the authors believe that the results found can be considered
characteristic of the pool and model being utilized. In the following sections,
overall trends in network composition are discussed.

4.1.2. Network characteristics

Closeness centrality, shown in Figure 4(a), represents the number of information
channels necessary for one individual to reach another individual and not the
physical closeness of each individual. High physical closeness in a distributed
mass collaboration context is rarely possibly as members of the crowd are widely
dispersed and they must have the ability to work with other individuals regardless
of their location. Average closeness centrality follows a positive linear correlation
with respect to design score.

This result yielded an R-squared value of 62.3%, indicating a reasonably
strong correlation. Another thing to note is that this result excludes teams with a
closeness value of zero, indicating the presence of isolates or incomplete network
graphs. From this result, we conclude that increased levels of closeness centrality,
indicating a shorter geodesic path between members, generate design teams with
higher design potential. This idea points to the development of new information
channels for members who currently experience individual levels of low closeness
centrality, following the notion that direct lines of communication between
members help to improve the collaborative efforts of the design team.

It is also worth noting that closeness centrality assumes that the item being
passed between the edges follows the shortest path between nodes. Because of this
assumption, the correlations found for thismetric aremost applicable to items that
are spread in series, such as CAD models or shared design variables, as opposed
to concepts or ideas, which adhere to more of a parallel duplication process.
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Figure 4. Network graph centrality indicators.

Betweenness centrality, shown in Figure 4(b), exhibits a negative linear
correlation. The correlation between design score and average betweenness
exhibits an R-squared value of 40.7%; however, it still has a noticeable effect
on design performance.

Higher levels of betweenness centrality are known to indicate critical nodes,
as they fall within the information paths of multiple adjacent nodes (Borgatti
& Everett 2006). From these results, higher potential design scores have teams
consisting of a lower number of critical nodes. This result is promising as teams
with better design potential do not rely on any individual node to transfer large
flows of information. The removal of any individual node would not have a
significant impact on the entirety of the team.

As with closeness centrality, betweenness centrality assumes that information
follows the shortest path between nodes. In the context of an open design
initiative, this may not always hold true for concepts or ideas, indicating that
nodes of high betweenness generally control the flow of specific items as opposed
to ideas.

Eigenvector centrality, as shown in Figure 4(c), exhibits a positive correlation
to design score with an R-squared value of 56.4%. Higher levels of eigenvector
centrality lead to members of the design team having strong influences on other
members of the design team. This consideration can also point to ‘group think’,
reducing the variety of ideas and limiting innovation, as members of the design
team can be persuaded to agree with influential members so as to follow the
sentiment of the group.
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Figure 5. Network graph characteristics.

Unlike closeness and betweenness, eigenvector centrality does not rest on
the assumption of shortest path flows. Because of this, the results shown for
eigenvector centrality apply to the transfer of ideas and concepts regarding
designs. This implies that the observation of a positive correlation supports the
diffusion of design concepts within the team.

Degree centrality, shown in Figure 4(d), shows a positive linear correlation
between the average degree of the design team and the potential design score,
with an R-squared value of 68.3%, indicating a relatively strong relationship.

Higher degree for each individual member, however, increases the amount of
information flow each individual must be responsible for. As the degree increases,
the level of individual involvement increases as they now receive information from
additional members. This metric must be carefully leveraged so as to increase the
degree of members where it is most advantageous for the entire network.

Degree centrality is also an indication of the immediate influence of a given
node. In the context of a design effort, immediate influence is shown through
the direct sharing of design variables or CAD models between two collaborating
individuals. Since this metric only considers nodes directly incident upon one
another, increased levels of degree centrality lead to more connected designs.

Three discrete values for diameter are observed, as shown in Figure 5(a).
Networks of lower diameter provide stronger design potential. It is noted that the
top performing design team had the lowest potential diameter while the highest
values of network diameter all contained design scores that fell below the average.
While diameter does not appear to be a strong indicator of design score, it can
be concluded that networks where information channels between members must
include multiple intermediary nodes perform worse.

The final network characteristic reviewed is the density of each network. From
Figure 5(b), another strong positive linear correlation is observed as teams with
greater density tend to generate higher design score potentials.

The density of a network is in direct relation to the average degree centrality of
that network. The overall impact of density on design scores is a result of the same
network dynamics as when average degree centrality was considered. However,
density is an overall network characteristic while degree is individualized.

A multiple linear regression was also performed with respect to the design
score and the four centrality metrics. However, due to the high multicollinearity
between predictors, measured by their variance inflation factors (Craney & Surles
2002), the results were excluded from this work.
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Figure 6. Top performing team network structure.

Table 5. Network properties of the top performing team

Diameter Density

Eigenvector

centrality

Average

degree

Average

betweenness

Average

closeness

2 0.8333 0.1969 40 4 0.8708

4.1.3. Top performing network

The top performing design team received a design score of 1415.45. This network
was very well connected, with strong connections between members of similar
disciplines allowing for increased collaboration efforts, as shown in Figure 6. This
network had a density of 0.833, indicating that approximately 83% of the potential
connections between nodes were utilized. It also had a diameter of two, allowing
for a close flow of information between all members.

As shown in Figure 6, node size is proportional to its degree, as it was
previously determined that degree held the highest statistical significance when
considering levels of network centrality. The top performing team has multiple
nodes of high individual degree, supporting the spread of information within the
network.

The colors for each node represent the cluster in which they belong. This
network developed two distinct clusters of individuals represented by the pink
and green nodes using a community detection algorithm based on a heuristic
optimization approach to find high-modularity partitions, outlined in Blondel
et al. (2008).

Table 5 highlights all network metrics attributed to the network graph of the
top performing design team. Each of the network parameters outlined falls well
above the average values determined from the entire simulation of the 1,000 teams.

Another consideration regarding the top performing team is related to the
number of members from each discipline. This team is composed of a relatively
even distribution of members, with the exception of only one marketing specialty
and two research members, as shown in Table 6. The wide variety of disciplines
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Table 6. Individual members on the top performing team

Background knowledge Number of members

Sales 5

Marketing 1

Quality assurance 6

Research 2

Development 7

Production 4

Figure 7. Worst performing team network structure.

allows for a well distributed design effort. The exact combination of individuals
leading to the most successful designs would depend on the design task being
considered.

4.1.4. Worst performing network

The worst performing design team received a design score of 526.64. From the
network graph shown in Figure 7, it is observed that there were multiple members
that had a degree of one or two, indicating that they were partially removed from
the design effort. This led to poor information sharing from these members, thus
decreasing their design score. This network also had a density of only 0.397,
indicating that only approximately 40% of all possible connections were utilized.

When reviewing the network graph for the worst performing team, it is
observed that there are fewer nodes of individually high degree, as the average
degree for this team was significantly lower. It is also observed that there are
four clusters that have formed, one of which is the isolated development engineer
represented by the blue node. This lack of connectivity negatively impacts the
team’s performance.

Table 7 highlights all network metrics attributed to the network graph of the
worst performing design team. Each of these network properties presented falls
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Table 7. Network properties of the worst performing team

Diameter Density

Eigenvector

centrality

Average

degree

Average

betweenness

Average

closeness

3 0.3967 0.1809 19.04 13.12 0

Table 8. Individual members on the worst performing team

Background knowledge Number of members

Sales 5

Marketing 3

Quality Assurance 0

Research 2

Development 10

Production 5

below the average values determined from the complete simulation of the 1,000
teams.

When reviewing the worst performing team for the distribution of individual
members, it is observed that this team heavily consists of development engineers,
with zero quality assurance engineers, as shown in Table 8. Because of this
breakdown, the team does not sufficiently capture the entire design process,
creating a poor overall design.

Comparison of the top performing team with the worst performing team
furthers the idea that teams with greater connectivity, increased skill distribution
and increased levels of information flow tend to create higher potential design
scores. Another characteristic that is significantly different between the top and
the worst teams is the experience level and variety of individuals on the team.
The top performing team has 20 senior members, indicating greater ability in
their respective disciplines, while the worst performing team only has 14 senior
members.

4.1.5. Network generation comparisons

Next, we consider the impact of the communication link generation method,
considering randomly formed networks, probabilistically guided networks and
directed networks.

As shown in Figure 8(a), the network formed from random trait assignment
consistently provided the most effective design team, with the probabilistically
guided network receiving the second highest average marks and the directed
network performing the worst of all three. These results, however, must be
carefully interpreted as the average density, Figure 8(b), indicates that directed
networks were also the least connected networks. It was previously identified
that there exists a strong positive correlation between design score and network
density, potentially leading to the variation in design scores observed.

The decreased overall design scores can be explained by the limited potential
for collaboration efforts, expressed through a decreased network density, as the
probability of communication links was decreased. The probabilistically guided
and directed networks limit the overall amount of potential connections, as these
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Figure 8. Network generation method statistics.

are now dependent on the variety of members within the design team. The limited
potential for communication links can also be quantified by the average degree of
each network, as it was only 19.3 for the partially random network compared with
28.9 for the fully random network generation. The directed network is the most
restrictive as it only allows for individuals with the same background knowledge to
communicate. The decreased design score is primarily attributed to the decrease
in the probability of collaboration.

Figure 9 illustrates a summary of the network metrics across the three types
of network formations. Random trait assignment lead to teams with the highest
ability and networks of the greatest density. Partially random networks have the
highest levels of betweenness centrality and largest average diameter.

The directed network received average closeness and betweenness values of
zero as there were isolated groups within the networks. These isolated groups
meant that no member within the network could communicate with any other
members.

4.2. Parametric analysis

To further understand the effects of network construction, a parametric analysis is
performed to observe the impact of varying levels of team size and communication
link generation on design score and network structure characteristics.

As expected, it is observed that the design score increases with increased
team size and decreased threshold value, as shown in Figure 10. As the
number of individuals on each team increases, along with their probability of
communication, shown through decreasing threshold values, the design scores
also increase.

4.2.1. Network characteristics

Closeness centrality, shown in Figure 11(a), is studied relative to varying team size
at constant lines of threshold values. Threshold values of one allow for networks
of much greater density as individuals require only one trait similarity before links
are formed, while threshold values of six require individuals to share half of their
traits before they collaborate. As the team size increases, the average closeness
centrality for each group decreases for threshold values of one and two. When
looking at higher threshold values, the closeness centrality remains constant at
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Figure 9. Summary of network statistics.

Figure 10. Design scores with 95% confidence intervals.

zero due to incomplete network graphs, with the minor exception of insignificant
closeness levels for a threshold of three with team sizes of under 30 members.

Focusing on threshold levels of one and two, it can be concluded that network
closeness decreases as team size increases. This is a result of increased team size
leading to greater geodesic paths between individuals. Due to the addition of team
members, the average distance between each node increases as communication
between members now spans across a greater number of individuals. This result
indicates that as teams are formed with significantly different individuals, their
networks become less centralized.
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When observing the betweenness centrality, shown in Figure 11(b), it is
evident that as team size increases, the betweenness centrality of each network also
increases. As additional members are introduced to the design team, connections
between members have a greater chance of passing through other members,
causing the average betweenness of the entire network to increase. Based on this,
caution must be taken when developing networks of large team size as these
contain additional critical nodes that control large information flows.

The impact of threshold level illustrates a curious result, as a threshold
of three creates the most impactful change across varying team sizes, while a
threshold of one has a less profound effect. Lower threshold levels lead to a greater
overall probability of developing connections between individuals. Because of this
increased probability, we observe that with a threshold of one, the betweenness
does not increase as quickly as when looking at thresholds of two, three and four
since the increase in connections also supports the development of direct lines
of communication. When considering higher thresholds, the probability of an
increased number of additional communication links decreases, also decreasing
the number of direct paths between individuals, forcing information flows to pass
through intermediary nodes.

We observe that at 25 individuals, the betweenness centrality of networks with
a threshold of three begins to increase above that found for a threshold of two.
This phenomenon can most likely be attributed to the decreasing probability of
additional direct lines of communication in higher thresholds, causing networks
with a threshold of three to increase betweenness at a greater rate as more
individuals are added to the network. It is also observed that thresholds of five
and six only exhibit a veryminor impact as the probability of new communication
links remains low, not significantly impacting each individual’s betweenness level.

An increase in the team size creates a decrease in the eigenvector centrality,
as shown in Figure 11(c), for each design team following a decreasing power
regression line. Because this correlation follows a power regression, changes to
team size for smaller teams have a much greater impact on eigenvector centrality
when comparedwith larger team sizes.When team sizes remain small, eigenvector
centrality is high due to the limited pool of potential member connections.
At smaller team sizes, the probability of influential members connecting other
influential members is higher due to the decreased pool of potential member
connections. As team sizes increase, this probability decreases, causing the
decrease in eigenvector centrality to a point where adding additional team
members creates a negligible effect.

The correlation between average network degree and team size is shown in
Figure 11(d). Degree centrality increases linearly with respect to team size as the
number of potential connections increases due to the increased probability of
other team members sharing the required number of traits for a connection.

Comparison of team size with network diameter, as shown in Figure 12(a),
reveals results that do not show much discernible pattern across both team size
and communication thresholds. It is also observed that these values had much
greater variability, notably limiting any statistically supportable conclusions. One
observation that can be noted, although cautiously, is that the average values
of diameter appear to increase asymptotically toward a constant. This constant
also appears to increase with increasing threshold value. Thresholds of one and
two reach their constant values, diameters of 2 and 3 respectively, immediately.
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Figure 11. Social network metrics with 95% confidence intervals.

A threshold of three requires a team size of approximately 25 before a constant
diameter of 4 is reached and a threshold of four reaches a constant value of
approximately 5 at a team size of 55. It also appears that the deviation in the
results is a function of team size as a threshold of one has a near-zero level of
deviation for a team size of 60 or above. Based on this trend, the authors believe
that if additional larger teams were considered, all threshold values would begin
to settle at a constant diameter with decreasing levels of variability.

Networks generated with thresholds of three and four both follow increasing
patterns along a positive power regression. Networks of threshold level three
smooth out at a network diameter of four and networks of threshold level four
smooth out at a network diameter of five. The cause of the increasing diameter
level for smaller team sizes for these two threshold values is due to incomplete
network graphs for low team sizes. With a low number of team members and a
higher threshold value, isolates and disconnected clusters form, causing network
diameters of zero. When taking the average across these networks, the incomplete
graphs begin to disappear, as networks become more connected, causing the
average diameter to level out around the constant value for each threshold. For
example, this phenomenon occurs at 20 individuals for a threshold of three.
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Figure 12. Network graph characteristics with 95% confidence intervals.

For networks with thresholds of five and six, the impact of these incomplete
graphs is much more prominent. These values appear to increase linearly with
respect to team size; however, they are expected to smooth out, in a similar fashion
to thresholds of three and four, as the number of incomplete graphs decrease.

When reviewing team size against network density, Figure 12(b), it is observed
that there is no discernible effect of team size on network density. As the team size
increases, the network density across constant threshold lines remains relatively
constant. It is observed that network density decreases significantly with increased
threshold level. This is due to the increased potential for communication links
when the threshold value is low.

Based on these results, it is preferable to support each design team with
additional lines of communication to allow for greater sharing of design activities,
especially for teams of greater size. When considering crowdsourced design, this
could come in the form of using members with similar traits and complementary
abilities. With the traits of individuals being used to generate connections
between them, crowdsourced networks would benefit from the combination
of individuals who share common interests to support collaboration efforts.
Thus, it is advantageous to develop additional modes of communication between
members, potentially through increased content sharing or trait matching.

While this work allows for the initial analysis of simulated design teams, there
exist further possibilities to extend this simulation framework to generate a more
robust and adaptive model, allowing for the theoretical performance validation of
the framework. Currently, individual abilities are restricted to broad estimations
of their overall competencies. Further understanding of the specific attributes of
each individual and how these map to design improvements is required before
self-organizing mass collaboration efforts can expand.

Additionally, it is important to note that increased connections between
individuals are not penalized, supporting the trend of increased communication
between members. In practice, additional communication links can increase time
of development and costs. This work reviews a design initiative under constant
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iteration, similar to open source projects, such that development time is assumed
to not significantly impact the design score.

5. Conclusions

This work presents a conceptual simulation that quantifies the design ability of ad
hoc design teams generated from a crowd while reviewing the network structure
of each team. Predicted design improvements are estimated after the initial
characteristics of each individual have been quantified, based on the composition
and network structure of each team.

Overall, it is determined that increased connectivity through information
flows andmember positioning allows for greater design ability.While this result is
intuitive, quantifiable metrics allow for stronger network development guidance
when considering large-scale mass collaboration projects. It is also found that as
the team size is increased, greater emphasis must be placed on open information
flow within the network.

An increased grasp of network development also requires the inclusion of
additional team formation methods such as recommender systems, to allow for
individuals to join efforts to which they are well suited, learning algorithms, to
properly map competencies to design improvements, and agent based modeling,
to observe time-dependent effects on network formations. With these additional
insights, self-governing design networks could potentially support complex
development projects.
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