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Observing single quantum trajectories of a
superconducting quantum bit
K. W. Murch1,2, S. J. Weber1, C. Macklin1 & I. Siddiqi1

The length of time that a quantum system can exist in a superposi-
tion state is determined by how strongly it interacts with its environ-
ment. This interaction entangles the quantum state with the inherent
fluctuations of the environment. If these fluctuations are not mea-
sured, the environment can be viewed as a source of noise, causing
random evolution of the quantum system from an initially pure state
into a statistical mixture—a process known as decoherence. However,
by accurately measuring the environment in real time, the quantum
system can be maintained in a pure state and its time evolution
described by a ‘quantum trajectory’1,2 determined by the measure-
ment outcome. Here we use weak measurements to monitor a micro-
wave cavity containing a superconducting quantum bit (qubit), and
track the individual quantum trajectories3 of the system. In this set-
up, the environment is dominated by the fluctuations of a single
electromagnetic mode of the cavity. Using a near-quantum-limited
parametric amplifier4,5, we selectively measure either the phase or
the amplitude of the cavity field, and thereby confine trajectories to
either the equator or a meridian of the Bloch sphere. We perform
quantum state tomography at discrete times along the trajectory to
verify that we have faithfully tracked the state of the quantum system
as it diffuses on the surface of the Bloch sphere. Our results demon-
strate that decoherence can be mitigated by environmental monitoring,

and validate the foundation of quantum feedback approaches based on
Bayesian statistics6–8. Moreover, our experiments suggest a new means
of implementing ‘quantum steering’9—the harnessing of action at a
distance to manipulate quantum states through measurement.

If a quantum system and its environment have a common set of statio-
nary states, then a measurement of the environment ultimately leads to
projection of the quantum system onto one of its eigenstates. Nume-
rous experiments with photons10, atoms11 and solid-state systems12,13

have elucidated this process, enabling squeezing14–16 and quantum
feedback6–8,17. Here we examine how real-time monitoring of a quantum
system’s environment reveals quantum trajectories that underlie the
processes of measurement and decoherence.

In our experiment (Fig. 1a), we use a superconducting transmon
circuit18 dispersively coupled to a copper waveguide cavity in the ‘three-
dimensional transmon’ architecture19. If only the two lowest levels of
the transmon are considered, the qubit–cavity interaction is given by
the Hamiltonian Hint 5 2Bxa{asz, where a{ and a are respectively the
creation and annihilation operators for the cavity mode, sz is the qubit
Pauli operator that acts on the qubit state in the energy basis, x is the
dispersive coupling rate and B is Planck’s constant divided by 2p. This
interaction can be viewed as either a qubit-state-dependent shift of
the cavity frequency of 2xsz or a light (or a.c. Stark) shift of the qubit
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ŷ

X1

X2

X1

–0.5

0.5

0.0

0.0–0.1–0.2 0.20.1 0.3 0.4

Figure 1 | Single-quadrature weak measurements. a, Our experimental
set-up consists of a superconducting transmon qubit dispersively coupled to a
copper waveguide cavity with a coupling rate of x/2p5 20.49 MHz. The cavity
port sets the cavity decay rate of k/2p5 10.8 MHz. Signals that reflect from
the cavity are amplified by a LJPA (lumped-element Josephson parametric
amplifier) operating with 10 dB of gain and an instantaneous bandwidth of
20 MHz. b, Illustration of the Gaussian variance of measurement signals with
phases, relative to the amplifier pump, of h 5 0 andp/2 after reflecting from the
cavity with the qubit in | 1æ (red) or | 0æ (blue). c, Illustration of the measurement
signal after reflecting from the LJPA. The amplifier is operated in

phase-sensitive mode, where small signals that are combined in phase or in
quadrature with the pump tone are respectively amplified or de-amplified, and
rotated by p/2. The back-action of the measurement on a qubit superposition
state is indicated on the Bloch sphere. d, A representative integrated
measurement signal, Vm(t), that is obtained when the qubit is prepared in an
initial superposition state along the x̂ axis of the Bloch sphere. Inset,
instantaneous measurement voltage. e, Histograms of Vm(t 5 1.8ms) for the
qubit prepared in | 1æ (red) and | 0æ (blue) for a measurement corresponding to
h 5p/2 with S 5 3.2. Inset, S versus �n, with the solid line indicating the expected
dependence for g 5 0.49.
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frequency that depends on the intracavity photon number n̂~a{a. A
microwave tone that probes the cavity near its resonance frequency
acquires a qubit-state-dependent phase shift (Fig. 1b). For xj j=k,
where k is the cavity decay rate, the reflected signal component in quad-
rature with the input measurement tone contains qubit state informa-
tion, and the signal component in phase with the measurement tone
carries information about the intracavity photon number. After leaving
the cavity, the signal is displaced to the origin of the X1–X2 plane (X1

and X2 are the two quadrature amplitudes of the mode of the electromag-
netic field) by a coherent tone and amplified by a near-quantum-limited
lumped-element Josephson parametric amplifier5 (LJPA). Phase-sensitive
operation of the LJPA permits noiseless amplification of one quadrature
of the reflected measurement signal with corresponding de-amplification
of the other quadrature20,21.

In principle, for an ideal amplifier, that is, one which adds no noise,
the choice of measurement quadrature determines the type of back-
action imparted on a coherent superposition of qubit states22. When the
amplified quadrature conveys information about the qubit state, the
measurement causes random motions of the qubit towards its eigen-
states, which are located at the poles of the Bloch sphere. From the per-
spective of the qubit, the intracavity photon number does not fluctuate.
However, when the amplified quadrature encodes the intracavity photon
number, the phase of the coherent superposition evolves in response to
variations in the a.c. Stark shift of the qubit and superpositions of the
measurement eigenstates are not projected.

We first focus on the case in which the amplified quadrature conveys
qubit state information, which we denote a ‘Z-measurement’. Figure 1d

displays a single measurement signal, Vm(t)~(1=t)

ðt

0
V(t) dt, where

V(t) is the instantaneous measurement voltage, that is obtained when
the qubit is initialized in the superposition state (j0izj1i)=

ffiffiffi
2
p

along
the x̂ axis of the Bloch sphere. As the measurement duration increases,
information about the qubit state accumulates. The best estimate for
the state of the qubit after a weak measurement can be obtained using
Bayes’ rule10,22,23, to find the probability of the qubit being in state i,
conditioned on the integrated measurement value Vm:

P i Vmjð Þ~ P ið ÞP Vm ijð Þ
P Vmð Þ

Probability distributions P(Vmji) for Vm are shown in Fig. 1e for the
states i 5 {j0æ, j1æ}. The probability P(i) describes our knowledge of the
prior distribution and is 1/2 when the qubit is initialized along x̂. Thus,
after acquiring a measurement value Vm, the state of the system is
described by22

ZZ~tanh VmS=2DVð Þ ð1Þ

XZ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{(ZZ)2

q
e{ct ð2Þ

Here we define the expectation values of the Pauli operators conditioned
on measurement value Vm as X~ sxh i Vmj , Y~ sy

� �
Vmj and Z~ szh i Vmj ,

where the superscript ‘z’ denotes a Z-measurement and S~64tx2�ng
�

k is
the dimensionless measurement strength that depends on the measure-
ment duration, t, the quantum efficiency of the measurement, g, and
the average intracavity photon number, �n. The measurement strength
can also be related to the separation between the measurement proba-
bility distributions for the states j0æ and j1æ, DV, and their Gaussian
variance, s2: S~(DV)2�s2. We calibrate �n using the measured a.c.
Stark shift of the qubit frequency. From a linear fit of S to �n (Fig. 1e,
inset), we determine that g 5 0.49. For small values of S, an individual
measurement does not fully determine the qubit state. For S?1, the
histograms are well separated and the qubit state can be determined
with very high confidence, corresponding to a projective measurement.

The exponential decay of coherence in XZ in equation (2) reflects imper-
fect knowledge about the state of the environment and leads to qubit
dephasing characterized by the rate c~8x2�n 1{gð Þ=kz1

�
T�2 . The

first term here reflects measurement-induced dephasing24,25 originating
from the degree to which the signal is undetected (quantified by 12g).
The second term reflects extra environmental dephasing, which is
characterized by T�2 ~20 ms for the qubit.

We now discuss the case of a ‘w-measurement’, in which the amp-
lified quadrature encodes the fluctuating intracavity photon number.
Each photon that enters the cavity shifts the qubit phase by an average
of 4x/k, causing the phase of a coherent superposition of the qubit
states j0æ and j1æ to evolve. Given DV and S (obtained from a separate
Z-measurement), Vm can be used to infer the total accrued phase shift.
The evolution of X and Y is then given by22

Xw~cos SVm=2DVð Þe{ct ð3Þ

Yw~{sin SVm=2DVð Þe{ct ð4Þ
The back-action associated with quadrature specific amplification, as
given by equations (1)–(4), is presented in Fig. 2. To verify these predic-
tions, we conduct an experiment consisting of three primary actions:
we first prepare the qubit along the x̂ axis, then we digitize the amplified
measurement tone for 1.8ms and, finally, we measure the projection of
the qubit state along the x̂, ŷ or ẑ axis. After repeating the experiment
sequence ,105 times, we evaluate XZ, Xw, YZ, Yw, ZZ and Zw. Figure 2c
displays the results of this measurement procedure for a Z-measurement,
as a function of Vm. A measurement with Vm 5 0 yields no informa-
tion about the qubit state, leaving it unperturbed. A strongly positive
or negative value of Vm, although rare, corresponds to a significant
motion of the qubit towards the state j0æ or, respectively, the state j1æ.
For the w-measurement (Fig. 2d), Zw is uncorrelated with the measure-
ment signal. Here Vm conveys information about the phase shift of the
qubit state resulting from the fluctuating intracavity photon number.
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Figure 2 | Correlation of tomography results with measurement values.
a, Experimental sequence for determining XZ. An initial strong measurement is
used to herald | 0æ, and this is followed by a rotation about the ŷ axis to prepare
the qubit along x̂. A weaker measurement signal is digitized for 1.8ms, and a
final rotation and strong measurement are used to determine the qubit
projection along x̂. Similar sequences are used to determine YZ and ZZ.
b, Tomography correlation procedure. Different measurement values are
indicated as different colours, with the colour-coded histogram indicating the
relative probability of each measurement value. Boxes indicate the
measurement value, Vm, for each experimental repetition, and the associated
tomography result is indicated as 61. Tomography results for matching Vm are
averaged together to determine XZ. c, Tomography results versus Vm for a
Z-measurement with �n~0:4. The dashed lines are theory curves based on
equations (1) and (2) for g 5 0.49 and S 5 3.15, where c 5 2.8 3 105 s21.
d, Tomography results for a w-measurement for �n~0:46. The dashed lines are
theory curves based on equations (3) and (4) for g 5 0.49 and S 5 3.62, where
c 5 3.1 3 105 s21.
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For both types of measurement, the results show excellent agreement
with theory for g 5 0.49.

We have so far demonstrated that the integrated measurement signal
provides a faithful record of the fluctuations of the environment and
the associated motions of the qubit state. Moreover, we observe that
the direction of motion of the qubit state depends on the amplification
quadrature. To examine quantum trajectories of the system, we divide
the measurement signal into successive segments. The integrated measure-
ment signal can then be written as a string {Vm(t0), Vm(t1), Vm(t2), …},
where ti11 2 ti 5 16 ns. At each time point, Vm(ti) can be used to infer
the qubit state. In Fig. 3, we present measurement traces along with the
quantum trajectory of the system associated with each noisy measure-
ment trace. The trajectories show how the quantum system evolves sto-
chastically from an initial state prepared along x̂ towards a final state.
Measurement inefficiency and additional dephasing limits the accuracy
with which the state can be tracked. This limitation is manifest as a gradual
shortening of the estimated transverse coherence of the qubit state.

To verify that we have accurately inferred the quantum trajectory of
the system corresponding to a given measurement signal, we perform
quantum state tomography on an ensemble of experimental iterations
with similar measurement values. A tomographic reconstruction of the
trajectory is obtained by making measurements of variable duration, ti,
and subsequently measuring the projection of the qubit state along one
of the Cartesian axes of the Bloch sphere. Only measurements with
values that are within +e of the target value, Vm(ti), contribute to
determining the ensemble properties X, Y and Z. As shown in the
upper panels of Fig. 3, many different measurement signals that con-
verge to Vm(ti)+e at ti are used in the tomographic reconstruction.
This illustrates how the inferred state at a particular time depends only
on the value of the integrated measurement voltage at that time.

Figure 3a, b displays quantum trajectories that are obtained for Z-
measurements. The reconstructed trajectories based on ensemble mea-
surements, shown as solid lines, are in reasonable agreement with the
quantum trajectories determined from a single measurement record,
and reproduce many of the minute motions of the qubit as it ultimately
evolves towards its eigenstates of measurement. Some trajectories high-
light the concept of quantum measurement reversal:26–29 in Fig. 3a, after
,400, 600 and 1,000 ns of measurement the qubit state has returned

nearly to its original state, effectively ‘reversing’ the preceding partial
collapse of the qubit wavefunction. In Fig. 3c, we display the measurement
record that we obtain from a w-measurement. The resulting quantum
trajectory is confined to motions along the equator of the Bloch sphere.

Full control over the environment of a quantum system allows for the
mitigation of decoherence through accurate monitoring of fluctuations
of the environment. Although measurement schemes based on projec-
tive measurements on ancilla qubits obtain measurement efficiencies30

greater than 0.9, the measurement efficiency presented here, g 5 0.49, is
among the highest reported values for a continuous variable6–8,13. This
efficiency is limited by an imperfect collection efficiency, gcol 5 0.72,
resulting from losses in microwave components, and imperfect amp-
lifier quantum efficiency, gamp 5 0.68. Further improvements in the
quantum measurement efficiency will be essential for realizing poten-
tial applications of quantum feedback6,7 in quantum metrology and
information science.

METHODS SUMMARY
The qubit consists of two aluminium paddles connected by a double-angle-evaporated
aluminium superconducting quantum interference device (SQUID) deposited on
double-side-polished silicon, and is characterized by charging and Josephson energies
Ec/h 5 200 MHz and EJ/h 5 11 GHz, respectively. The qubit is operated with neg-
ligible flux threading the SQUID loop with transition frequency vq/2p5 3.999 GHz.
The qubit is located off centre of a 6.8316-GHz copper waveguide cavity.

The LJPA consists of a two-junction SQUID, formed from 2-mA Josephson
junctions, shunted by 3 pF of capacitance, and is flux-biased to provide 10 dB of
gain at the cavity resonance frequency. The LJPA is pumped by two sidebands that
are equally spaced 300 MHz above and below the cavity resonance. A second LJPA
that follows the first provides additional gain. A detailed experimental schematic is
shown in Supplementary Fig. 1.

Experiment sequences start with an 800-ns readout with S 5 42 that is used to
herald the state j0æ at the beginning of the experiment. A sample herald histogram
is shown in Supplementary Fig. 2. Because xj j=k, several peaks are visible, cor-
responding to the many energy levels of the transmon qubit. After preparing the
state j0æ, we perform a 16-ns p/2-rotation about the {ŷ axis to initialize the qubit
along the x̂ axis. After a period of variable duration, we perform quantum state tomo-
graphy, which consists of either rotations about the x̂ and ŷ axes or no rotation and
a second 800-ns readout with S 5 42. In a fraction (,4%) of the final readouts, the
qubit is outside the {j0æ, j1æ} manifold. These sequences were disregarded in the
analysis. Tomography results are corrected for the readout fidelity of 95%.
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Figure 3 | Quantum trajectories. a, b, Individual measurement traces
obtained for Z-measurements with �n~0:4. The top panels display Vm(t) as a
green line, with the upper insets displaying the instantaneous measurement
voltage. The grey region indicates the standard deviation of the distribution
of measurement values. Measurement traces that converge to an integrated
value within the blue matching window are used to reconstruct, using
tomography, the trajectory at that time point. A few different measurement
traces that contribute to the reconstruction at 1.2ms (a) and 0.592ms (b) are

indicated in lighter colours. The lower insets indicate the distribution of
measurement values with the blue matching window. The lower panels display
quantum trajectories obtained from analysis of the measurement signal, as
dotted lines. Solid lines indicate the tomographically reconstructed quantum
trajectory based on the ensemble of measurements that are within the matching
window of the original measurement signal. c, Individual measurement traces
and associated quantum trajectories obtained for a w-measurement with
�n~0:4.
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