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Electronically highly excited (Rydberg) atoms experience quantum-state chang-

ing interactions similar to Förster processes found in complex molecules, of-

fering a model system to study the nature of dipole-mediated energy trans-

port under the influence of a controlled environment. We demonstrate a non-

destructive imaging method to monitor the migration of electronic excitations

with high time and spatial resolution using electromagnetically induced trans-

parency on a background gas acting as an amplifier. The many-body dynamics

of the energy transport is determined by the continuous spatial projection of

the electronic quantum state under observation and features an emergent spa-

tial scale of micrometer size induced by Rydberg-Rydberg interactions.

Watching a many-body quantum system evolve under the influence of well controlled inter-

actions is the basic essence of Feynman’s vision for a quantum simulator (1–3), which could

be used to address fundamental questions about coherent-quantum and open-system dynamics

in diverse settings (4, 5). One such question is the nature of energy transfer in real physical

systems, such as complex chemical reactions, excitonic transport in organic semiconductors (6)

and molecular aggregates (7) or photosynthetic light-harvesting complexes (8). Both disorder

and environment play crucial roles in the transport dynamics. In particular, it is unclear to which

extent quantum-mechanical effects may enhance or reduce its efficiency (9).

The simulation of random walks in the quantum regime has recently been rendered acces-

sible using manipulation techniques for single atoms (10, 11) and photons (12). In order to
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study dipole-induced energy transport in a many-body environment, ultracold gases of highly-

excited (Rydberg) atoms, which possess exceptionally large dipole moments and long-range

quantum-state changing interactions, represent a unique model system (13, 14). Evidence of

Rydberg energy exchange has been deduced from spectroscopic properties of optical Rydberg

excitation (15–18), and from the macroscopic transfer of Rydberg state populations (19, 20).

So far however, the direct microscopic observation of Rydberg energy transport has remained

out of reach due to the difficulty in spatially following the migration of Rydberg excitations

in real time. The first images of Rydberg atoms have recently been obtained using destruc-

tive methods such as field-ion microscopy (21), optical pumping of Rydberg atoms back to the

ground state followed by high resolution fluorescence imaging (22), or core electron absorp-

tion in two-electron Rydberg-atoms (23). Here, we realize a non-destructive and state-selective

optical imaging technique, as proposed in (24, 25), which is particulary adapted to investigate

Rydberg energy transport under continuous observation. Each Rydberg impurity locally trig-

gers strong absorption by many neighbouring background atoms, allowing one to image small

numbers of otherwise invisible impurities. We observe and control transport dynamics on mi-

crometer length scales with microsecond resolution. We show that the dynamics are affected by

the back-action of the continuous non-destructive measurement process which induces a transi-

tion to quasi-classical diffusive transport. Furthermore, the Rydberg blockade effect, in which

the presence of a single Rydberg atom strongly suppresses subsequent excitation of additional

atoms (13), introduces a characteristic length scale to the transport dynamics reminiscent of

self-assembling systems.

The basic idea of our imaging method (24) is to exploit the strong interactions between

impurity atoms in the Rydberg state |i〉 with a bath of surrounding atoms, each optically coupled

to a probe Rydberg state |p〉. Impurity-probe interactions cause a level shift of the |p〉 states in

the vicinity of each impurity, which is mapped onto the light field using an electromagnetically

induced transparency (EIT) resonance (26–28). By recording the probe laser transmission on

a charge coupled device (CCD) camera an absorption image of the distribution of impurities is

produced (Fig. 1A). The ultracold atomic gas is dressed by a strong coupling laser field (with

Rabi frequency Ωc) and a weaker probe laser field (Ωp). The intermediate state |e〉 is short lived

with a spontaneous scattering rate Γ. Destructive interference between excitation pathways

decouples the atoms from the probe laser (29), except in the vicinity of an impurity atom where

the EIT condition is broken causing the surrounding probe atoms to become strongly absorbing.

The radius of the absorbing spot around each impurity is given by the interstate-blockade

radius Rip, corresponding to the distance at which the EIT spectral half width (Ω2
c/2Γ in the

weak probe limit neglecting laser linewidths) equals the interaction induced level shift (Fig. 1B).

Thus, each impurity is effectively accompanied by a sphere of absorbing atoms which enables

us to monitor its location and dynamics. Strong impurity-probe interactions are achieved us-

ing resonant Rydberg-Rydberg interactions (Förster resonance) (13). The Rydberg blockade

introduces another important length scale to the system, the impurity-impurity blockade radius

Rii, which is the closest distance between two impurities after laser excitation. By choosing

appropriate states or by using modest electric fields to tune the Förster resonance it is possible
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Figure 1: Interaction enhanced imaging scheme for studying transport dynamics. (A) Each

impurity (red dot) breaks the EIT-condition for probe atoms within a volume characterized by

Rip due to the interaction induced level-shift on an auxiliary Rydberg-state |p〉 of the probe

atoms. These atoms therefore strongly absorb the probe beam, casting a shadow in the images.

State exchange interactions with strength Vip lead to impurity transport. (B) Simplified level

diagram showing the involved states in the excitation of the Rydberg-impurities |i〉 as well as

the states involved in the EIT-ladder scheme, which is used to probe the level-shift on the state

|p〉 . (C) Averaged optical density image of an impurity distribution for approximately 100

impurities.

to independently vary Rii and Rip.

To demonstrate the essential features of the imaging method, Rydberg impurities in state

|i = 50S〉 are excited in a small central region of the cloud (30). The excitation pulse is

followed by the acquisition of the probe absorption image under EIT-conditions using separate

lasers which couple to the probe state |p = 37S〉. For weak enough probe light, blockade effects

between the probe atoms, which would lead to a reduced transparency, can be neglected (24).

From comparison with an image without impurities we determine the additional optical density

ODadd due to the presence of impurities, from which we extract the number of additional two-

level absorbers Nadd. A typical image of approximately 100 impurity atoms (averaged over 100

shots) is shown in Fig. 1C. In Fig. 2 we show the number of additional absorbers as a function of

the number of impurity atoms Nimp measured by field-ionization detection. For low numbers of

impurities, a linear dependence is observed as each impurity blocks roughly the same number of

probe atoms. From the slope, we determine an amplification factor of A = Nadd/Nimp = 19±2.
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Figure 2: Dependence of the number of additional absorbers on the number of impurities.

For small numbers of impurities the number of additional absorbers grows linearly. The black

line is a fit used to determine the amplification factor. For high impurity numbers the additional

absorbers and the blockaded fraction saturate due to the Rydberg blockade effect. In this regime

the additional impurities are only excited in the low density wings of the cloud, therefore not

significantly increasing the number of additional absorbers.

The optical depth per interstate blockade sphere is ODbl ≈ 0.5, suggesting that our images

might be sensitive to single impurities. At present, however, we are limited by our optical

resolution which is larger than both Rip and Rii, allowing us to clearly detect as few as 5

impurities in a single shot with . 5µs time-resolution. By improving the optical resolution

below Rip it will ultimately be possible to follow the evolution of individual impurities in real

time. For increasing numbers of impurities (∼ 10) we observe a saturation of the number of

additional absorbers as shown in Fig. 2. This is a manifestation of the Rydberg blockade effect

resulting in a saturation of the density of impurities. For stronger excitation the number of

impurities increases further due to excitation in the low density wings of the cloud, but the

number of additional absorbers is not significantly increased.

In order to study transport of the kind

|i〉 ⊗ |p〉 ⇄ |p〉 ⊗ |i〉 , (1)

we switch to states which possess strong dipolar state-exchange interactions. The effects of

the Rydberg blockade and the continuous optical observation lead to interesting new features.

In particular, the spatial correlations due to the Rydberg blockade and the dissipation induced

by the scattering of probe light, which acts as a controlled environment, have a strong impact

on the intrinsically coherent transfer mechanism. In a simplified picture, we consider coherent

state exchange of an atom in state |i〉 with all of the surrounding atoms. The hopping fre-

quency ωhop(r) ≃ 2ρpp(r)Vdd(r) between an impurity and an atom at distance r depends on
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Figure 3: Diffusion of Rydberg-impurities. (A) The strong exchange interactions between

impurities and probe atoms lead to an expansion of the Rydberg distribution in time in the

presence of the imaging light. The top sketch shows the experimental geometry, while the

following images show the additional optical depth for different exposure times (left column)

or different delay times (right column), with fixed color scale (on the Förster resonance). (B)

The squared-width of the distribution σ2
x increases approximately linearly with time. On the

Förster resonance (full blue circles) the expansion is faster than off resonance (full red circles).

For comparison, open blue circles show σ2
x on resonance for fixed exposure time (2 µs), but

with varying delay between the excitation and the illumination of the atoms with imaging light..

the dipole-dipole exchange interaction Vdd(r) = C3/r
3 and on the population ρpp(r) of the |p〉

state. Through the dependence of ρpp on the laser fields and the blockade effect, it is possible to

control the hopping dynamics. Light scattering by probe atoms causes a measurement-induced

environmental decoherence rate γenv ≃ AΩ2
p/Γ. Through the density and Ωp this can be con-

trolled independently of ωhop. For our parameters we estimate that γenv is typically 150 times

higher than the peak value of ωhop(r). Therefore we expect classical hopping to dominate with

a rate Γhop(r) ≃ ω2
hop(r)/γenv to each of the neighbouring atoms. Due to the competition be-

tween the interstate Rydberg blockade and the 1/r3 scaling of Vdd there is a preferred hopping

distance rhop ∼ Rip. This introduces an intrinsic scale into the transport dynamics, similar to

that of self-assembled systems. We expect the width of the impurity distribution in each direc-

tion σ(t) to grow as σ2(t) = σ2(0) + 2Dt, with D ≃ 5/18R2
ip Ω

2
p/Γ (see supplementary online

text).

To investigate these dynamics we excite impurities in the |i = 38S〉 state and perform EIT

with the |p = 37S〉 state. The pair state |38S〉⊗ |37S〉 couples to the exchange-symmetric pair-

state |37P 〉⊗|37P 〉. Therefore energy transport can occur due to |38S〉 ⇄ |37S〉 exchange. The
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coupling C3 = 2π × 1.6 GHz µm3 gives Rip = 6.3 ± 0.5µm. Figure 3A (left column) shows

images of the impurity distribution for different exposure times. The distribution is seen to

expand horizontally as a function of imaging exposure time. Expansion in the vertical direction

is not observed due to the smaller size of the EIT coupling beam in this direction. In addition

to the growing width, we observe a slight decay of Nadd which can be attributed to the lifetime

of the |38S〉 Rydberg state (≈ 30µs). To perform a quantitative analysis of the dynamics, we

extract the second central moment σ2
x of the imaged distributions as a function of the exposure

time. As shown in Fig. 3B for different conditions, σ2
x grows approximately linearly. On the

Förster resonance and including the effect of time integration during the exposure pulse (see

Material and Methods), we find D = 80 ± 13µm2/µs. From the simple scaling discussed

above we expect Dexpect = 55± 23µm2/µs which agrees with the measurements.

To verify the role of the environment on the observed dynamics we also record images with

a fixed short exposure time of 2µs (Fig. 3A right column), but with different times between

impurity excitation and image acquisition (while Ωp = 0). Here we observe no diffusion con-

firming that impurity-probe interactions are responsible for the dynamics, and that the dynamics

can indeed be controlled by modifying the environment via the laser fields. Additionally this

demonstrates that mechanical forces between impurity atoms do not play a significant role.

Finally we study transport in the regime of off-resonant exchange interactions. Earlier ex-

periments under these conditions observed spectral broadening and rapid dephasing of coherent

state transfer (15–17), which was too high to be explained by the process in eq. (1) alone. This

was attributed to secondary processes resulting in enhanced spatial diffusion which we can now

directly observe. By setting the electric field to zero we tune the Förster-defect to 100MHz.

Here, we expect weaker impurity-probe exchange interactions and a change in the character of

the interactions to van der Waals type (1/r6 scaling), resulting in a significantly smaller rhop. In

this case we measure slower diffusion with D = 26 ± 6µm2/µs (Fig. 3B). However, this still

is almost an order of magnitude faster than can be expected from the above model, including

the slightly different experimental parameters (see supplementary online text). Our observation

thus reveals that the diffusion involves additional processes (such as the always resonant sec-

ondary process |37S〉 ⊗ |37P 〉 ⇄ |37P 〉 ⊗ |37S〉), and that spatial diffusion of secondary |nP 〉
excitations plays an important role for Rydberg-state dynamics and energy transfer.

In future work it may be possible to investigate the transition to coherent-quantum dynamics

in many-body systems. By detuning the EIT lasers from the intermediate state, decoherence via

photon scattering can be suppressed, while maintaining the preferred distance for hopping given

by the blockade radius. This will allow for the study of excitonic behaviour, in which impuri-

ties evolve as delocalised superposition states. In this regime, transport should be completely

different, leading to localisation or enhanced transport which can be controlled through the di-

mensionality, degree of disorder and dissipation in the system. By switching back to resonant

probing this evolution could be observed. This provides an ideal platform for benchmarking

current theories used to explain energy transport in complex systems such as light harvesting

complexes, where for example the competition between mechanical and excitonic transport and

the role of interactions are still open questions (8).
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Supplementary Materials

Materials and Methods

Imaging experimental sequence

In the experiment we start with a cigar-shaped Gaussian cloud of ultracold 87Rb atoms prepared

in the state |g = 5S1/2, F = 2,mF = 2〉 (1). To demonstrate the imaging, we excite in a

first step Rydberg impurities in state |i = 50S〉 in a small central region of the cloud using

a focused, direct two-photon excitation. The excitation is two-photon resonant and 65 MHz

detuned from the intermediate-state |e = 5P3/2, F = 3,mF = 3〉 as indicated in Fig. 1B.

The peak atomic density is ρ0 = 2.4 × 1011 cm−3. The impurity excitation pulse is followed

by the acquisition of the image under EIT-conditions using separate lasers. We employ an

EIT-ladder system consisting of the states |g〉, |e〉 and |p = 37S1/2,mJ = 1/2〉. The probe

and coupling beams are counter-aligned and tuned to the single-photon resonances |g〉 → |e〉
and |e〉 → |p〉, respectively. The probe uniformly illuminates the cloud with typical Rabi-

frequency ∼ 2MHz. The probe light transmitted through the cloud is imaged onto a CCD

camera with a resolution of 9 µm (Rayleigh criterion). The coupling beam is focused onto

the atoms to an elongated Gaussian intensity profile with σx = 64µm and σy = 10µm, and

Ωc ∼ 9MHz. Under these conditions the probe photon density inside the medium is much

smaller than the probe-blockade density and therefore effects of probe-probe interactions on

EIT can be neglected (2–5). Typical exposure times for image acquisition are t = 2-20µs.

For imaging we maximize the interstate blockade radius Rip = 3.8 ± 0.3µm via the Förster-

resonance, however it is still slightly smaller than the impurity-impurity blockade radius Rii =
4.2 ± 0.2µm (including collective enhancement with approximately 73 atoms per blockade

volume (6)). After the image, electric fields are switched to field ionize the impurities while

preserving the probe rydberg state. The resulting ions are counted with an overall detection

efficiency of 0.4 (3).

Image processing

To obtain the Rydberg distribution from the camera images one has to account for the residual

absorption due to imperfect transparency and for the spatial inhomogeneity of the coupling

beam. Therefore we take two images from different realizations of the experiment: one with

impurities, and one without impurity excitation. The optical density of additional absorbers can

then be calculated using the two images by ODadd = − log(Iimp/Ino imp) where I denotes the

transmitted intensities of the probe beam for the two images. To reduce the effects of shot-to-

shot fluctuations in the atom number, photon-shot-noise and fringes, we construct an optimal

image Ino imp,opt for each image with impurities (7). From ODadd we extract the number of

additional two-level absorbers Nadd.
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Time integrated diffusion

Our images provide the time-integrated impurity distribution. Assuming an initial Gaussian

distribution of impurities with width σ0 and diffusive expansion, the horizontal distribution

during imaging (with exposure time tEXP) is given by

A0√
2πtEXP

∫ tEXP

0

1
√

2Dt+ σ2
0

e
− x

2

2(2Dt+σ2
0) dt.

The second moment σ2
x of the time-integrated distribution is

σ2
x = σ2

0 +Dt

which we fit to the data to extract the diffusion coefficient D.

Experimental conditions for excitation transport

The experiments on energy transport follow the same experimental sequence as the demonstra-

tion of imaging, except that the impurity state is changed to |38S〉.
For the transport experiment on the Förster resonance, the probe Rabi frequency is Ωp =

2π × (2.2 ± 0.3)MHz, the coupling Rabi frequency is Ωc = 2π × (9 ± 1)MHz, and the

atomic density is ρ0 = (4.7 ± 0.5) × 1010 cm−3. For the transport experiment away from

the Förster resonance, we use : Ωp = 2π × (1.8 ± 0.2)MHz, Ωc = 2π × (9 ± 1)MHz, and

ρ0 = (8.0± 0.8)× 1010/cm3.

Supplementary Text: Model of the transport dynamics

Dipolar energy transfer on the Förster resonance

We consider an impurity coupled to each of the neighbouring atoms by a dipole-dipole state-

exchange interaction Vdd(r) = C3/r
3. This term is responsible for a coherent excitation transfer

to the probe atom dressed by the laser fields with frequency ωhop(r) = 2Vdd(r)ρpp(r), where

the population ρpp of the |p〉 state on the probe atom is affected by the presence of the impurity.

The latter is also responsible for a finite population ρee of the intermediate state, resulting in

light scattering at a rate ρeeΓ.

To evaluate ρpp and ρee, we assume stationary state for the laser-driven evolution of the probe

atom. Throughout this Supplementary Information we use simplified expressions assuming the

weak probe limit Ωp ≪ Ωc,Γ. Neglecting laser linewidth and decay of the Rydberg state, we

obtain:

ρpp(r) =
Ω2

pΩ
2
c

Ω4
c + 4Vdd(r)2Γ2

; ρee(r) =
4Vdd(r)

2Ω2
p

Ω4
c + 4Vdd(r)2Γ2

(2)
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Figure S1: Probe atom state as a function of distance to the impurity. The continuous blue

and red curves show the populations ρpp(r) and ρee(r), respectively. The vertical line marks

the blockade radius Rip, at which the Rydberg state population is suppressed by a factor of

two by the interactions. The dashed blue curve shows the hopping frequency ωhop(r), which

due to the low-distance suppression of the Rydberg population and the long-distance decay of

the interaction presents a maximum approximately at Rip. For parameters see Materials and

Methods.

In Fig. S1 we show both these populations, from which two observations can be made. First, we

observe that within a sphere of radius ≈ Rip = (2ΓC3/Ω
2
c)

1/3 the Rydberg population is highly

suppressed. As a consequence, the hopping frequency ωhop(r) presents a peaked maximum

at approximately Rip, responsible for a preferred hopping distance. Second, we observe that

within the same sphere the atoms present a significant population of the intermediate state, and

thus strongly scatter light.

The transport dynamics results from the coherent hopping process of the impurity to all of

the neighbouring atoms, damped by the light scattering of the ensemble of atoms in the vicinity

of the impurity, with rate γenv =
∑

atoms ρeeΓ. If γenv ≫ ωhop(r) at any distance, the excitation

transfer to one probe atom behaves classically, with rate Γhop(r) = ωhop(r)
2/γenv. This rate,

falling off as 1/r6, can be spatially integrated in three dimensions to obtain the total hopping

rate Γtot
hop ≃ Ω2

p/2Γ and the mean square hop distance r2hop = 〈~r 2〉 ≃ 10/3R2
ip. The diffusion

coefficient in three dimensions D = 〈~r 2〉Γtot
hop/6 then becomes:

D ≃ 5

18
R2

ip

Ω2
p

Γ
(3)

From the parameters used in our experiment on the Förster resonance (see Material and

Methods), and with C3 = 2π × 1.6GHzµm3, we expect diffusion with D = 55± 23µm2/µs,
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where the stated uncertainty is dominated by the calibration of Ωp. We also estimate the ampli-

fication factor A ≃ γenvΓ/Ω
2
p = 77± 25.

Van der Waals energy transfer away from the Förster resonance

In the case of a van der Waals exchange interaction, the expressions for γenv and Γhop do not

present a simple analytical form. Instead we use a hard sphere approximation with radius

Rvdw = (2ΓC6/Ω
2
c)

1/6 : for r < Rvdw we set ρee ≃ Ω2
p/Γ

2 and ρpp ≃ 0, while for r ≥ Rvdw we

set ρee ≃ 0 and ρpp ≃ Ω2
p/Ω

2
c . Considering that ωhop decays with 1/r6, we get after 3D spatial

integration Γtot
hop ≃ Ω2

p/3Γ and rhop ≃
√

9/7Rvdw. Consequently, we again obtain a simple

expression for the diffusion coefficient :

D ≃ 1

14
R2

vdw

Ω2
p

Γ
(4)

The differences as compared to the dipolar exchange are the numerical pre-factor and the

strongly reduced blockade radius. In the presence of a Förster defect δF , these are related

by Rvdw/Rip =
(

Ω2
c

4ΓδF

)1/6

≈ 0.6 for our parameters.

From the parameters used in our experiment away from the Förster resonance (see Material

and Methods), and with δF = 2π × 100MHz, we expect diffusion with coefficient D = 3.0 ±
0.9µm2/µs and amplification A = 14 ± 3. Note that the direct numerical integration of γenv
and Γhop without hard sphere approximation gives a similar value D = 2.2µm2/µs.

References and Notes

1. C. S. Hofmann, et al., arXiv:1307.1074 (2013).

2. J. D. Pritchard, et al., Phys. Rev. Lett. 105, 193603 (2010).

3. C. S. Hofmann, et al., Phys. Rev. Lett. 110, 203601 (2013).

4. T. Peyronel, et al., Nature 488, 57 (2012).

5. D. Petrosyan, J. Otterbach, M. Fleischhauer, Phys. Rev. Lett. 107, 213601 (2011).
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