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Abstract 

Monitoring (geotechnical) constructions is often based upon displacement measurements. However, 

these measurements do not offer information about the stiffness behaviour of a soil-structure system. 

A loss of stiffness might be observed as a decrease of the system’s eigenfrequencies. This research 

investigates if monitoring of ambient vibrations can be used to observe a change in the system’s 

stiffness.  

 

Stiffness monitoring of structural parts (e.g. steel and concrete beams) using vibrations is already 

common. These implementations are based on measuring natural frequencies and mode shapes. Any 

change in structural stiffness results in a change in these modal characteristics of the structure.  

A technique similar to this, but operating in the lower frequency range (i.e. below 300 hertz), is 

already used to derive the shear elasticity of soil. These techniques are known as seismic methods, 

and they record body and surface waves. The denser and stiffer the layer of the strata is, the faster it 

vibrates and the faster the phase velocity of the recorded waves will be. This provides an estimate of 

the strength of the soil and its ability to resist permanent deformation (i.e. its elastic behaviour). It is 

also used to find boundaries between different soil layers.  

 

In this research, the possibility of monitoring a relative change in stiffness during construction works 

is investigated. By a relative change is meant the change in stiffness with respect to the initial 

stiffness, expressed as a percentage. The initial stiffness will be coupled to the initial eigenfrequency 

of the system. A changed eigenfrequency can then be coupled to a percentage of this initial stiffness. 

The soil-structure system used for the analytical and empirical part of this research is part of a 

railway bridge in Nijmegen. In Nijmegen, diaphragm walls are constructed to a depth of more than 20 

meters, surrounding the old pillars of this bridge. It is assumed that, during construction works, there 

will be a change in the system’s stiffness due to the installation of the diaphragm walls.  

The eigenfrequencies of the soil-structure system are determined by continuous vibration 

monitoring of ambient vibrations, where the ambient vibrations are caused by the railway traffic. 

 

The formula to calculate the eigenfrequency of a system is:  

 

        √         

 

This implies that when the stiffness k decreases, the eigenfrequency of the system should also 

decrease.  

Two models have been analysed to simulate the bridge: a single and a double mass-spring model. 

Multiple parameters of these mass-spring models are modified in order to determine which parameter 

influences the eigenfrequency of both the soil and the structural part of the system.  
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From the mass-spring model it follows that the dominant frequency in the lower frequency range, 

between 5 and 15 hertz, represents the eigenfrequency of the soil. The dominant frequency in the 

higher frequency range, between 40 and 50 hertz, represents the eigenfrequency of the structure. 

With a changing stiffness of the construction, the eigenfrequency between 40 and 50 hertz changes 

significantly while the change in eigenfrequency around 10 hertz is insignificant. When the stiffness of 

the soil decreases, the eigenfrequency around 10 hertz decreases significantly while the 

eigenfrequency between 40 and 50 hertz remains almost unchanged. 

   

With the mass-spring model it is also concluded that only a change in stiffness relative to the initial 

stiffness can be monitored.  

A Fast Fourier Transform is used to convert the measured data into a frequency spectrum. When 

there is a phase difference between the first and the last data point a so called leakage occurs. Since 

it is impossible to determine the phase of the signal when dealing with ambient vibrations, a phase 

difference cannot be avoided. Due to leakage, the velocities in the frequency spectrum do not 

correspond well to the real velocities. Actual velocities may be more than 30% higher than the 

velocities obtained after a Fast Fourier Transform.  

 

With the recorded datasets of both the author, in cooperation with the Municipality of Rotterdam, and 

Fugro GeoServices B.V. it is investigated if the eigenfrequencies are changing during the construction 

works. The initial data is compared with the data recorded during and after the construction works.  

 

The dataset recorded by the author contains continuous vibration measurement in three directions, 

recorded by 10 geophones with a sampling frequency of 1000 hertz. The datasets are recorded on 

two different days. The first day represents the initial phase. The second day represents the 

construction phase.  

From these measurements it can be concluded that different types of trains do not have an 

influence on the observed eigenfrequencies. On the other hand, they do have an influence on the 

magnitude of the recorded vibration.  

In between the two days of measurement, hydraulic jacks were installed in between the girders 

and the pillar of the bridge to correct the settlements that occurred during the construction of the 

diaphragm walls. These jacks have made the joint in between the girder and the pillar more rigid. Due 

to this, the girder is acting stiffer than before. From the dataset it can be concluded that the 

eigenfrequency of the structure increases significantly after installation of the jacks. The frequency 

peak values representing the pillar and the girder increase. The eigenfrequency of the soil remains 

almost unchanged after installation of the jacks.  

This conclusion is consistent with the results that followed from the analytical model, as described 

above.  
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With the dataset recorded by Fugro GeoServices B.V. it is possible to analyse and compare the results 

of the initial phase, the construction phase and the post phase. For the analysis only the recorded 

traces are used. These traces contain continuous vibration measurements during 2 seconds, with a 

sampling frequency of 1024 hertz. The lower frequency range, between 0 and 25 hertz, of multiple 

monitored traces is analysed and compared. From these results, it can be concluded that a change in 

stiffness of the soil can be observed by a shift in eigenfrequencies. A decrease in eigenfrequency 

compared to the initial measured eigenfrequency is observed during the construction works. The 

decrease is small, but comparable to the decrease that was expected beforehand.  

In the post phase, when the construction works are finished, the eigenfrequency increases again. 

This leads to the conclusion that the stiffness has recovered again.  

 

Observing a change in stiffness of a soil-structure system by shifts in eigenfrequencies is possible, but 

only a relative stiffness change can be observed (i.e. the change in stiffness with respect to the initial 

stiffness). It is possible to monitor the shifts in eigenfrequencies by measuring ambient vibrations. 

It should be noted that with this monitoring system it is not possible to monitor settlements.  

 

The outcome of this research is relevant for stiffness monitoring of constructions. For projects where 

the deformation of a construction is rather irrelevant if the stiffness is not being influenced 

significantly, a vibration monitoring system which monitors shifts in eigenfrequency can offer 

information about the dynamic response (i.e. stiffness behaviour) of the construction.  
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0. Introduction 

Monitoring (geotechnical) constructions is often based upon (static) displacement measurements. 

However, these measurements do not offer information about the stiffness behaviour of a 

construction. In some cases, for example for dynamically loaded constructions such as bridges, the 

deformation of a construction is rather irrelevant if the stiffness of the construction is not being 

influenced significantly. In such cases it would be interesting if another type of measurement could 

offer information about the dynamic response (i.e. stiffness behaviour) of the construction, 

additionally to the traditional deformation monitoring. 

The dynamic response of a system depends on its stiffness, where the natural frequencies of a 

structure are indicators for the conditions of a structure. A loss of stiffness can be observed as a 

decrease of a system’s eigenfrequencies, which creates possibilities for analysing this change of 

frequency to monitor structural conditions. This is already being done in structural damage detection, 

where vibration based damage identification is used as a non-destructive testing technique for 

corrosion damage in reinforced or pre-stressed concrete.  

The complete system may consist of different parts, not only the structure but the surrounding soil 

as well. This research will investigate if it is possible to monitor soil conditions by using vibration 

measurements. Besides, it will be investigated to what extent the stiffness of the subsoil contributes 

to the total response of the soil-structure system. 

 

The soil-structure system used for the analytical and empirical part of this research is part of a railway 

bridge in Nijmegen. The pillars underneath this bridge were built in 1870 and are placed on a raft 

foundation. One of these pillars and its foundation are the structural part of the system, the 

surrounding subsoil is the soil part of the system.   

The bridge crosses the river Waal and its flood plains. Construction works around the pillars are 

part of the so-called ‘Room for the River’ project. To prevent future flooding and to protect the 

inhabitants of the city of Nijmegen and the village Lent against the water, a side channel will be 

constructed in the flood plains of the river. An excavation of approximately 10 meters will take place 

to construct this side channel, which will cause undermining of the pillars since the new ground level 

will be 3 meters beneath the foundation level of the pillars. To preserve the pillars and to ensure 

stability of the railway bridge, the Municipality of Rotterdam designed a construction of diaphragm 

walls surrounding the foundation of the pillars. The concept of this box of diaphragm walls is that the 

stresses in the subsoil surrounding the foundation of the pillars, inside the box, remain intact. Besides 

this, the stiffness of the soil-structure system as a whole and the stresses in the masonry upper part 

pillars remain the same and the superstructure of the bridge does not need to be adapted while no 

traffic obstruction takes place.   

To ensure the stability of the soil-structure system mentioned above during installation of the 

diaphragm walls, the stiffness is an important factor. It is assumed that during construction works 
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there will be a change in stiffness. As soon as the stiffness of the soil-structure system changes, a 

change in velocity and frequency of the vibrations measured is expected. Therefore, this project can 

be used as a test site for the monitoring system with ambient vibrations, where the ambient vibrations 

in this case are caused by trains.  
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1. Outline of the research 

The aim of this research is to investigate the possibility of monitoring stiffness changes by using 

vibration measurements.  

 

1.1  Problem statement 

The problem statement of this thesis can be formulated as:   

 

Monitoring systems, such as traditional deformation monitoring, do not give information about  

the stiffness behaviour of a soil-structure system  

 

1.2  Main objective   

In order to find a solution to this problem, the main objective of this study can be described as: 

 

Investigating the possibilities of using shifts in eigenfrequencies  

to observe the changing stiffness of a soil-structure system 

 

This will be done by both theoretical and analytical analysis, and by coupling this to results obtained 

by measuring ambient vibrations during construction works. 

 

1.3  Research questions 

Three research questions have been defined to optimize the literature review and to achieve the main 

objective of this research.  

1. To what extent does the stiffness of the subsoil contribute to the total response of the 

system, and can the frequency components caused by the soil and the frequency 

components caused by the structural part of the system be distinguished from each 

other?  

2. Are there visible changes in the measured frequencies of the system when comparing 

measurements of the initial state with measurements made during the construction and 

post phase and if so, do the observed changes correspond to the changes predicted with 

the analytical model? 

3. Is it possible to set up a monitoring system that monitors the relative stiffness change of 

the soil-structure system during construction works and, if so, is the monitoring system 

that is in operation in Nijmegen able to monitor a stiffness change? 

Answering these research questions has been a guideline for accomplishing this report.  
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1.4  Scope 

Because the main topic of this research was complex and the time span was limited, restrictions were 

defined for this thesis:  

- The analytical mass-spring model, used to model the soil-structure system, is a relatively 

simple model with only one degree of freedom. In reality the soil-structure system is assumed 

to be more complex, with multiple degrees of freedom. Unfortunately a more complex model 

was not available. Developing a complex model was outside the scope of this research.  

- The dataset recorded by the author contains vibration measurements made during (1) the 

initial state and (2) the construction works. Unfortunately there was no time to record 

vibrations after construction works. Therefore, the post phase has been investigated with the 

vibration measurements executed on site just by Fugro GeoServices B.V. 

 

1.5  Outline of the research 

The research started with a literature study, of which the acquired knowledge is later used for the 

analytical calculations and measurements in the field. The results of the study are presented in 

chapter 2.  

 

In chapter 3 an analytical mass-spring model is presented. The construction was modelled as a mass 

on springs with a spring constant depending on the stiffness of the soil. If it is possible to model the 

soil-structure system of the pillar, then with the mass-spring system the influence of the soil stiffness 

in the system can be investigated by changing the spring constant of the model.  

 

Measurements from two different measurement set-ups in Nijmegen were used to compare with the 

results of the analytical model.  

Analysis of the first dataset can be found in chapter 4. This has been recorded by the author 

during this study, with the highly appreciated assistance of Don Zandbergen. This dataset  contains 

continuous vibration measurements of the full spectrum in three directions (X, Y, Z) for the duration 

of approximately two hours during: (1) one day before the construction, representing the initial state 

of the site, and (2) one day during construction. The measurements have been recorded on ten 

different locations on site; on the girders and pillar of the bridge and in the surrounding subsoil on 

surface and in depth. 

Analysis of the second dataset can be found in chapter 5. This dataset originates from the vibration 

measurements executed on site by Fugro GeoServices B.V. with the Profound Vibra system. These 

measurements were required in the contract of the project in Nijmegen, and they are kindly provided 

by ProRail. These measurements contain continuous vibration measurements in three directions (X, Y, 

Z) where the highest measured velocity with corresponding frequency is saved every ten minutes. 

Additionally, the Profound Vibra system records a so-called trace six times per hour. In such a trace, 
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the full spectrum of the measured signal is recorded during two seconds. The measurements are 

recorded at one location on site; at the top of the pillar.  

 

In chapter 6, conclusions will be drawn and recommendations will be formulated.  

 

1.6  Possible results 

If there is a relation between the analytical model and the measurements, this could be helpful to 

other projects. It is likely that vibration measurements will show changes sooner than normal 

displacement measurements do, so the monitoring system might be able to function as an early 

warning system. With the results from initial vibration measurements an estimation can be made of 

the frequency of vibrations at critical stiffness values. With monitoring vibrations during construction 

works, possible changes in frequency can be noticed making it possible to take measures before loss 

of stability becomes unacceptable. It might be a cost-effective and simple way to monitor and secure 

the conditions of a soil-structure system during different kinds of future construction works. 

In the case of this research, when the measurements show a change in frequency, a relation 

between the vibrations measured and the stiffness of the subsoil can be found as it is known that the 

stiffness will change due to the construction of the diaphragm walls. This can be an outcome of the 

research even if there is no relation between the analytical model and the measurements. 

If in the field a different frequency change is measured than predicted with the analytical model, 

apparently the real soil-structure system reacts differently than with the model is expected. When 

changes in frequency are larger, in reality the soil reacts less favourable than expected. When 

changes are smaller, the system reacts more favourable than expected and will remain stiffer.  

In any case, the concern is not what the exact value of the stiffness of the system is. It is about 

the comparison of initial and relative stiffness i.e. the change of the stiffness with respect to the initial 

stiffness, and whether that is retrievable from ambient vibration measurements. 
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2. Literature review 

This chapter outlines the literature which was used for the theoretical basis of the research.  

The literature study starts by looking at structural damage detection systems, where vibration 

based damage identification is used. Definitions of vibrations and waves will be summarized as well as 

the equations which are considered to be most important for this research. Next, soil stiffness 

monitored by vibrations in the form of seismic waves will be covered. Related to this, vibration 

monitoring with ambient vibrations and the monitoring equipment will be discussed.  

Finally, to be able to set up a simple, analytical model in chapter 3, the theory concerning mass-

spring models will be outlined.  

 

2.1  Stiffness monitoring in constructions 

The idea that vibration measurements can be used to monitor the soil-structure stiffness, is based on 

similar systems that are already being used in other monitoring fields. Structural conditions, for 

example corrosion damage in reinforced or pre-stressed concrete, are monitored using methods based 

on measuring natural frequencies and mode shapes. These non-destructive testing techniques 

became more important in recent years.  

2.1.1 Waves 

A (mechanical) wave is a disturbance that travels through a medium. They are everywhere in nature 

(e.g. sound waves, light waves, water waves). The motion of waves moves energy from one location 

to another, often with no permanent displacements of particles of the medium. A wave can be 

transverse, with oscillations perpendicular to the propagation of the wave, or longitudinal, with 

oscillations parallel to the direction of propagation.  

Vehicle-bridge interaction will cause vibrations induced in the construction and subsoil that can be 

described as sine waves, also known as sinusoids. Sinusoids are defined for all times and distances. In 

physical situations usually waves occur that exist for a limited span and duration. Fortunately, an 

arbitrary wave shape can be decomposed into an infinite set of sinusoidal waves by the use of Fourier 

analysis, as will be shown later in paragraph 2.6. 

 
The most basic form of a wave as a function of time is: 

 

  ( )      (    )  (2.1) 

Where 

A = amplitude [-] 

ω = angular frequency [rad/sec] 

φ = phase [rad]  

The frequency of a vibration, the number of oscillations each second, can be found by: 
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                     (2.2)  

Where  

T = period, the time needed for one complete cycle of an oscillation of a wave [s] 

λ = wavelength, the distance between two equivalent points [m] 

vw = velocity of the wave [m/s] 

2.1.2 Eigenfrequencies and Mode Shapes 

The frequency in which a system vibrates with no outside interference is called its natural frequency 

or eigenfrequency. It represents absolute quantities, provides global information and can be measured 

accurately. Frequencies at which the (forced) response amplitude is a relative maximum are known as 

the system's resonant frequencies, or resonance frequencies.  

If all the conditions are met, structural stiffness damage can be detected if it causes shifts of 

eigenfrequencies of at least 1-2%, if the environmental influences are properly taken into account (De 

Roeck & Reynders, 2007).  

The configurations in which a structure will naturally displace are called mode shapes. They can 

provide useful information about local changes (like joints and support stiffness). But the level of 

detail will be reduced due to the unfeasibility of measuring the higher modes accurately and due to 

the lack of absolute scaling of the mode in case of ambient vibrations. Also, often fewer mode shapes 

are available that can be measured accurately than eigenfrequencies (Papadrakakis et al., 2006).  

A mechanical system absorbs more energy than it does at other frequencies when the frequency 

of its oscillations matches its natural frequency. The natural frequency is the frequency of the first 

mode. Frequencies of higher modes, at which the response amplitude is a relative maximum, are 

known as the system's resonant or resonance frequencies, also called harmonics, see Figure 1. 

Resonance occurs when there is a dynamic (periodic) load with a frequency spectrum containing the 

frequencies of one or more harmonics of the system, forcing the system to vibrate. It is relatively easy 

to let a system vibrate at its resonant frequencies and hard to let it vibrate at other frequencies.  

A vibrating object will absorb frequencies close to its normal and/or resonance frequencies from a 

complex excitation like that of a train passage and it will vibrate at those frequencies, essentially 

‘filtering out’ other frequencies that are present in the excitation (Berrett, 2007).  

 

 

 
Figure 1: Mode shapes of a vibrating string 
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2.1.3 Methods 

Vibration-based damage identification methods are non-destructive and utilise the fact that any 

change in structural stiffness leads to a change in modal characteristics of the structure. This means 

that when structural stiffness reduces due to, for example, corrosion, its natural frequencies and 

mode shapes are also affected. Monitoring these dynamic properties can therefore be used to perform 

a structural diagnosis. In structural damage detection the measured modal parameters of the 

damaged structure as well as the original undamaged structure are required. Damages are detected 

by assessing resonant frequencies that fall outside the mean standard deviations (Adewuyi & Wu, 

2009). 

Vibration monitoring proved that it can identify the changes in magnitudes, frequency and 

amplitude of high frequency peaks. These frequencies are better indicators of such degradation rather 

than low frequency peaks (Torres-Acosta, Fabela-Gallegos, Vazquez-Vega, & Martinez-Madrid, 2003). 

An advantage of vibration-based methods is the possibility to evaluate damage at its earliest 

stage, which will reduce the risk of unexpected structural failures and which will increase the life-span 

of structures. Also, it increases the overall efficiency of operation. It is therefore beneficial to a cost 

effective maintenance strategy (Maung, Chen, & Alani, 2013). 

 

2.2  Stiffness monitoring in the subsoil 

A technique similar to the previously described technique, but operating in the lower frequency range 

(i.e. below 300 hertz), is used to derive the shear elasticity of soil. It provides an estimate of the 

strength of the soil and its ability to resist permanent deformation. With this monitoring technique, the 

soil is treated as a perfectly elastic, isotropic and homogeneous medium. It is extending downwards to 

an infinite depth (i.e. semi-infinite case) or it is composed into a number of finite layers overlaying a 

semi-infinite base (i.e. stratified soil). In reality, soil is not perfectly elastic. But under small vibratory 

forces, soil behaves elastic and elastic theory can be applied. 

 

  

 

Figure 2: Stiffness-strain relation soil 
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Methods to estimate the stiffness of the soil by recording surface waves, also known as seismic 

methods, use waves inducing shear strains with an absolute magnitude that is thought to be very 

small (i.e. less than 0,001%). The stiffness becomes constant and reaches the maximum stiffness. 

Figure 2 shows the stiffness-strain relation for most soils. The effective elastic moduli do not change 

with frequency within the range of 15 hertz to 300 hertz (Jones, 1958).  

2.2.1 Subsurface and surface methods 

There is a growing appreciation of the value of measuring the shear modulus, G, using seismic 

methods as part of a site investigation. Seismic methods have the advantage of not being affected by 

sampling disturbance and insertion effects. The two kinds of methods to observe stiffness in the 

subsoil using seismic waves, are subsurface and surface methods, see Figure 3.   

  

 

Figure 3: Seismic methods (Sawangsuriya, 2012) 

 

Subsurface seismic methods require boreholes, which add cost and time. Surface methods permit the 

determination of a modulus-depth profile without the aid of boreholes.  

Methods using surface waves are little used but promising, and according to multiple papers 

(Moxhay, Tinsley, & Sutton, 2001) (Matthews, Hope, & Clayton, 1996) they give similar results as 

subsurface methods. The tests on the surface are performed in situ and are therefore unaffected by 

disturbed/non-representative samples. Besides, they are non-invasive and the most cost-effective of 

all direct stiffness measurement methods. 

2.2.2 Types of waves that propagate through soil 

If a material has the property of elasticity and the particles in a certain region are set in vibratory 

motion, an elastic wave will be propagated through the material. Considering the subsoil as an elastic 

medium, two types of elastic waves are produced due to vibrations (see also Figure 4): 
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- body waves, which propagate into the ground. This type of waves can be divided into two sub 

types: 

 compressional waves (P-waves), with particle motion in the direction of propagation 

(longitudinal); 

 shear waves (S-waves), with particle motion which is perpendicular to the direction of 

propagation. 

Shear waves are slower than compressional waves. 

 

- surface waves, which propagate and cause deformations near the ground surface. Surface 

waves consist of two sub types as well: 

 Rayleigh waves (R-waves), in which the soil particles have displacements at right 

angles to the surface and also in the direction of propagation of the wave. This type 

of waves occur when a source produces vibrations with greatest amplitude normal to 

the surface; 

 Love waves (L-waves), which are basically horizontal polarized shear waves (SH-

waves). They have a particle displacement parallel to the surface and transverse to 

the direction of propagation. They occur when vibrations are produced in a horizontal 

direction transverse to the line of measurement. 

 

 

Figure 4: Waves in the subsoil (Athanasopoulos, Pelekisa, & Anagnostopoulos, 2000) 

 

In general, body waves are faster than surface waves with P-waves having the highest velocity before 

S-waves, L-waves and R- waves respectively.  

In this research, the vibrations due to trains passing over the railway bridge are induced into the 

pillars, and by its shallow foundation into the surrounding soil. The vibrations that will be recorded 

along the surface of the soil will be almost exclusively Rayleigh waves, because Rayleigh waves are 

produced by a vibrator normal to the structure and travel along the surface of a semi-infinite solid. 

Shear and compressional waves are radiated into the entire volume of the medium and therefore 

suffer much larger attenuation (Jones, 1960). Love waves are produced when a source produces 
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vibrations in a horizontal direction transverse to the line of measurement. In the case of this research, 

this is not or at least submissive to the amount of Rayleigh waves.  

2.2.3 Rayleigh waves  

Rayleigh wave particle motion is only found in the vertical plane with no tangential motion (Ketter, 

1999). The velocity does not vary with frequency but they are dispersive waves, meaning that the 

velocity and frequency (i.e. wavelength) of a wave are not independent. Rayleigh wave velocity varies 

with frequency in a layered medium where there is a variation of stiffness with depth. It is this 

dispersive behaviour that can be exploited by geotechnical engineers.  

Related to the frequency of the vibrations, Rayleigh waves have a wavelength, see Figure 5. High 

frequency corresponds to a short wavelength, where low frequency corresponds to a long wavelength. 

Waves with a short wavelength penetrate the shallower zone of the near surface. The Rayleigh waves 

then travel at speed dependent on the soil properties in the upper layer. Waves with a long 

wavelength penetrate deeper into the soil, and the velocity of the Rayleigh waves will then be affected 

principally by the lower layer or by a combination of layers.  

A soft impact is generating a frequency spectrum which includes much more lower range 

frequencies, covering bigger depths (Godlewski & Szczepański, 2012). 

 

 

Figure 5: Wavelengths and surface wave velocity (Brown, Diehl, & Nigbor, 2000) 

 

In a layered medium the velocity of Rayleigh waves depends on the frequency of the induced 

vibrations and the thickness, density and elastic properties of the strata. The denser and stiffer the 

layer of the strata is, the faster it vibrates and the faster the phase velocity of the Rayleigh waves will 

be. The dispersive relation between phase velocity and frequency enables the depth to be found at 

which there is a marked change in elastic properties, such as a transition between a clay layer and a 

gravel layer. Phase velocity of Rayleigh waves increases with decreasing frequency, and vice versa. 

For example, when low frequencies give a steep rise in phase velocity, this indicates that below the 
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upper layer of soil there is a medium of considerable higher rigidity (Jones, 1958). This makes 

Rayleigh waves a valuable tool for determining the upper crustal structure of a region. 

According to elastic theory, the velocity of a Rayleigh wave is a function of, inter alia, the shear 

modulus of the host medium. In the case of this research, when the stiffness of the soil starts to 

change or has changed, the velocity of the measured vibrations will also show a change.  

 

 

Figure 6: Determination Rayleigh wave velocity (Rosyidi, Taha, & Nayan, 2004) 

 

Rayleigh wave velocity can be measured as in Figure 6. In addition, by using the theory of 

elasticity, shear wave velocity and shear modulus G can be determined from these velocity 

measurements. The amplitude of the particle motion diminishes exponentially with distance from the 

free surface. The majority of the wave energy is contained within a zone that extends to a depth of 

approximately one wavelength. When referring to equation 2.2, for example a velocity of Rayleigh 

waves of 150 meters per second, found in Figure 5, and a frequency of the vibration of 10 hertz, one 

wavelength corresponds to a depth of: 

 

                                 

 

The velocity of shear wave propagation is related to the velocity of Rayleigh waves as: 

                (2.3)   

Where  

VS = velocity of shear waves [m/s] 

VR = velocity of Rayleigh waves [m/s] 

p = a constant, depending upon Poisson’s ratio (ν). For soils ν is usually about 0,4/0,45, so p is about 

0,95 which indicates that the Rayleigh wave travels about 5% slower than the shear wave (Jones, 

1958).  

 
The shear modulus is related to VS as: 

                 (2.4) 
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Where  

G = shear modulus [Pa = N/m2] 

ρ = bulk density of the soil [kg/m3] 

 

Which leads to: 

                         (2.5) 

 

This will give a straightforward conversion from a Rayleigh wave velocity–depth profile to a stiffness–

depth profile (Matthews, Hope, & Clayton, 1996).  

 

Another measure of the stiffness of an elastic material and a quantity used to characterize materials is 

the Young's modulus, also known as the tensile modulus or elastic modulus (Verruijt & van Baars, 

2005).   

            (2.6) 

Where 

σ = tensile stress [Pa] 

ε = tensile strain [-] 

 

When considering the soil as a homogeneous, isotropic material a simple relation between the elastic 

constants can be made. Combined with the formula for the shear modulus G, this will result in:  

 

       (   )          (   )            (   )        (2.7) 

 

In the case of this research, finding the boundary between layers is not important. The stiffness of the 

upper layers as a whole is assumed to change. With recording the phase velocity of waves in these 

upper layers, a change in velocity can indicate a change in stiffness when frequencies remain the 

same. An increase in wave velocity VR indicates an increase in stiffness (i.e. shear modulus G), while a 

decrease in wave velocity indicates a decrease in stiffness. 

In the near fields of a source, the Rayleigh waves are not yet well developed. They are developed 

at about two wavelengths from a point source.  

In general, reliable data was obtained to a depth of 8 meters in heavily overconsolidated soils, and 

20 meters in weak rock, with frequencies greater than 6 hertz (Matthews, Hope, & Clayton, 1996). 

This is applicable to the Waal bridge.  

The phase velocity of vibrations travelling along the surface provides an estimate of the dynamic 

shear elasticity of the soil. However, if there are considerable local variations in the soil properties 

along the line of measurement, no values are obtained for the extreme values of the shear modulus. 

For this research this is not a problem, since initial values of the upper soil layers as a whole will be 

used to compare with values recorded during the construction phase.  

https://en.wikipedia.org/wiki/Stiffness
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2.2.4 Ambient vibrations as an input source 

In this research, the recorded Rayleigh waves are caused by trains passing the railway bridge. The 

trains cause repeating, transient vibrations, and they are assumed to introduce a continuous spectrum 

of waves (i.e. a spectrum with all wavelengths and therefore frequencies). As mentioned earlier, the 

easiest way for a construction to vibrate is in its eigenfrequency or in one of the harmonics of its 

eigenfrequency (i.e. n times the eigenfrequency). This means that the vibration spectrum of the pillar 

will be a line spectrum; a spectrum consisting of its fundamental frequency and its harmonics 

(Rosyidi, Taha, & Nayan, 2004). 

Ambient Vibration Monitoring (AVM) makes use of the natural vibrations of a structure when it is 

in service or due to wind loads (De Roeck & Reynders, 2007). Natural vibrations are for example 

vibrations caused by traffic. These vibrations can be used for periodic vibration monitoring as well as 

for continuous vibration monitoring when robust equipment is used.  

One of the big advantages of AVM is that no traffic obstruction takes place, which will reduce the 

costs of the test and the impact on the economy will be low as there is no need to close the bridge. 

Besides, the conditions of the measurements are real operating conditions, and therefore the levels of 

the acting forces and vibrations are real. Furthermore, AVM requires a short set up time, and there 

will be no destruction of the structure.  

Disadvantages of AVM could be that monitoring needs to be done during a longer period of time. 

Therefore more data will be acquired which leads to higher computational costs.  

Because of different vibration levels during one test, it is recommended to use sensors with a high 

sensitivity and resolution (i.e. a very low internal noise level and a high A/D conversion rate) of at 

least 24 bits (De Roeck & Reynders, 2007). The minimum scanning or sampling rate has to be the 

maximum identified target frequency in fivefold. This means that when the highest noticeable 

eigenfrequency is 10 hertz, the minimum scanning rate should be at least 50 hertz. A scanning rate of 

100 hertz has proved appropriate for registering individual events (Wenzel & Pichler, 2005). 

The monitoring system used in this research has to monitor only the stiffness, where the strength 

is no issue. The exact stiffness is not important either, but rather the relative change in stiffness is. An 

approximation of the vibration frequencies introduced due to the train traffic can be made by placing 

a geophone on top of the bridge/pillar.  

 

When monitoring ambient vibrations there are several things that have to be taken into account in 

order to create a useful dataset of the recorded vibrations. There are several environmental conditions 

that can have a significant influence on the eigenfrequencies of a structure and therefore on the 

outcome of the ambient vibration measurements. When effects of the environment are not removed, 

eigenfrequencies cannot be used in order to detect damage. In this case mode shapes and peaks 

from modal filters could be used.  

Temperature is one of the environmental conditions that has to be taken into account. A 

temperature change affects the global material properties which has a uniform influence on the 
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eigenfrequency. Normal environmental changes in temperature can cause changes in 

eigenfrequencies of as much as 3-4% during the year. The relation between eigenfrequencies and 

temperatures can be obtained by taking measurements during a period of at least one year. The first 

eigenfrequency can vary 5% during a 24 hour period, due to for example different temperatures at 

night and during the day. The influence of these different temperatures can be studied by making a 

24 hour measurement. 

Because of the relatively short period of this research these long term measurements are not 

possible, however changes are expected to be really small and therefore irrelevant. Besides, in this 

research it is not about numbers, it is about relative change.  

Besides temperature, the ground water table has to be taken into account which is possible with 

the aid of the ground water table. Previous tests have shown that, in soil, Rayleigh wave velocity and 

shear modulus decreased as the soil became wetter, and increased as the soil dried. It is obvious that 

also the strength/stiffness of the soil decreased and increased during the same period (Baker, 

Steeples, & Schmeissner, 2002). 

As mentioned earlier, the media (i.e. the soil) is assumed to be uniform and isotropic. In reality, 

this is not the case, but anisotropy is likely to be small in relation to other imperfections (Stoneley, 

1948). Also, the soil is not perfectly elastic. But, as mentioned before, under small vibratory forces soil 

behaves elastic. The effective elastic moduli do not change with an input force having a frequency 

within the range of 15 to 300 hertz (Jones, 1958). 

No relation is found between the eigenfrequencies of a system and the wind, rainfall and humidity 

of the environment (Peeters & De Roeck, 2001). 

 

2.3  The railway bridge 

The railway bridge in Nijmegen is placed on a shallow foundation. This type of foundation is generally 

sensitive to vibrations, except on really strong compacted sands.  

The railway bridge was built more than 100 years ago. The big load of the concrete construction of 

the bridge and the passing cargo trains in the past, compacted the sand as the years passed. Results 

of cone penetration tests show that the sand underneath and around the foundation of the bridge is 

heavily compacted. Theoretically, the foundation would not be sensitive to vibrations. Therefore, 

initially, the velocity of the measured vibrations is assumed to be small.  

The sand below and around the pillar will be less compacted during the construction of the 

diaphragm walls due to, for example, excavations. Because of this, the structure will be more sensitive 

to vibrations during the construction phase. It is assumed that the measured vibrations will then be 

larger.  

2.3.1 Supports 

There are different kinds of support to place the girders of a bridge on its pillars.  
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When the support is able to move in one direction and is free to rotate, this is called a roller 

support. The only reaction of the roller support is normal to the surface on which the roller rolls 

without friction.  

At the hinged support the beam does not move either along or normal to its axis. The beam, 

however, may rotate. The total support reaction has a horizontal and vertical component. Since the 

beam is free to rotate, no resisting moment will exist.  

At the fixed support, the beam is not free to rotate or slide along the length of the beam or in the 

direction normal to the beam. Therefore, there are three reaction components; a vertical one, a 

horizontal one and a moment. A fixed support is also known as a built-in support. 

 

 
 
Figure 7: Types of support 

 
It is assumed that there will be more force due to the weight of the train than due to braking or 

accelerating. This means that there will be more input force acting in the vertical plane than in the 

horizontal plane.  

In the case of the railway bridge in Nijmegen, rubber blocks are placed in between the girders and 

the pillars. In this way, the vertical forces on the bridge are evenly divided to each pillar.  

The horizontal forces however are being transported to pillar 2, see Figure 8. At the support of 

pillar 2 steel pins are placed in the vertical direction of the support to create more of a hinged 

support. Also, the girders of the bridge are divided in such a way that ¾ of the girders is transporting 

its horizontal force to pillar 2, and only ¼ is being transported to pillars 1 and 3.  

 

 

 

Figure 8: Pillar 1, 2 and 3 respectively 
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2.4  Mass-spring-damper system 

A model that can be used to investigate the problem in an analytical way, is a mass-spring-damper 

system. A mass-spring-damper system is a good way to model the vibrations of a construction 

depending the stiffness of a soil. It is a linear system, with a single degree or multiple degrees of 

freedom. It consists of a vibrating mass m [kg], a spring with spring constant k [N/m] and a damper 

with damping c [Ns/m].  

2.4.1 Determining the eigenfrequency 

From a mass-spring-damper system its eigenfrequency and its damping ratio can be determined;  

 

    √            (2.8) 

 

      √     (2.9) 

 
Where 

ωn = eigenfrequency [rad/s] 

Ϛ = damping ratio [-] 

k = stiffness [N/m] 

m = mass [kg] 

c = damping [Ns/m]  

From the radian frequency  ωn the eigenfrequency fn (i.e. the natural frequency), can be found by 

dividing ωn by 2π. This gives the following equation for fn:  

 

        √        (2.10) 

Where  

k = spring constant of the soil = 
    [N/m] 

m = mass of the structure [kg], where the construction is assumed to be a rigid element which means 

that elasticity will be neglected (Becedas, Mamani, Feliu-Batlle, & Sira-Ramírez, 2007). 

 

As can be seen from equation 2.10, the natural frequency depends on two system properties: mass 

and stiffness. Since damping is not in the equation, it has no influence on the value for the 

eigenfrequency. Damping only influences the amplitude of oscillations. Therefore, for a first estimation 

of the eigenfrequency, it can be assumed that the system is undamped. Instead of a mass-spring-

damper system, a mass-spring system can be used.  

A mass-spring system is described in equations 2.11 and 2.12, where equation 2.11 contains the 

oscillatory force and equation 2.12 contains Newton’s law of motion.  
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         (2.11)  

 ∑         ̈          (2.12) 

 

Where 

a = acceleration of the mass [m/s2] 

x = displacement of the mass [m] 

Combining these equations gives the formula for the total forces acting on the system: 

 

           ̈     (2.13) 

2.4.2 Dynamic behaviour of the soil-structure system 

The dynamic behaviour of a mass-spring system is dominantly influenced by the bearing material. The 

stiffness and the frequency and amplitude of excitation are the most important dynamic 

characteristics.  

The static stiffness kstat is responsible for the deflection of the MS system under dead and live 

loads, whereas the dynamic stiffness kdyn is the key-parameter for the insertion loss (i.e. damping). 

Therefore, kdyn is responsible for the vibration attenuation (Geier & Wenzel, 2003). In this case, it is 

the dynamic stiffness kdyn which will be used for modelling the soil stiffness, because of the dynamic 

input loads of the trains.  

Changes of the dynamic behaviour of the bearing material over time should be considered. In this 

case the railway bridge has been constructed in 1875, so trains have been running over it for more 

than 100 years. Besides, in the past there were even more heavy trains than nowadays. Therefore, it 

may be assumed that the soil is at its most compact state and that the dynamic behaviour will not 

change if the conditions stay unchanged; long time stability is ensured for the relevant applied load 

combinations.  

The soil will become less compact and in response less stiff due to the excavations of the 

diaphragm walls. In the MS system this can be modelled as a decreasing value of the spring constant 

k. When settlements or deflections are calculated, static values will lead to the lower limit of the 

natural frequencies, as the dynamic stiffness will lead to the upper limit. The measured values have to 

be situated between these two limits.  

Frequency as well as velocity of ground transmitted vibrations depend on the weight and the 

velocity of the train as well as on the quality (i.e. roughness) of the wheel surface (Geier & Wenzel, 

2003). When these vibrations are used for monitoring, a differentiation for different train types has to 

be made.  

 

2.5  Monitoring equipment  

Geophones will be used to monitor the ambient vibrations in the pillar and the surrounding subsoil.  A 

geophone sensor exists of a coil and a magnet. When the sensor is moving, the magnet stays in place 
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due to inertia, and the coil moves with respect to the magnet. In that way it generates voltage [V] 

which is proportional to the velocity [mm/s] of the movement of the sensor.  

2.5.1 Sensitivity 

The velocity of the vibrations measured can be calculated with the sensitivity of the geophone, which 

can be found on the calibration certificate: 

 
             (2.14) 

Where 

V = voltage [V] 

sens = sensitivity of the geophone [Vs/m] 

v = velocity [mm/s] 

2.5.2 Axilog 

An Axilog sensor contains 3 geophones that measure the particle velocity in the X and Y-direction in 

the horizontal plane, and in the Z-direction in the vertical plane. The sensors have a high nominal 

sensitivity; they measure vibrations up to 100 hertz, with a resolution of 1 hertz (i.e. one sample every 

second). The sensor can be mounted on the wall or placed on the floor or ground and is watertight.  

The natural frequency of the geophone should be less than the smallest input frequency, which 

limits their usefulness at low frequency input (Matthews, Hope, & Clayton, 1996). 

2.5.3 RoDo-system 

The RoDo-system is a spectrum analyser. Like the Axilog, it measures vibrations in three different 

directions, however, it measures vibrations up to 500 hertz with a resolution of 1000 hertz (i.e. one 

sample every 1/1000 of a second). The system exists of a maximum of 12 geophones, where each 

geophone can measure in three different directions X, Y and Z. From spectral data the phase 

difference between the signals at each geophone and the coherence of the cross-correlated signals 

can be determined. Because of the high resolution, the RoDo-system will be used for the 

measurements in Nijmegen performed by the author.  

 

2.6  Fast Fourier Transform 

As mentioned earlier, vibrations consist of a combination of multiple basic waves in the form of sine 

and cosine functions, see 2.1.1. The Fourier Transform describes a mathematical technique to split a 

vibration signal into all its ground frequencies. The Fourier Transform changes the domain of the 

function from the time domain, see Graph 1, to the frequency domain. The frequency domain shows 

the intensity of all frequencies as shown in Graph 2. This graph is called a frequency spectrum.  In 

this spectrum, the y-axis contains the intensity in Volts, the same unit as with the input signal on the 

y-axis. The voltage can be easily converted into a velocity in millimetres per second by the sensitivity 

factor of the equipment. The x-axis contains the frequency in hertz. The width of the spectrum 
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depends on the amount of samples per second. According to the Nyquist criterion, reliable information 

about frequencies is only obtained for frequencies less than half the sampling frequency (Nyquist, 

1928). This means that with a sampling rate of 1000 hertz like the RoDo-system, the spectrum 

reaches to 500 hertz.  

 

   

Graph 1: Time domain 

 

 

Graph 2: Frequency domain 

 

The equipment measures vibrations in 3 different directions, whereby the intensity of the vibrations is 

recorded as millivolts in time. The graph of these results shows a function f(t).  

Every function, also this function f(t), can be reproduced as a combination of different sine and 

cosine functions of the form A cos (ω t) + j B sin (ω t), with which function f(t) can be multiplied (van 

Dam, 1998). The integral over the function, which follows after multiplication, provides information on 

the periodicity of the original f(t). When the integral of a frequency ω gets close to 0, this particular 

frequency is not in the spectrum. When the integral is greater than 0, the frequency is present. In fact 

the signal is being unravelled into a summation of multiple sine and cosine functions with different 

frequencies ω and amplitudes A and B. The summation of all possible combinations of sine and cosine 

waves with the right amplitudes gives (an approach of) f(t). The amplitudes A and B, corresponding to 

the different frequencies ω, show how much of that frequency ω  is present in the function f(t).  

The Fast Fourier Transform is an efficient form of the Discrete Fourier Transform. It needs less 

calculation time and less computer memory. But because it is a finite method it is an approach of the 
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function f(t). The better the approach, the more sine and cosine functions thus the more calculation 

time and memory are needed.  

When a Fast Fourier Transform is performed, it is assumed that the last data point is identical to 

the first data point. However, most of the times the fundamental period of the signal is not known. 

Sampling of the signal may stop at a different phase than it started. This will cause that the last data 

point is not identical to the first point. This phase difference causes inaccuracies in the amplitude of 

the frequencies when a Fast Fourier Transform is performed over the data (Cimbala, 2010).  

For most Fast Fourier Transform analysis, the computer algorithm restricts the amount of data 

points to a power of 2. For example Microsoft Excel. For Matlab, this restriction does not apply.  

After the Fast Fourier Transform is performed, there is more information available about the build-

up of the signal. It is known which frequencies are present in the signal, and which of those 

frequencies predominate. Also specific frequencies, like noise (i.e. 50 hertz), can be filtered out of the 

signal easily.  
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3. Analytical model  

In this chapter an analytical model in the form of a mass-spring model will be presented. The 

construction will be modelled as a mass on springs, with a spring constant depending on the stiffness 

of the soil. Initially, damping will be neglected since damping does not have an influence on the 

eigenfrequency of a system, see paragraph 2.4. 

A model with only one degree of freedom, displacement in the Z-direction, will be chosen for the 

first estimation. This model is chosen because the largest input force acting on pillar 1 acts in the Z 

direction, as discussed earlier in paragraph 2.3.1.   

 

3.1  Single-degree-of-freedom one-mass-spring model  

The model used to provide a first estimation of the changes of frequencies and velocities is a one-

mass-spring model with one degree of freedom, as shown in Figure 9.  

 

Figure 9: One-mass-spring model 

 

A mass-spring system is a good way to model vibrations of a construction depending the stiffness of a 

soil, as discussed in paragraph 2.4. The chosen model is a very simple linear, single-degree-of-

freedom system consisting of a vibrating mass m [kg] and a spring with spring constant k [N/m].  

In this model, the mass represents the total mass of the structure. It consists of the mass of the 

girders resting on one pillar, the mass of the concrete block on top of the pillar, the mass of the 

masonry part of the pillar and the mass of the foundation block. A drawing of the pillar can be found 

in appendix A. The spring represents the soil, where the spring constant is the bedding constant of 

the soil. 

The mass-spring system can be described by equations 2.11 – 2.13. 

3.1.1 Vibrating mass m 

As said before, the vibrating mass m contains all dead loads. Besides, the mass due to slow traffic on 

the slow traffic bridge is included. The mass of a passing train, on the other hand, is included in the 

dynamic force F acting on the system.  
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Railway bridge 20.000 kN 2.000.000 Kg 
Slow traffic bridge 1.200 kN 120.000 Kg 
Slow traffic 1.600 kN 160.000 Kg 
Soil 7.200 kN 720.000 Kg 
Pillar 8.000 kN 800.000 Kg 
Concrete block on pillar 3.000 kN 300.000 Kg 
Footing 14.000 kN 1.400.000 Kg 
Total mass m 55.000 kN 5.500.000 Kg 

Table 1: Total mass m 

3.1.2 Spring constant k 

The spring constant k for the initial situation is calculated using the outcome of Plaxis calculations 

made by the Municipality of Rotterdam in the pre-phase of the project in Nijmegen. More information 

about the calculation can be found in the internal report ‘Waalbrug Nijmegen – referentieontwerp’. In 

these calculations, a train with a load corresponding to the maximum dynamic force is placed on top 

of the soil-structure system as a dead load. The maximum dynamic force amounts to 14.000 kN. This 

force is caused by a freight train which is suddenly put to a halt on one track, while on the other track 

a freight train is accelerating at full power.  

After 10.000 days (i.e. 30 years) the settlement is calculated to be 8 millimetres. Soil reacts 5 to 10 

times as stiff when subject to dynamic loads in comparison to being subject to static loads, see also 

Figure 2. From site investigations in Nijmegen it is known that the soil surrounding the pillar was 

heavily compacted. Therefore, a dynamic stiffness 10 times as large as the static stiffness is chosen. 

This can be seen as a settlement of 0,8 millimetres.   

By knowing the settlement and the dynamic force, this gives a spring constant k of: 

 

                                           (3.1) 

3.1.3 Dynamic input force 

Ambient vibrations caused by trains will be used as a source for the vibration measurements. To 

model these input vibrations, an input force derived from a real passage of a train is used. This input 

force is provided by Paul Hölscher of Deltares and derived from the CUR Report ‘Eindrapport 

Trillingshinder’ (CUR, 2000). The model used can be found in the CUR report section about the 

emission of railway traffic.  

The force is composed out of small input forces that change every 0,005 seconds (i.e. 200 times 

per second) in order to simulate a real train passage. The input force contains eight wheel axes (i.e. 

two wagons) from a train passing one particular point. The summation of these forces is shown in 

Graph 3. It shows a logical pattern of a train passage, since forces add up until approximately half of 

the train passed. Afterwards the forces decrease. A passage of two wagons causes noticeable 

vibrations for about 6 seconds. 
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Graph 3: Forces of a train passage 

 

3.2  The one-mass-spring model in Excel 

The single-degree-of-freedom one-mass-spring model is constructed in Excel. More details of the 

model can be found in appendix B. It is expected that the frequency of the mass-spring system will be 

in the lower frequency range, since heavy structures have a relatively low eigenfrequency. In addition, 

the eigenfrequency of soils is assumed to be in the lower frequency range, around 5-15 hertz. 

3.2.1 Results 

The model gives an approximation of the velocity of the vibrations. To convert this velocity into a 

frequency spectrum, a Fast Fourier Transform analysis is performed. With the Analysis ToolPack of 

Excel an FFT analysis can be made. More details about this FFT Analysis can be found in appendix C.  

The frequency-velocity graph of the initial situation is shown in Graph 4 en Graph 5. In both 

graphs, the frequency in hertz is plotted on the x-axis and  the corresponding magnitudes are plotted 

on the y-axis.  

 
 

 

Graph 4: Frequency spectrum initial situation one-mass-spring model 
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Graph 5: Zoomed in frequency spectrum initial situation one-mass-spring model 

 
 

The peak in the graph is assumed to be the eigenfrequency of the mass-spring system. As can be 

seen, this frequency is in the lower frequency area, as assumed. It amounts to 8,98 hertz.  

3.3  Changing parameters of the one-mass-spring model 

The following parameters will be adapted to check whether or not a parameter is contributing to a 

shift of the peak frequency: 

- The mass of the structure (i.e. the mass m) 

- The stiffness of the soil (i.e. the spring constant k) 

- The dynamic input force F 

- The damping to the system (i.e. the damping constant c) 

3.3.1 Mass of the structure m 

According to formula 2.10, the eigenfrequency of a system has to go up when the mass of the system 

goes down. In this section the mass of the structure is decreased with a value of 50% of the initial 

mass to check its contribution in the above described mass-spring system. The frequency spectrum is 

shown in Graph 6. On the x-axis is plotted the frequency in hertz, and on the y-axis are plotted the 

corresponding magnitudes (i.e. velocities in millimetres per second). Indeed, as can be seen, the peak 

frequency goes up when the mass goes down. It now amounts to 12,74 hertz. 

The amount of increase of the frequency with a decreasing mass of 50% is therefore: 

                    (     )(       )   (          )(         )         

With 

fn = new frequency 

fo = old frequency 
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Graph 6: Frequency spectrum with a decreased mass 

 

Graph 7 shows the progress of the peak frequency when the mass decreases from 100% to 10% of 

the initial mass. On the x-axis, the mass as a percentage of the initial mass is plotted. On the y-axis to 

the left, the corresponding eigenfrequency of the system in hertz is plotted. On the y-axis to the right, 

the magnitude of the eigenfrequency in millimetres per second is plotted to show why this magnitude 

is not taken into account.  

 

 

Graph 7: Progress of the eigenfrequency and velocity with a decreasing mass 

 

As can be seen from the graph, the development of the eigenfrequency shows a logical pattern. 

According to formula 2.10, the eigenfrequency develops exponentially when the mass changes.  

However, the magnitude of the peak frequency (i.e. the velocity) does not show a logical progress. 

It seems to be a random value for each frequency. The velocity should develop exponentially as well 

as will be further discussed in paragraph 3.4. An assumption that can be made is that the magnitudes 

after the Fast Fourier Transform do not correspond with the real magnitudes, since the transform is 

an approach to reality. This can be caused by the 200 hertz input signal, which might be of too low a 

quality. 

0

0,2

0,4

0,6

0,8

1

0 2 4 6 8 10 12 14 16 18 20

M
a

g
n

it
u

d
e

 [
m

m
/s

] 

Frequency [hertz] 

Frequency spectrum with decreased mass  

0

2

4

6

8

10

0

5

10

15

20

25

30

35

020406080100

M
a

g
n

it
u

d
e

 [
m

m
/s

] 

F
re

q
u

e
n

cy
 [

h
e

rt
z]

 

Mass m as percentage of initial mass [%] 

Effect of decreasing mass 

Frequency change

Velocity change



50 
 

3.3.2 Stiffness of the soil k 

According to formula 2.10, the eigenfrequency of a system has to decrease when the stiffness of the 

system decreases. In this section the stiffness of the structure is decreased with a value of 50% of the 

initial stiffness to check its contribution to the mass-spring system. Graph 8 shows the corresponding 

frequency spectrum. On the x-axis the frequency in hertz is plotted, and on the y-axis the 

corresponding magnitudes (i.e. velocities in millimetres per second) are plotted.  

Indeed, as can be seen, the peak frequency goes down when the stiffness goes down.  

 

 

Graph 8: Frequency spectrum with a decreased stiffness 

 
The decrease in frequency, with a decreasing stiffness of 50%, is:  
 
                    (     )(       )  (         )(         )         

 

A decreasing stiffness has a smaller influence on the eigenfrequency in comparison with a decreasing 

mass. This is due to the square root in formula 2.10. A decrease in the mass of the structure (i.e. a 

decrease of the denominator) has a larger influence on the shift of eigenfrequency than a decrease in 

stiffness of the soil (i.e. a decrease of the numerator).    

The peak frequency of the system is also observed with a decreasing stiffness from 100% to 10% 

of the initial stiffness of the soil. The result is shown in Graph 9, with on the x-axis the decrease of the 

stiffness as a percentage of the initial stiffness. On the y-axis to the left, the corresponding peak 

frequency of the system is plotted in hertz. On the y-axis to the right, the magnitude of the frequency 

(i.e. velocity in millimetres per second) is plotted.  
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Graph 9: Progress of the eigenfrequency and velocity with a decreasing stiffness 

 

Like in paragraph 3.3.1 the progress of the eigenfrequency of the system shows a logical progress 

since the eigenfrequency should decrease exponentially, according to formula 2.10.  

The corresponding magnitudes show again random values, also different from the values with a 

decreasing mass. The assumption, that the Fast Fourier Transform influences the magnitudes of the 

peaks, seems to be right. This will be further investigated in paragraph 3.4, as mentioned before. 

3.3.3 Dynamic input force F 

The weight and speed of a train are important factors for the value of the dynamic input force F. 

These factors can vary according to the type of train and its driving direction. In this section, the 

dynamic input force F is multiplied by an amount of 50% of the initial force to investigate its influence. 

The corresponding frequency spectrum is shown in Graph 10, where the frequency in hertz is plotted 

on the x-axis and the corresponding magnitudes are plotted on the y-axis. 

 

 

Graph 10: Frequency spectrum with an increased dynamic input force 
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The peak frequency of the system is still 8,98 hertz, which means the eigenfrequency of the system 

did not change. However, the corresponding magnitude (i.e. the velocity) is significantly higher. This 

is a logical result referring to kinetic energy. When the input energy is higher, the total energy in the 

system is higher as well. Since the mass of the system remains unchanged, the velocity has to go up 

when there is only kinetic energy present in the system (i.e. when the mass passes its equilibrium 

position), see formula 3.2.  

 

                 (3.2) 

3.3.4 Damping c 

Damping is the capacity of soils to absorb energy during cyclic and dynamic loading. It can be viscous 

(i.e. frequency dependent) or hysteretic (i.e. frequency independent). It is assumed that damping is 

hysteretic in nature.  

Damping of soils is rarely measured. In soils, damping can consist of both material damping and 

geometric damping. Material damping occurs when the energy is dissipated by deformation of the soil. 

Geometric damping occurs when the energy is radiated into the surrounding soil. The total damping of 

the soil can be derived by comparing the amplitude of a wave at one point, and at another point 

further away from the source.  

Damping in soils is defined as: 

 

       √     (3.3) 

Where 

D = damping coefficient [-] 

ccr = critical damping [Ns/m]  

 
The formula for the damping force Fd acting on the mass-spring-damper system is expressed by: 

 

             ̇             (3.4) 

Where 

c = damping [Ns/m] 

v = velocity of the mass [m/s] 

 

Combining equation 3.3 with equations 2.11 and 2.12 gives:  

 

              ̈    ̇         (3.5) 

 

 The mass-spring-damper system will look like Figure 10.  
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Figure 10: Mass-spring-damper system 

 

It is very difficult to predict the damping of soil. Primarily, damping is affected by strain level and 

creep. When the shear strains are small, the damping ratio is also small. No significant effects on 

damping were observed when looking at stress level or frequency of loading (Thandava Murthy, 

1990). The damping ratio used for the model in this research is derived from the graph shown in 

Graph 11. 

 

 

Graph 11: Damping ratio of soils (Zhang & Aggour, 1996) 

 

With small strains (i.e. smaller than 0,001) the damping ratio is assumed to be around 1 to 3%. The 

lower limit of the damping ratio is chosen, since the soil of the soil-structure system considered in this 

research is very stiff. Graph 12 shows the frequency spectrum with 1% damping ratio. On the x-axis 

the frequency in hertz is plotted, and on the y-axis the corresponding magnitudes are plotted. To 

compare different frequency spectra with damping, also the spectrum with 0,1% damping ratio is 

shown in Graph 13. 

With a 0,1% damping ratio, the frequency spectrum is the same as the frequency spectrum 

without damping shown in Graph 5, however the magnitude of the peak frequency is lower. A 1% 

damping ratio gives a slightly lower dominant frequency, namely 8,59 instead of 8,98 hertz. This 8,59 

hertz was the second highest frequency peak when looking at the frequency spectrum without 

damping. Although this frequency now has the highest magnitude, it is not assumed to be the 

eigenfrequency of the system. It can be seen that, due to damping, the only magnitude that changes 

is the magnitude corresponding with a frequency of 8,98 hertz, when comparing Graph 12 with Graph 

13. The other peaks have the same magnitudes, with or without damping. This means they are not 
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affected by the changing damping parameter. Therefore, it is assumed that these frequencies are not 

related to the eigenfrequency of the system.  

 

 

Graph 12: Frequency spectrum with damping ratio 1% 

 

 

Graph 13: Frequency spectrum with damping ratio 0,1% 

 

Since the value of the eigenfrequency of the system is not affected by the added damping, the 

assumption to use an undamped system as a first estimation seems correct. From Graph 12 and 

Graph 13 it can be concluded that when damping is relatively small, the eigenfrequency of the system 

stands out more. Therefore, it is even more effective to use a system without damping to find the 

value of the eigenfrequency of the system, when the corresponding magnitude is of no importance.  

 

3.4  Corresponding magnitude of the eigenfrequency 

According to paragraphs 3.3.1 and 3.3.2, the corresponding magnitude (i.e. the velocity) of the 

eigenfrequency does not seem to have a logical progress after a Fast Fourier Transform has been 

performed. According to formulas, the velocity change should show an exponential increase when 

stiffness is decreasing. In this paragraph this phenomenon is further investigated.  
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The mass-spring model remains unchanged. The input force is taken differently, since a pulse load 

is more suitable for this part of the research. Besides, the irregular dynamic input force may be the 

cause of the odd velocity outcome. A pulse load of 2.000.000 Newton, derived from the mass of a 

long and heavy intercity train, is used as an input load. With this input load the initial displacement x0 

is calculated by using formula 3.6. Removing the pulse load causes a pure sine wave vibration of the 

mass. The formulas 3.6 till 3.9, shown below, are used for the derivation of the maximum velocity of 

the mass during the sinusoidal vibration, shown in formula 3.10. The velocity depends on the stiffness 

of the spring and the mass, even as on the eigenfrequency.  

Formula 3.6 calculates the force acting on the system, which is equal to the displacement of the 

mass times the stiffness of the spring (i.e. the stiffness of the soil). Since the force and the spring 

constant are known, the displacement x0 can be calculated.  

Formula 3.7 calculates the time required to complete one oscillation. The mass and spring constant 

of the system are known.  

Formula 3.8 calculates the frequency of the vibration of the systems  in radians per second. This 

frequency also depends on the mass and stiffness of the system.  

The oscillation of the system can be described with a cosine function as shown in formula 3.9. The 

time is necessary at which the system has its maximum velocity (i.e. when the mass passes its 

equilibrium position). This particular time, indicated with ‘t’ can be calculated with formula 3.9, with a 

displacement equal to zero. This results in ¼T or ¾ T. Also, since a cosine function is zero when the 

cosine is ½π or 1½π, ω times t can be taken ½π or 1½π. 

Formulas 3.6 till 3.9 can be combined to calculate the maximum velocity of the system on the 

eigenfrequency. As can be seen in formula 3.10, the frequency ω of the system is in the formula of 

the velocity. This means that the velocity of the system is dependent on the eigenfrequency of the 

system, and not the other way around. 

 

          (3.6)  

 

      √   (3.7) 

       √   (3.8) 

 

         (   ) (3.9) 

 

                 (   ) (3.10) 
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Where 

Fp = the pulse load acting on the system [N] 

k = stiffness of the system [N/m] 

x0 = initial displacement of the mass [m] 

x = displacement of the mass [m] 

ω = frequency [rad/s] 

T = oscillation time [s] 

t = time with maximum velocity [s] 

 

The calculation can be seen in appendix D. For example, an input force of 2.000.000 Newton causes a 

displacement x0 of 0,1 millimetres with the initial stiffness k. As a response, after removing the load, 

the mass will start vibrating as a pure sine wave. The maximum velocity is 6,45 millimetres per 

second.  

3.4.1 Varying stiffness k 

In this section, the stiffness k has decreased from 100 to 10%. This is done to investigate the 

progress of the eigenfrequency and its corresponding velocity according to the above described 

formulas 3.6 till 3.10. Again, it concerns the velocities calculated with a pulse force instead of a 

dynamic force. This means the graphs shown in this section differ from the graphs shown earlier in 

paragraphs 3.2 and 3.3. 

As an input for the mass-spring system, the initial displacement caused by a force of 2.000.000 

Newton is used.  

 

                                      

  

This initial displacement is the value for xt for the first time step t0 in the mass-spring system, see 

appendix E. This displacement increases with a decrease of the stiffness k and a constant pulse load. 

In the Excel file the acceleration, the velocity and the displacement of the mass are calculated as 

follows: 

 

          ∑         (3.11) 

 

                         (3.12) 

 

                  (3.13) 
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Where dt is the time step in between two points of measurement. This time step depends on the 

sampling frequency fs. For example, when the sampling frequency is 200 hertz, the time step in 

between two points is: 

 

                            (3.14) 

 

The velocity graph of the mass-spring system is shown in Graph 14. For comparison, the velocity 

graph of the system with a stiffness k of 50% of the initial stiffness is shown in Graph 15. What can 

be seen is that the frequency of the vibrations decreases (i.e. the number of vibrations during one 

second decreases). On the other hand, the velocity of the vibrations increases.  

 

 

Graph 14: Velocity graph initial situation 

 

 

Graph 15: Velocity graph when stiffness decreased with 50% 

 

The result of changing the stiffness from 100% to 10% can be seen in Graph 16. On the x-axis the 

decrease of the stiffness as a percentage of the initial stiffness is plotted. For the sake of 

completeness, the eigenfrequency of the system is shown in hertz on the y-axis to the left. On the y-

axis to the right, the corresponding magnitude (i.e. the velocity in millimetres per second) of the 

eigenfrequency is shown. The whole calculation has been performed with Excel and is shown in 

appendix F.  

To make a fair comparison, the total time in which samples have to be taken has to be equal for 

every sampling frequency. This means that, for a higher sampling frequency, a higher number of data 

has to be analysed. Since Excel restricts the amount of data points to a power of 2, the observed 
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sampling frequencies have to be each other’s multiplication. In this particular example, 200 hertz is 

observed with 1024 data points. This amounts to 5,12 seconds. For comparison, 400 hertz is sampled 

with 2048 data points and 800 hertz is sampled with 4096 data points. 

 

 

Graph 16: Progress of the eigenfrequency and velocity with a decreasing stiffness 

 

As can be seen in Graph 16, the four lines, representing the frequency change with different sampling 

frequency, show the same development. It does not matter which sampling frequency is chosen, the 

decrease in frequency is well approached.  

The velocity change however shows a different pattern. The fuchsia line represents the velocity 

change calculated by the formulas. The progress is exponential. The green, blue and purple lines 

show the corresponding velocity calculated after a Fast Fourier Transform, when the sampling 

frequency is 200, 400 and 800 hertz respectively. As can be seen, these lines are not equal to the real 

velocity of the mass. But, they almost do not differ from each other. The assumption is correct that 

the velocity corresponding to the eigenfrequency after a Fourier Transform is not the real 

corresponding velocity. The assumption, that 200 hertz might be of too low quality, was not correct.  

At some points, the velocity calculated after a Fourier Transform approaches the real velocity. But 

at other points, the differences cannot be neglected. The maximum difference in this example occurs 

at a decrease of 50% of the initial stiffness: 

                              (     )(       )  (         )(         )         

 

With 

vF = Velocity after a Fast Fourier Transform 

vr = Real velocity calculated with formulas 
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What attracts the most attention is the fact that a higher sampling frequency, which improves the 

resolution of a signal, does not improve the reliability of the velocity outcome after a Fast Fourier 

Transform. 

3.4.2 What does the Fourier Transform do? 

Paragraph 3.4.1 concluded that the velocity after a Fast Fourier Transform does not correspond with 

the real velocity of the mass calculated with formulas. The question remains why the frequency 

spectrum after a Fourier Transform shows these odd values.  

As can be seen from Graph 16, the velocities after the Fast Fourier Transform are always lower 

than the real velocities. The first hypothesis that can be made according to this, is that there is some 

leakage of information with respect to the velocities. The Fourier Transform samples at a certain 

frequency. It is possible, or rather realistic, that it does not exactly sample on the eigenfrequency of 

the system. This can cause a peak frequency that is not exactly the eigenfrequency, with a magnitude 

that is not exactly the magnitude that corresponds with the eigenfrequency either.  

When a Fast Fourier Transform is performed, it is assumed that the last data point is identical to 

the first data point with respect to its phase, see paragraph 2.6. But, in general, the period of the 

signal is not known ahead of time. In the case of natural vibrations from trains, the signal is 

composed out of multiple sine and cosine functions. Since all these functions have a different phase, it 

is impossible to find a phase which is applicable to all functions. This means that the fundamental 

period of the signal is not known, and sampling of the signal may stop at a different phase than where 

it started at. This will cause a last data point that is not identical to the first data point.  

A phase difference causes inaccuracies, called leakage, when a Fast Fourier Transform is 

performed (Cimbala, 2010). The following example shows the amount of leakage. Since the pulse load 

used above gives a pure sine wave as a vibration, the same pulse load will be used. The 

eigenfrequency, the corresponding amplitude and the phase of the signal are then known. The 

eigenfrequency of the signal is, calculated with formulas: 

 

       √      √                             

 

The amplitude of the sine wave is equal to the maximum velocity vmax of the mass:  

 

               (   )         √                      (   )                

 

The maximum velocity amounts to 6,447 millimetres per second. So an ideal Fourier transform would 

have a peak frequency at 8,978 hertz, with a maximum velocity of 6,447 millimetres per second. 

Besides, no other frequency should contain any magnitude (i.e. energy).  
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The outcome of a Fast Fourier Transform depends on the following factors: 

- the sampling frequency, fs 

- the number of data points analysed, N 

- the total time of data collection, Ts, where T = N/fx 

For this example, fs is chosen to be 200 data points per second (i.e. 200 hertz). The number of 

analysed data points N is chosen to be 4096 data points. This means, the vibration is observed for a 

total time Ts of 20,48 seconds.  

 

 

Graph 17: Phase difference start and end of a vibration 

 

As can be seen in Graph 17, the phase of the vibration at the end of the measurement is not exactly 

equal to the phase at the start of the measurement.  

When the Fast Fourier Transform is performed, it shows the following frequency spectrum.  

 

 

Graph 18: Frequency spectrum after a Fast Fourier Transform 

 

While the peak of the frequency should point at a velocity of 6,447 millimetres per second, instead it 

shows 4,354 millimetres per second. The approximation of the value for the frequency is good: 8,984 

hertz.  

As previously concluded (see paragraph 3.4.1), a higher sampling frequency does not improve the 

velocity outcome after a Fast Fourier Transform. Generally, leakage is worse when the frequency 
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resolution of the spectrum (i.e. the interval of the frequencies on the x-axis) is poorer. The smaller the 

frequency resolution, the better. The frequency resolution can be calculated with formula 3.15:  

 

             (3.15)  

With  

df = frequency resolution 

Ts = sampled time 

 
For example, with a sampling frequency of 200 hertz and 4096 data points, 20,48 seconds are 

analysed. The frequency resolution amounts to:  

 

                     

 

When for example the sampling frequency is 200 hertz but analysed with only 512 points, the 

sampling time Ts amounts to 512/200 = 2,56 seconds, which gives a frequency resolution of: 

 

                   

 

Which is poorer. The frequency spectrum of this case is shown below, in Graph 19.  

 

 

Graph 19: Frequency spectrum with poor frequency resolution 

 

The value for the magnitude better approaches the real velocity. This is a coincidence, since 

apparently the phase difference after 2,56 seconds is different but more favourable from the phase 

difference after 20,48 seconds. There is more leakage, which can be seen because of the wider peak. 

A wider peak means the energy has been split over more frequencies than just the eigenfrequency. 

The frequency is still approached well (i.e. 8,984 Hz). But, as can be seen on the x-axis, the number 
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of points in between frequencies has decreased. This will cause a less accurate approximation of the 

frequency.  

The following can now be concluded. As shown earlier, with respect to the approximation of the 

real velocity of the mass, a different sampling frequency does not make the difference. The difference 

is caused only due to a different phase from the starting and final point of the analysed vibration. 

When the analysed time is the same, the phase difference will be practically the same as well, no 

matter which sampling frequency is used. With respect to approaching the eigenfrequency, a smaller 

frequency resolution will give a better approximation. This means that the more data points are 

analysed, the better the approximation of the eigenfrequency will be.    

3.4.3 The perfect Fast Fourier Transform 

It is not as simple to create a frequency spectrum, with both a good approximation of the 

eigenfrequency and a good approximation of the corresponding peak velocity. Leakage has to be 

reduced, and the frequency resolution has to be improved. 

According to the Nyquist criterion, a sampling frequency is needed of at least two times the 

eigenfrequency. Since the eigenfrequency is 8,978 hertz, the sampling frequency should be at least 18 

hertz. With this, the first data point must have the same phase as the last data point. Therefore, a 

time Ts is needed that shows a whole amount of vibrations (i.e. waves). The oscillation time T of one 

wave is: 

      √      √                            
 

To improve the frequency resolution, the time Ts that should be observed should be as large as 

possible. But since the mass-spring system in Excel calculates with a time step dt for the integration, 

dt should not be too large. Otherwise, this will cause infinite displacements and therefore velocities.  

The golden mean should be found. By trial and error, an amount of 50 oscillations is chosen which 

gives an investigated time Ts of: 

                     
 

This gives a sampling frequency, when still using 4096 data points, of: 

 

                            
 

And a time step dt of: 

                           
 

This gives the following frequency spectrum, shown in Graph 20. 

 



63 
 

 

Graph 20: The 'perfect' frequency spectrum 

 

This ‘perfect’ frequency spectrum shows a peak at exactly 8,978 hertz, with a corresponding velocity 

of 6,449 millimetres per second (a negligible difference). Note that it is only possible to plot this 

‘perfect’ frequency spectrum because the eigenfrequency is known in advance. Because of that, it is 

possible to choose a time span which accounts for an exact amount of vibrations. The phase of the 

first data point is then the same as the phase of the last data point. When the period of the vibration 

is not known, as is the case in nature, it is impossible to know the oscillation time of the vibrations. It 

is then impossible to have the same phase at the start and end of the measurement.  

3.4.4 Conclusions with respect to the magnitude 

A conclusion that can be drawn now is that, if the Fast Fourier Transform is used, it is not possible to 

investigate or monitor the exact magnitude of the vibrations corresponding with the eigenfrequency. 

Therefore, in this research, the exact decrease of the stiffness of the soil cannot be monitored. Only a 

relative decrease, or increase, in stiffness with respect to the initial stiffness can be derived. Luckily 

for this research, there is no need to know the exact value of the magnitude of the eigenfrequency. It 

is about the shift in eigenfrequency. This shift can be analysed from the graphs after a Fast Fourier 

Transform. It can be seen that the peak frequency and the surrounding mound of small peaks (i.e. 

the leakage) are moving in a particular direction. In this way, it can be seen that the eigenfrequency 

is changing due to a stiffness change.  

 

3.5  Conclusion one-mass-spring model 

As can be concluded from sections 3.1 to 3.4, it is possible to model the soil-structure system of the 

pillar with the single-degree-of-freedom one-mass-spring model described in paragraph 3.1.  

The response of the model corresponds to formula 2.10 for the eigenfrequency of a system. When 

the stiffness decreases, the peak frequency decreases as well. When the mass decreases, the peak 

frequency increases. Also, the peak frequency does not change when the input energy changes. The 

corresponding magnitude however increases with an increasing input energy, which can be explained 
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with kinetic energy. Taking all this into account, it is assumed that indeed the peak frequency of all 

frequency spectra shown in this chapter is the eigenfrequency of the mass-spring system.  

With regards to damping it can be said that the eigenfrequency of the system stands out more 

when damping is relatively small. Therefore, when the corresponding magnitude of the 

eigenfrequency is not important, it is more convenient when damping is neglected.   

With respect to the magnitude of the eigenfrequency, the exact value of the velocity of the mass 

will not be shown after a Fast Fourier Transform, as can be found in paragraph 3.4.4. Therefore, only 

a relative change in stiffness with respect to the initial stiffness can be derived. 

 

3.6  Double-degree-of-freedom two-mass-spring model  

A disadvantage of the single-degree-of-freedom one-mass-spring model is that there is only one 

degree of freedom. The frequency spectrum of the system therefore shows only one frequency peak.  

The research is about the eigenfrequency of the soil part of the system and not about the 

eigenfrequency of the structure. Therefore, it has to be investigated if the peak frequency visible is 

the eigenfrequency of the soil part, as assumed, or the eigenfrequency of the structure part, or maybe 

even a combination of those two. It is assumed that with a two-mass-spring model (i.e. with two 

degrees of freedom), two frequency peaks will be visible in the frequency spectrum. The lower peak 

frequency is assumed to represent the eigenfrequency of the soil part of the system. The higher peak 

frequency is assumed to represent the eigenfrequency of the structural part. A two-mass-spring model 

will be investigated in this paragraph.  

When dividing the system into two parts, it is assumed that the lowest part will vibrate with the 

eigenfrequency of the soil. At the same time, the upper part of the system will vibrate with the 

eigenfrequency of the structure. The model is shown in Figure 11.  

 

Figure 11: Two-mass-spring model 

3.6.1 Mass m1 and m2 

In the new model, the total mass of m1 and m2 remains the same as the total mass of the previous 

mass-spring model described in paragraph 3.1. For the first estimation of the two-mass-spring model, 
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the total mass of the soil-structure system is divided in two equal masses m1 and m2. This means that 

the spring k1 will be located somewhere in the middle of the pillar, representing the stiffness of the 

pillar.  

Total mass m  5.500.000  kg 

Upper mass m1 2.750.000 kg 
Lower mass m2 2.750.000 kg  

Table 2: Total mass 1 and 2 

3.6.2 Spring constant k1 and k2 

In the two-mass-spring model, the spring constant k2 represents the stiffness of the soil part. This 

spring constant is taken equal to the spring constant in the previous mass-spring model.  

Assuming the other spring to be somewhere in the middle of the pillar, as described above, the 

spring constant k1 represents the stiffness of the pillar (i.e. the stiffness of the structural part). Since 

the pillar consists of both concrete and masonry, the pillar should be stiffer than the soil.  

A reasonable value for the spring constant of the structural part has to be determined. The E-

modulus of the soil can be calculated by: 

 

           (3.15) 

Where  

            (3.16) 

          (3.17) 

 

With a force of 14.000 kN (i.e. the dead load of the structure) acting on a 200 m2 footing, and 

assuming the ground is stiff with a settlement of 0,8 millimetres over a depth of 10 meters, the E-

modulus of the soil amounts to: 

 

      (             )(        )            
 

Concrete of good quality is assumed to have an E-modulus of 10.000 to 30.000 MPa. The pillar is 

made of concrete which is assumed to be of bad quality since it dates from the 19th century. 

Therefore, the E-modulus of the pillar is assumed to be less, 5.000 MPa, which is approximately 5 

times as stiff as the soil. Therefore, the choice has been made to make the pillar five times as stiff as 

the soil for the first approximation with the two-mass-spring model.   

 

Spring constant pillar - k1 8,75 * 10^10 N/m 
Spring constant soil - k2 1,75 * 10^10 N/m 

Table 3: Spring constants k1 and k2 
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3.7  The two-mass-spring model in Excel 

Like the single-degree-of-freedom one-mass-spring model, also the double-degree-of-freedom two-

mass-spring model is constructed in Excel. More details of the model can be found in appendix G. The 

upper part of the model is assumed to vibrate in the eigenfrequency of the structure. The lower part 

of the model is assumed to vibrate in the eigenfrequency of the soil. Besides, it is assumed that the 

eigenfrequency of the structural part is higher than the eigenfrequency of the soil part. This is due to 

the fact that the soil is less stiff than the structure (i.e. sand is less stiff than brick and concrete).   

3.7.1 Results 

The same Fast Fourier transform is performed over the velocity results of this two-mass-spring model. 

Because there are now two different velocities, the velocities of mass 1 and mass 2, the Fast Fourier 

Transform can be performed over two different sets of data.  

The parameters determined in paragraph 3.6 give a frequency spectrum as shown Graph 21 and 

Graph 22. 

 

 

Graph 21: Frequency spectrum mass 1, initial situation two-mass-spring model 

 

 

Graph 22: Frequency spectrum mass 2, initial situation two-mass-spring model 
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The only difference comparing the two graphs is the magnitude of the vibrations. The frequency 

peaks are located at the same frequency. Paragraph 3.4 showed that the magnitude of the vibrations 

is not in reality corresponding with the velocities. Therefore, in the following sections of this chapter, 

only the frequency spectrum of the lower mass will be shown.  

As assumed, there are two frequency peaks visible. The two peak values are 8,79 hertz in the 

lower frequency range, and 44,77 hertz, with a lower magnitude, in the higher frequency range. The 

assumption is that the peak in the lower frequency range represents the eigenfrequency of the soil, 

and that the peak in the higher frequency range represents the eigenfrequency of the structure. This 

can be verified by changing different parameters of the system, which will be treated in the following 

paragraph.  

 

3.8  Changing parameters of the two-mass-spring model 

As for the previous mass-spring model, parameters will be changed to check whether a parameter is 

contributing to a shift of the frequency of the system or not. The following parameters will be 

changed: 

- The stiffness of the structure, k1 

- The stiffness of the soil, k2 

- Distribution of the load over mass 1 and mass 2 

Because the mass of the system does not change during construction works, and because the 

contribution of a changing mass is already investigated with the one-mass-spring model, changing the 

amount of the total mass will not be repeated for the two-mass-spring model.  

Besides, the parameter study in paragraph 3.1.3 showed that another input load will not change 

the eigenfrequency of the system. Therefore, changing this parameter will also not be repeated.  

Because the one-mass-spring model already proved that adding damping to the system doesn’t 

influence the eigenfrequency, damping is not taken into account.  

3.8.1 Stiffness of the pillar, k1 

To see whether the high frequency peak represents the eigenfrequency of the structure, the stiffness 

k1 of the structure part is varied. It is assumed that with the change of this parameter, the peak in the 

higher frequency range will move to the left (i.e. to a lower frequency) as the pillar becomes less stiff. 

This should cause a drop in the eigenfrequency of the structural part.   

A decrease in stiffness k1 of 50% is chosen. The graph of the frequency spectrum is shown in 

Graph 23. 
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Graph 23: Frequency spectrum with decreased stiffness k1 

 

As expected, the peak in the higher frequency range moves to the left, while the peak in the lower 

frequency range remains almost the same. The amount of change of the peak in the higher frequency 

range is: 

                    (     )(       )  (           )(        )         

 

While the peak in the lower frequency range changes only: 

                    (     )(       )  (         )(       )        

3.8.2 Stiffness of the soil, k2 

To see whether the peak in the lower frequency range represents the eigenfrequency of the soil, the 

stiffness k2 of the soil is varied. It is assumed that, with changing this parameter, the peak will move 

to the left (i.e. to a lower frequency) as the soil becomes less stiff. This should cause a drop in the 

eigenfrequency of the soil part.    

A decrease of stiffness k2 of 50% is chosen. The graph of the frequency spectrum is shown in 

Graph 24. 
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Graph 24: Frequency spectrum with decreased stiffness k2 

 

The peak in the lower range moves to the left as assumed, while the peak in the higher range stays 

almost the same. The amounts of change in eigenfrequencies are:  

                    (     )(       )  (        )(       )         

and                    (     )(       )  (           )(        )        

respectively.  

 

The assumption seems to be correct that the peak in the lower frequency range represents the 

eigenfrequency of the soil, and the peak in the higher frequency range represents the eigenfrequency 

for the structure.  

The progress of the eigenfrequency in the lower and higher range with, for the sake of 

completeness, the progress of the velocity is shown in Graph 25 and Graph 26. The stiffness k2 of the 

soil is changed. As can be seen, the progress of the eigenfrequency in the lower range (i.e. the soil 

part) is exponential and significant. The progress of the eigenfrequency in the higher range (i.e. the 

structure part) is linear and small. 
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Graph 25: Progress frequency and velocity of soil part 

 

 

Graph 26: Progress frequency and velocity of structure part 

3.8.3 Different mass distribution  

Initially, the total mass of the structure was divided into two masses with an even mass distribution. 

The mass ratio is varied in order to be able to see the difference when this distribution is not even. A 

varied mass distribution can be useful for the coupling of the model with the real situation.  

As a first variation, the upper mass consists of 1:4 of the total mass, while the lower mass consists 

of 3:4 of the total mass. The assumption is that the heavier mass will get a lower eigenfrequency, 

while the mass that is less heavy will get a higher eigenfrequency. The frequency spectrum is shown 

in Graph 27.  
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Graph 27: Frequency spectrum with a mass distribution of 1:3 

 
It is remarkable that both frequency peaks are moved to the right (i.e. both frequencies became 

higher), although the changes are small.   

                    (     )(       )  (         )(       )        

                    (     )(       )  (           )(        )         

 

A second variation is the opposite, which means that the upper mass consists of 3:4 of the total mass 

and the lower mass consists of 1:4 of the total mass. The assumption is that the eigenfrequency of 

the soil goes up, because the soil is less heavy than at the beginning. Besides, as the structure is now 

heavier, its eigenfrequency should go down.  

 

 

Graph 28: Frequency spectrum with a mass distribution of 3:1 
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What is remarkable in this situation, when looking at Graph 28, is that both frequency peaks are 

moving in the opposite direction. The eigenfrequency of the soil goes down, while the eigenfrequency 

of the structure goes up. 

                    (     )(       )  (         )(       )        

                    (     )(       )  (           )(        )         

 

This remarkable shift of the eigenfrequency also occurs when the derivation of the masses is changed 

in another way, see Graph 29.  

 

 

Graph 29: Frequency spectrum with a mass distribution of 4:1 

                    (     )(       )  (         )(       )        

                    (     )(       )  (           )(        )         

 

An explanation of this phenomenon is probably that both masses are not independent of each other. 

Because the change of the eigenfrequency of the upper mass is much more dependent on the change 

in mass distribution than the lower mass, it can be said that the behaviour of the upper mass is 

submissive to the behaviour of the lower mass. 
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3.9  Conclusion two-mass-spring model 

With a two-mass-spring model, two peak frequencies of the system are found. Those frequencies are 

proven to be the eigenfrequencies of the system, see paragraph 3.8.1 and 3.8.2. The peak in the 

lower frequency range is the eigenfrequency of the soil part, and the peak in the higher frequency 

range is the eigenfrequency of the structural part.  

As can be seen from Graph 25 and Graph 26, when varying the soil stiffness k2, both frequencies 

decrease. However, there is only a small decrease in structural eigenfrequency. The decrease in 

eigenfrequency of the soil has a parabolic gradient while the decrease in eigenfrequency of the 

structure has a linear gradient. The form of Graph 25 has the same form as Graph 9. Also, the values 

of the eigenfrequencies are the same.    

For the sake of completeness, the change in velocity is also shown in the graphs. Again, there is no 

logical variation. The cause of this variation has been discussed in paragraph 3.4. 

 

3.10 Conclusion analytical modelling of the situation 

In this chapter, both a one-mass-spring model and a two-mass-spring model were evaluated. This 

was done in order to check if an analytical model could be used to analyse the situation in Nijmegen. 

Due to this evaluation an answer can be found to the first three research questions.  

A mass spring system is a good way to model a situation where the stiffness of the soil is changing 

or about to change. Both the one-mass-spring model and the two-mass-spring model are suitable for 

this analysis.   

A one-mass-spring model proves to be sufficient when only the lower stiffness is of importance. 

The frequencies of the different parts of the system can be distinguished by modelling the problem as 

a two-mass-spring system, with two degrees of freedom. This results in a frequency spectrum with 

two frequency peaks. The peak frequency in the lower range represents the soil part of the system. 

The peak frequency in the higher range represents the structural part of the system. This has been 

proven in chapter 3.8.1 and 3.8.2.   

The stiffness of the subsoil mostly contributes to the value of the peak frequency in the lower 

range (i.e. the eigenfrequency of the soil part). As can be seen from Graph 25 and Graph 26,   the 

eigenfrequency of the soil decreases with a parabolic gradient as a response to a decreasing soil 

stiffness k2. On the other hand, the decrease in eigenfrequency of the structure is minimal and has a 

linear gradient.  

A decrease in stiffness of the soil leads to a significant decrease of the eigenfrequencies of the 

system. This decrease of eigenfrequencies is most visible in the lower frequency range. This indicates 

that measuring the frequency of vibrations in the field is useful to monitor the stiffness of the soil.  

An important conclusion follows from paragraph 3.4. By monitoring ambient vibrations and 

analysing the results after a Fast Fourier Transform, the exact decrease of the stiffness of the soil 

cannot be monitored. Only a relative decrease, or increase, in stiffness with respect to the initial 

stiffness can be derived. This is due to the fact that it is impossible to determine the phase of the 
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signal when dealing with ambient vibrations. Sampling of the signal may stop at a different phase 

than when it started, and a different phase of the first and last data point will cause leakage when 

performing a Fast Fourier Transform. Also, a higher sampling frequency does not imply a better 

approximation of the real velocity. The amount of leakage remains the same, since the phase 

difference does not change with a higher sampling frequency.   
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4. Measurements recorded by the author  

The following chapters 4 and 5 will describe the empirical part of the research. This chapter will start 

with the elaboration of the dataset recorded by the author, in cooperation with the Municipality of 

Rotterdam. At first, the monitoring equipment will be outlined briefly. A more detailed description of 

the equipment can be found in paragraph 2.5. Afterwards, the monitoring setup and the days of 

measurement will be outlined. Processing of the datasets and performing the Fast Fourier Transform, 

which is necessary to split the recorded wave signal into its ground frequencies, is performed with 

Matlab. The Matlab codes written will be outlined briefly in this chapter. More information can be 

found in the mentioned appendices. Finally, the results and difficulties of the first and second 

measurement day will be discussed.  

 

4.1 Measurement setup 

In this paragraph the measurements on site in Nijmegen, performed by the author in cooperation with 

the Municipality of Rotterdam, will be discussed. The RoDo-system, described in more detail in 

paragraph 2.5, is used to monitor the vibrations in Nijmegen. The system measures vibrations up to 

500 hertz, with a resolution of 1000 hertz (i.e. one sample every 1/1000 of a second). The system 

used in Nijmegen exists of ten geophones. The geophones measure the frequencies of the vibrations, 

with the corresponding magnitude measured in Volts. This magnitude can be converted into the 

velocity with the sensitivity factor of the geophones.  

The vibration measurement in Nijmegen is performed at the location of pillar 1. An outline of the 

situation in Nijmegen can be found in appendix H. Almost all geophones are installed on the south 

side of the pillar. The south side is the side of pillar 1 which faces pillar 2. All geophones measure the 

vibrations in 3 directions (i.e. X, Y and Z), with a sampling frequency of 1000 hertz. The X-direction, in 

the horizontal plane, measures vibrations in the direction perpendicular to the rail tracks (i.e. east-

west). The Y-direction, also in the horizontal plane, measures vibrations parallel with the rail track (i.e. 

north-south). The Z-direction measures vibrations in the vertical plane. Geophones on the surface of 

the structure and the soil will mostly record surface waves (i.e. Rayleigh waves). The two geophones 

in depth of the soil will record body waves (i.e. compressional and shear waves).  A drawing of the 

measurement setup can be found in appendix A. Initially, the setup described in this paragraph will be 

applied for both measurement 1 and 2. When there is a modification of the setup due to 

circumstances, it will be mentioned in the relevant section. 

It has to be noted, that an extensive and detailed vibration measurement like this is not often 

performed. Therefore, some geophones are placed to be able to investigate phenomena which are 

outside the scope of this research. This means that not all information that is present in the recorded 

dataset will be used for this research.   



76 
 

4.1.1 The structure part  

Geophone 1 is attached to the girder of the bridge, at the downside of the girder. When comparing 

the results from this geophone with other geophones located at the pillar, it can be examined if the 

girder is vibrating different with respect to the pillar. Besides, the frequency spectrum of geophone 1 

can be seen as the input signal caused by the rail traffic. The input signal could not be measured 

more accurately, since it was not allowed to put a geophone on or nearby the rail track.  

The pillar is supposed to move in three different directions (i.e. X, Y and Z-direction). Therefore,  

geophones 2, 3 and 4 are placed on the top, middle and downside of pillar 1 respectively. Tilting in 

the horizontal plane can be detected by comparing the amplitudes (i.e. velocities) of vibrations in the 

X and Y-direction. Tilting in the Z-direction will be detected by geophone 5, which is placed on the 

north downside of the pillar. A difference in amplitude on the north side (i.e. geophone 5) and south 

side (i.e. geophone 4) indicates tilting of the pillar. It has to be noted that the exact amount of tilting 

cannot be distinguished from the data after a Fast Fourier Transform, since those velocities do not 

correspond with the real velocities, see paragraph 3.4. For a detailed investigation of tilting, which is 

outside the scope of this research, the raw recorded data should be analysed. 

Besides, with geophones 4 and 5, the difference in vibrations of trains going in one direction or the 

other can be compared. It can be investigated if the construction reacts different with rail traffic 

coming from different directions.  

Geophones 1 till 4 will make it also possible to investigate how the frequencies and velocities of the 

recorded vibrations change during their travel through the construction. For example, from the girder 

to the concrete block on the pillar, and from the concrete block to the brickwork of the pillar. It can be 

studied which part of the structure causes the most attenuation of the vibrations. Besides, it can be 

studied if various materials react different when exposed to the same amount of energy. A detailed 

study to this phenomenon is also outside the scope of this research.  

Assumed is that the measurements will record frequencies in the higher and in the lower frequency 

range. The higher frequencies will represent the eigenfrequencies of the structure. The lower 

frequencies will represent the eigenfrequencies of the soil surrounding the structure. The frequencies 

in the lower range will be used to look into the shift of frequencies when the stiffness of the soil is 

decreasing. It can be investigated if the higher frequencies may also show shifts that can be explained 

with, or coupled to, the decreasing stiffness of the soil. Referring to the analytical model in paragraph 

3.8.2, there should be a small change in the high frequencies as well. The question is if these shifts 

are large enough to derive from the vibration measurements.  

4.1.2 The soil part 

Besides geophones attached to the structure, there are also geophones placed on ground surface and 

in depth. These geophones will be used to investigate Rayleigh waves travelling from pillar over the 

ground surface, and to investigate body waves going into the subsoil. 

Geophones 8, 9 and 10 are placed in a row on ground surface. These three geophones will be 

used to examine how much attenuation the waves suffer (i.e. how much the velocity of vibrations 
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decreases with respect to the distance to the pillar). The information gathered by three geophones is 

the minimum amount of information for a good comparison.  

Geophones 6 and 7 are placed in depth on the south side of the pillar, directly next to its 

foundation block. These two geophones will be used to examine how the velocity of the waves 

develops when vibrations radiate into the subsoil. This can be done by comparing the magnitudes of 

the frequency peaks. The change of frequency of the vibrations can be also investigated, assuming 

the soil will be stiffer in deeper soil layers. With geophone 8 on top, again three geophones are put in 

a row. 

4.1.3 Measurement day 1 

Measurement day 1 takes place at the 21st of June 2013, from 12.45 till 15.00. The temperature is in 

between 16 and 22 degrees, there is no rain (<2 millimetres) and the humidity is 84% 

(WeatherOnline, 2013). 

This measurement represents the initial state of the soil. The construction works around pillar 1 

have not yet started. But, unfortunately, some preparation works already started. The upper soil layer 

around the pillar, approximately 0,5 metres of soil, was excavated. This meant that now the surface 

level of the soil is located at approximately +10 NAP. 

During the measurements, there are no construction works on or around pillar 1. There are some 

excavators driving along the site. This kind of traffic causes no significant vibrations. The vibrations 

caused by rail traffic can be recognized easily.  

The trains passing the bridge are photographed. In this way, particular vibrations can be coupled 

to the time of the passage. Later on, with Matlab, the particular time can be retrieved easily. In this 

way, a particular frequency spectra can be coupled to a time of passage and its corresponding type of 

train. 

The outline of sensors during measurement day 1, which can be also found in appendix A, was as 

follows:  

 

Spot Geophone Channel Place 

1 00602 1 At the bridge girder 
2 00599 2 At the top of the pillar, at the concrete block 
3 00597 3 In the middle of the pillar 
4 00600 4 At the bottom of the pillar 
5 00605 5 At the bottom of the pillar, on the other side  
6 TDS 00142 6 In the subsoil, 4.5 meters deep 
7 TDS 00143 7 In the subsoil, 3 meters deep 
8 00598 8 At the surface, 2.1 meters from the pillar 
9 00937 9 At the surface, 8.7 meters from the pillar 
10 00936 10 At the surface, 14.8 meters from the pillar 

Table 4: Setup during measurement day 1 
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4.1.4 Measurement day 2 

Measurement day 2 takes place at the 12th of September 2013, from 12.00 till 14.00. The weather is 

almost the same as on measurement day 1, it is just a little colder. The temperature is in between 12 

and 19 degrees, there is no rain (<1 millimetre) and the humidity is 86% (WeatherOnline, 2013). 

These variations are negligible for the comparison of the vibrations.  

This measurement is supposed to represent the construction phase. The work that has to be 

carried out around pillar 1 is, inter alia, the construction of 16 diaphragm wall panels. All panels reach 

to a depth of approximately 23 metres. Because of multiple panels that are already constructed before 

measurement 2 took place, the stiffness of the soil should have changed. The works that already took 

place were:  

 

- excavating and filling of diaphragm wall panels 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14 and 15 

- excavation of diaphragm wall panel 5. During the measurement, this panel is open and filled 

with bentonite.  

- only diaphragm wall panel 13 remains to be constructed 

 

See also appendix I for a drawing of the situation.  

At the time of measurement, there are no construction works around pillar 1. The construction 

works during the day take place around pillar 2. Some passing excavators cause vibrations, but these 

vibrations are negligible in comparison to the vibrations caused by trains. 

Compared to the first day, the setup of measurement day two differed slightly (shown in red in 

Table 5).  Mostly, the setup remains the same, in order to exclude differences in results because of a 

difference in the sensors. Although there are now diaphragm walls constructed in between the pillar 

and sensor spot 9, this spot is maintained to see what influence the diaphragm has on the vibrations.  

 

Spot Geophone Channel Place 

1 00602 1 At the bridge girder 
2 00599 2 At the top of the pillar, at the concrete block 
3 00597 3 In the middle of the pillar 
4 00936 4 At the bottom of the pillar 
5 00605 5 At the bottom of the pillar, on the other side  
6 TDS 00142 6 In the subsoil, 4.5 meters deep 
7 TDS 00143 7 In the subsoil, 3 meters deep 
8 00598 8 At the surface, 2.1 meters from the pillar 
8 00600 10 At the surface, 2.1 meters from the pillar, next to 8 
9 00937 9 At the surface, 8.7 meters from the pillar 

Table 5: Setup during measurement day 2 
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4.2  Matlab 

In this research the Fast Fourier Transform is performed over the recorded signals with Matlab. 

Different codes are written for the analysis of the data, and they will be explained in the different 

sections of this paragraph. 

4.2.1 From measurements to matrix in Matlab 

The used geophones record millivolts in time. The computer starts recording when vibrations are 

larger than a specific amount of millivolts characteristic for the passage of a train. In this way, 

vibrations outside the scope of this research do not occupy useless data space. Besides, the data is 

better to handle. A disadvantage of this recording method is that all the data is put directly after each 

other when the recorded vibrations are extracted and transposed into a matrix in Matlab. This means 

that in Matlab it seems like there is no gab in between two recorded vibrations, although in reality 

there can be.  

The Matlab code shown in appendix J converts the data into a matrix with the actual time gaps. 

With this matrix it is possible to generate a 3D graph presenting vibrations against real time. The code 

first checks if the time steps in between two recorded measurements are 1/1.000 of a second (i.e. the 

sampling frequency). When the time step in the matrix is larger, the code adds a value of time with a 

measured vibration equal to zero. Besides, it converts the measured millivolts into a velocity by 

multiplying with the sensitivity factor. In the end, the newly generated matrix contains the real time 

with the measured vibrations in millimetres per second. This new matrix is called DataWithTime.  

4.2.2 From matrix to 3D graph in Matlab 

After the matrix DataWithTime is saved, the 3D graph of all trains that past during the measurement 

is plotted. The Matlab code for this operation can be found in appendix K. With a 3D graph it is easier 

to find a train passage and its corresponding time in the large amount of recorded data. 

The matrix DataWithTime is first divided into parts of 1.000 samples (i.e. one second). A Fast 

Fourier Transform is then performed over every second, which results in 2D frequency spectra. All 

these 2D frequency spectra are put after each other in time, creating a 3D frequency spectrum. More 

information about the Fast Fourier Transform can be found in paragraph 2.6. 

For example:  

 

plotPeriodofFile (1,3600,DataWithTime) 

 



80 
 

 

Graph 30: 3D graph of vibration measurement day 1, in Z-direction 

 
This command creates a 3D graph of second 1 till second 3600 (i.e. the first hour) of the matrix 

DataWithTime. Above, in Graph 30, the 3D graph of the first hour of the measurements during day 1 

in Z-direction is shown. To make a comparison between different types of trains and the vibrations 

they caused, the passed trains are shown in Table 6. Also, the table shows in which direction the train 

was going (i.e. from Nijmegen to Lent (NL) or from Lent to Nijmegen (LN)).   

 

Passage in graph Train type Direction 

Passage 1 Not recorded - 
Passage 2 (train 1) Intercity Train, 1 deck, 7 wagons + locomotive NL 
Passage 3 (train 2) Sprinter Light rail train, 1 deck, 3 wagons LN 
Passage 4 (train 3+4) 2 Intercity Trains at the same time 

Both 2 decks, 4 wagons 
Both 

Passage 5 (train 5) Sprinter Light rail train, 1 deck, 3 wagons NL 
Passage 6 (train 6) Intercity Train, 1 deck, 7 wagons + locomotive LN 
Passage 7 (train 7) Intercity Train, 2 decks, 4 wagons LN 
Passage 8 (train 8) Intercity Train, 2 decks, 4 wagons NL 
Passage 9 (train 9) Intercity Train, 1 deck, 7 wagons + locomotive NL 
Passage 10 (train 10) Sprinter Light rail train, 1 deck, 3 wagons LN 
Passage 11 (train 11) Intercity Train, 2 decks, 4 wagons NL 
Passage 12 (train 12) Sprinter Light rail train, 1 deck, 3 wagons NL 
Passage 13 (train 13) Intercity Train, 1 deck, 7 wagons + locomotive LN 
Passage 14 (train 14) Intercity Train, 2 decks, 6 wagons LN 

Table 6: Train passages in 3D graph 

 

Some conclusions can already be drawn by comparing Graph 30 and Table 6. It can be seen that the 

vibrations are always a bit different. Nevertheless, the peaks are located at more or less the same 

frequency values. So the input force does not seem to have an influence on the peak frequencies of 

the system. This was also concluded before with the mass-spring model, in 3.1.3.  
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However, a different type of train does have an influence on the magnitude of the vibrations. For 

example, the highest peaks in the lower frequency range are all caused by a sprinter light rail train. 

This type of train does not have high peaks in the higher frequency range.  

The peak frequencies are assumed to be the eigenfrequencies of the system. There are three peak 

frequencies visible every train passage. It is assumed that the peak in the highest frequency range 

represents the eigenfrequency of the girder of the bridge. The peak in the middle frequency range is 

assumed to represent the eigenfrequency of the pillar. The frequency range, around 40 to 50 hertz, 

has a comparable value to the value for the eigenfrequency found with the mass-spring system which 

was 44,7 hertz, see section 3.7.1. Finally, the peak in the lowest frequency range represents the 

eigenfrequency of the soil. This eigenfrequency seems to be around 10 to 15 hertz, which is a bit 

higher than expected with the mass-spring model (i.e. 8,98 hertz) but which is still a plausible value 

for the eigenfrequency of soil. 

What also can be concluded from this 3D graph is that frequencies higher than approximately 120 

hertz do not exist in the signal. Therefore, all graphs used in this chapter will be limited with respect 

to the y-axis to a frequency of 200 hertz, instead of the possible 500 hertz.  

4.2.3 From 3D plot to 2D plot of every train passage 

The times of all train passages are predicted with the created 3D graph. With the Matlab code shown 

in appendix L, a 2D plot of the frequency spectrum can be made for every train passage, for all 

sensors, in all directions.  

First, a comparison between a Fast Fourier Transform with Matlab and an Fast Fourier Transform 

with Excel has been made to ensure the Matlab code for the Fast Fourier Transform is working 

correctly. In Excel, the amount of input data for an Fast Fourier Transform is limited. The limit of 

4.096 samples means that only 4 seconds of data can be compared with a sampling frequency of 

1.000 hertz.  

 

Figure 12: Comparison Excel and Matlab frequency spectrum 

 

The comparison has been made with 5 seconds of recorded data (i.e. 5.000 samples), of which 

4.096 will be used. The recorded vibrations during 5 seconds from passage 1 are chosen for this 
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comparison. The graphs are shown in Figure 12. As can be seen, the graphs are similar. Therefore, it 

is assumed that the Matlab code functions properly.   

 

Graph 31: 2D graph for sensor 1 in Z-direction 

 

This means that 2D graphs can now be plotted. For example, the 2D graph for train passage 5 (i.e. 

a sprinter light rail with 3 wagons, driving from Nijmegen to Lent) is shown in Graph 31. This train 

passage took place from 14:08:11 till 14:08:28, as shown in the title. The graph shows the frequency 

spectrum for the total passage of the train (i.e. 17 seconds). Every second is plotted with a different 

colour. On the x-axis, the frequency is plotted in hertz. On the y-axis, the corresponding magnitude is 

plotted in millimetres per second. Remind that this is not the real velocity because a Fast Fourier 

Transform has been performed, see paragraph 3.4.   

With the three Matlab codes described in this paragraph, the most important elaborations and 

comparisons of the data are made. Results will be discussed in the next paragraph.  

 

4.3  Results  

In this paragraph, the results will be discussed from measurement day 1 and measurement day 2. 

Also, a comparison between both days will be made. For most measurements performed on day 1, 

train passage 5 will be used for the analysis. This train passage consists of a sprinter light rail train 

driving from Nijmegen to Lent, and this type of train driving in that particular direction is showing the 

most clear low frequency peaks.  

4.3.1 Measurement day 1 - comparison three directions 

The geophones were measuring vibrations in three directions. In this paragraph it is investigated what 

the difference is in outcome of the measured vibrations comparing these three directions. The three 

used graphs are presented in appendix M. They are all derived from the same train passage but in the 

three different directions (i.e. X, Y and Z-direction).  
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What can be seen when comparing the graphs, is that there are 5 different mound that can be 

distinguished. In the lower frequency range, there is a visible peak frequency around 12 Hertz. A 

smaller peak is present around 20 Hertz. These peaks are visible in all three directions of the 

measurement.  

In the higher frequency range, the most clear peak which is also visible in all directions is the 

frequency peak around 67 Hertz. Besides, there is a mound around 100 Hertz, mostly visible in the X-

direction. In the Y and Z-direction on the other hand, there is a peak visible around 45 Hertz, which in 

the X-direction is almost invisible.  

What is also notable is the fact that in the X-direction (i.e. perpendicular to the rail track) the 

vibrations with the highest frequency have the smallest magnitude. In the lower frequency range, the 

vibrations in all directions are almost equal with respect to the magnitude. This means that the 

construction vibrates heavier in the Y and Z-direction than in the X-direction, while the soil vibrates 

evenly in all directions. This sound logical. The construction will vibrate the most in the Y and Z-

direction, since these directions are the directions of the largest dynamic input forces caused by the 

trains. The soil, in turn, will spread out the vibrations evenly into all possible directions.  

4.3.2 Measurement day 1 - comparison different sensors in Z-direction 

In this section, all sensors are compared to each other, to see what happens with the vibration 

traveling from sensor 1 to sensor 10. The comparison is made in Z-direction only, since earlier analysis 

during this research were also in Z-direction.  

It is interesting to observe which eigenfrequencies of the system are visible at which sensor (i.e. at 

which location of the soil-structure system). The graphs that are used for the comparison can be 

found in appendix N. A small resume has been made in Table 7. The thick numbers are the prominent 

frequency peaks.  

 

Sensor Frequency peak(s) 

1 Input signal - all frequency peaks – 6, 12, 22, 40/45, 55, 67, 100  
2 6, 12, 45, 80 
3 6, 12, 45, 100 
4 6, 12, 45, 50, 67, 90 
5 12, 22, 45, 67 
6 6, 12, small 45 
7 6, 12, 22 
8 12, 22, 45 
9 Short circuit, but 12, 22, 45 
10 12, 22, 45 

Table 7: Frequency peaks at different sensors 

 

As mentioned earlier, the result of sensor 1 consists of almost all frequencies which are occurring at 

the results of the other sensors. Therefore, the vibration at sensor 1 can be seen as the input signal. 

Furthermore, it can be concluded that the 12 hertz frequency is visible at all sensors. This 

frequency is supposed to be the eigenfrequency of the soil.  
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The frequency peak at 45 hertz is also visible at almost all sensors, but does not stand out really 

clear in the results of sensors which are in contact with the soil. Therefore, this frequency is supposed 

to be the eigenfrequency of the pillar.  

The highest frequency mound, around 80 to 100 hertz, is supposed to be the eigenfrequency of 

the girders. This eigenfrequency is only visible in the results of sensors which are placed on the 

construction and mostly on the upper side. This means the vibration, caused by the girder, attenuates 

when approaching the soil.   

A 20 hertz frequency peak is only visible in the input signal, and it returns in the results of the 

sensors placed on surface of the soil. It cannot be seen in the results of the sensors placed in depth. 

Therefore, it is assumed to be not the eigenfrequency of the soil.  

The frequency peak at 67 hertz is visible in the input signal, and therewith only at the lower side of 

the pillar.   

Since the peak of 50 hertz is only visible at sensor 4, and also not in the input signal, it is possible 

that sensor 4 is influenced by a 50 Hertz power cord.  

 

It can be concluded that the eigenfrequency of the soil is visible at all sensors, and that the 

eigenfrequency of the construction is not (especially not at the sensors placed on the surface of the 

soil and in depth). Therefore, the eigenfrequency of the soil can be of good use when the stiffness of 

a soil-structure system has to be monitored.  

4.3.3 Comparison day 1 and day 2 – Z-direction  

For the comparison of day 1 and day 2, 4 sensors have been selected. Sensor 1 has been selected 

because of the comparison of the input signal. Sensor 2 has been selected to compare the vibrations 

of the construction, just underneath the installed hydraulic jacks. Sensor 5 has been selected to 

compare the reaction of the construction near the soil surface. Sensor 8 has been selected to compare 

the vibrations in the soil. See appendix O. 

In between day 1 and day 2, hydraulic jacks were installed. These hydraulic jacks should have an 

influence on the dynamic input signal. When comparing the results of sensor 1 of both days, the 

influence is clearly visible. The signal is disturbed, and what attracts the most attention is the higher 

frequencies around 160 hertz. This indicates a higher eigenfrequency for the construction part of the 

system. Since there are still low frequencies around 12 hertz, it seems the eigenfrequency of the soil 

did not change much.  

When comparing the results from sensor 2, the influence of the hydraulic jacks is even more 

visible. The frequency peak in the lower range, the eigenfrequency of the soil, did not change. The 

peak frequency is still located around 12 hertz. But both frequency peaks in the higher range, around 

47 and 80 hertz, seem to be moved to around 65 and 90 hertz respectively. So both frequency peaks 

corresponding to the structure part of the system increased.  
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The results from sensor 5 and sensor 8 seem to be unchanged. Changes in the lower frequency 

range cannot be obtained on such a large scale. The changes will be further investigated in the next 

section, when the lower frequency range will be zoomed in.  

4.3.4 Comparison day 1 and day 2 – low frequency range Z-direction  

To make a better comparison between the low frequency range, the range of the above described 

sensors has been zoomed in. The graphs of both measurement day 1 and 2 can be found in appendix 

P. The upper graphs of a page refer to measurement day 1 (i.e. from 14.08.11 till 14.08.28), the 

lower graphs refer to measurement day 2 (i.e. from 12.43.24 till 12.43.41).  

What attracts the first attention, is that there is no clarity. The lines of multiple observed seconds 

do all point at different values, for both frequency and velocity. Also, there are lines visible which 

consist out of two small peaks. Such lines are created when the leakage is very large. Because the 

Fast Fourier Transform does not exactly sample on the eigenfrequency of the signal at that second, 

the signal is has been split over two frequencies, and so is the velocity.  

Also, when looking at the results more superficial and when trying to determine the average, it 

seems that the eigenfrequency indeed decreased. But with these measurements, a clear conclusion 

cannot be drawn.  

 

4.4  Difficulties 

Most of the times, during measurements in the field, not everything goes as planned. The results from 

the measurements made in Nijmegen were also not all satisfactory. In this paragraph the problems 

and difficulties during the measurements are discussed, including their influences on the results. 

4.4.1 Sensors in depth 

A problem occurred during the installation of the geophones in depth. The surface level of the soil is 

located at +10,5 NAP. The bottom of the foundation of the pillar is located at +5 NAP. It was planned 

to put geophone 6 half a meter deeper than the foundation level at +4,5 NAP (i.e. a depth of 6 

meters). This was desired to be able to not only investigate the vibrations in a horizontal direction, but 

also in the vertical direction underneath the footing. Unfortunately, the deeper soil was too stiff to 

push the cone of geophone 6 to the desired depth. It broke, but luckily it still worked. Instead of the 

desired depth of +4,5 NAP, it reached to a depth of +6 NAP (i.e. a depth of 4,5 meters). Because of 

the stiff soil, decided was to put geophone 7 not deeper than the planned +7,5 NAP (i.e. a depth of 3 

meters). The chance of destroying the geophone by pushing it to a deeper level, was too big.  

4.4.2 Sensor 4 

While all sensors showed the same frequency peaks in X, Y and Z-directions, as could be seen in 

section 4.3.1, there was one sensor which did not show this. This sensor, sensor 4, is showed in 

appendix Q.  
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As can be seen in the graphs, sensor 4 (i.e. sensor number 00600) showed in the Y and Z-direction 

a large peak at the frequency of 50 hertz. Sensor 5 is located at the same place on the pillar, only on 

the other side. But this sensor does not show any frequency peak around 50 hertz. 

Since this peak is only visible in the frequency spectra of sensor 4, it is probably caused by an 

alternating current voltage. To investigate this, other possible causes have to be investigated as well 

to exclude them.  

- A broken sensor 

The easiest cause is that sensor number 00600 is broken. To investigate this, the sensor has been 

switched with another sensor during the measurement day 2. Decided was to change the sensor 

number 00600 with the sensor used as sensor 10 during measurement day 1 (i.e. sensor number 

00936). This means that the spot of sensor 10 of the first measurement will lapse. Due to installation 

of the diaphragm walls in between the pillar and sensor spots 9 and 10, the spot of sensor 10 was 

already not so interesting any more. So sensor spot 4 now consists of sensor number 00936. Sensor 

number 00600 was placed next to sensor number 00598 at sensor spot 8, to see if both sensors 

would give the same results which also would mean that sensor number 00600 was not broken.  

The results of both measurements at spot 4 turned out to be the same. During measurement day 

2, the shift of frequencies in the different directions was still visible. Also, sensor number 00600 was 

showing the same frequency spectra as sensor number 00598 now. This means it can be concluded 

that it is not the sensor to blame.  

- A broken connection from sensor cable to ‘measuring box’ 

Another cause to investigate is the ‘box’ with sockets where all the sensors are connected. When 

there is a broken one at channel 4, this can explain the 50 hertz peak. To investigate if this is the 

cause of the different measurement outcome, a comparison with measurements of past projects has 

been made. The result of another measurement with sensor 4 can be found in appendix R. The 

graphs of the other measurement show the same outcome in all three directions. There is no 

difference in 50 hertz peak visible in the direction X compared with the directions Y and Z.  

- A power cord, which operates at voltages of 50 hertz 

So the last, logical cause of the 50 hertz peak is a power cord. The only inexplicable thing is that 

when there will be a power cord close to the measuring point of sensor 4, the peak frequency of 50 

hertz should be visible in all three directions X, Y and Z.  

 

4.5  Conclusions 

The first thing that can be concluded from the measurements carried out by the Municipality of 

Rotterdam, is that the results of the analysed vibrations are always a bit different with respect to the 

magnitudes. This is caused by different types of trains. A different input vibration has its influence on 

the magnitude of the recorded vibrations, as also concluded with the mass-spring system.  
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The frequency peaks during all train passages are located at more or less the same values. So, as 

also concluded with the mass-spring system, the input force does not seem to have an influence on 

the value of the eigenfrequencies of the system.  

It can be also concluded that the eigenfrequency of the structure increases significantly after the 

installation of hydraulic jacks. The jacks make the joint in between the girder and the pillar stiffer, 

which means they change the stiffness of the construction part of the system. This results in an 

increase of both the frequency peak values representing the pillar and the girder. The change in 

eigenfrequency of the soil due to the jacks is negligible. 

Because the lower frequency range, in between 5 and 15 hertz, is visible at the results of all 

sensors, it can be said that it is sufficient to measure at only one location when focussing on the lower 

frequency range. With respect to the measurements recorded by Fugro, which are recorded at only 

one location, it can be concluded that also these measurements can be used to determine the change 

in stiffness of the soil-structure system. Because these measurements contain more data than the 

measurements described in this chapter, they will be used for further analyse of the changing 

stiffness. The measurements recorded by the author will not be explored into more detail.  
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5. Measurements required by the contract 

In the contract of the project in Nijmegen it was required that vibrations should be monitored before, 

during and after the construction works. Fugro GeoServices B.V. is responsible for these vibration 

measurements. The measurements are provided for this research by Prorail.  

In this chapter, the setup of the system of Fugro GeoServices B.V. will be outlined, followed by a 

description and interpretation of the information that is used for this research. In this research, the 

dataset of Fugro is not used to compare with the dataset made by the Municipality of Rotterdam. This 

is because, unfortunately, the trace function of the monitoring system of Fugro was not working 

during the days the Municipality of Rotterdam was performing the measurements due to a full 

memory. Therefore, specific train passages could be compared one to one. Since every train passage 

differs from each other, comparing different train passages would add nothing to this research. Both 

datasets are therefore used to observe different phenomena.  

 

5.1  Setup Fugro GeoServices B.V. 

The Fugro GeoServices B.V. dataset has been recorded with a Profound Vibra+ system. The system is 

located at the top of the pillars 1, 2, 3 and 4, as can be seen in appendix A.  

The dataset contains continues vibration measurements in three directions (X, Y, Z). The highest 

measured velocity with corresponding frequency is saved every 10 minutes. Additionally, the Profound 

Vibra system records a so called ‘trace’ 6 times per hour. The full spectrum of the measured signal, 

based upon a 1.024 hertz sampling frequency, is then recorded during 2 seconds.   

The Fast Fourier Transform, which is performed by the computer program of Profound Vibra 2.75, 

processes the results of the trace into a frequency spectrum. These spectra are used in this research 

to observe possible changes in frequencies during the different construction phases. The 

measurements are continuous (that is, when the battery of the system is not low and the memory is 

not full). Therefore, comparisons can be made between datasets made during the initial state and 

made during various construction phases.  

 

5.2  Selection of data  

The dataset of Fugro GeoServices B.V. contains a lot of data, due to the continuous measured 

vibrations in three directions. Therefore, a selection of data will be made to facilitate the analysis and 

comparison. This paragraph will describe the way the selection is performed.  

5.1.1 Type of vibration 

After observing the data, it can be concluded that not all traces are useful for the analysis and 

comparison in this research. Some traces contain different kind of vibrations, showing no clear train 

passage. See Graph 32 and Graph 33. Graph 32 shows a train passage, consisting of a clear, 
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continuous vibration. Graph 33 shows a different kind of velocity graph. These kind of vibrations can 

be caused by different sources than a train passage, which may cause that this vibration contains 

other frequencies. Therefore, the graphs chosen for the analysis contain only graphs similar to Graph 

32.  

 

  

Graph 32: Trace with train passage   

 

 

Graph 33: Trace with other vibration 
 

5.1.2 Time table 

Another selection criterion is the time that the traces are made. Earlier research has concluded that 

that the passage of a different type of train can cause a slightly different frequency spectrum (Spruit, 

2012). The research made use of the vertical vibrations. One of the conclusions was that a different 

speed of the train influences the velocity of the measured vibrations. Generally, in Nijmegen, the 

velocity of trains is higher when they travel from south to north than from north to south. The higher 

the velocity of the train, the higher the velocity of the vibrations. A different weight of the train does 

not have that much influence. These conclusions have been verified with the measurements made by 

the author. With respect to the frequency of the vibrations, it can be said that the type and velocity of 

the train do not influence the measured frequencies. This is shown in paragraph 4.2.2. 

Based on these conclusions, it is tried to observe traces which were made when the same type of 

train was crossing the bridge. Also, when it was possible, the observed trains travelled in the same 
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direction. This will ensure a more or less equal input vibration based upon the type and velocity of the 

train. The times are obtained with the train time table between Nijmegen and Lent. This means that 

trains with delays can’t be taken into account, and may influence the results.  

The selected traces date from minute 14, 29, 44 or 59 of every hour. An intercity with two decks 

then runs from Nijmegen to Lent.  

5.1.3 Initial situation 

For the analysis of the initial situation, measurements which are made before construction works are 

used. The first measured vibrations by Fugro GeoServices B.V. date from March 2013. The 

construction works started at the end of July. March had a high water table compared to July, which is 

assumed to make a difference in frequencies and velocities of the vibrations measured. Due to the 

short term (dynamic) loading of passing trains, an undrained situation occurs. In an undrained 

situation, no water movement takes place which means that excess pore pressures build up, and the 

soil will react stiffer. This means that the soil may react more stiff in March than in July due to the 

high water table. To investigate this, both datasets made in March and July are compared with each 

other. For the comparison with the other phases, July will be chosen to represent the initial situation 

since this is the situation right before construction works start. 

For both datasets, an average of velocities and corresponding frequencies is taken over a period of 

3 days. This is done in order to exclude uncertainties and results from outstanding trains. Over these 

3 days, 9 train passages are observed for both the initial situation in March and in July. The analysed 

train passages occur around the same time each day. The result of this analysis can be seen in 

appendix S.   

5.1.4 During construction works 

A selection of data is also made out of the dataset recorded during the construction works. To make a 

fair comparison between the initial phase and the construction phases, the data is selected as 

described in this section.  

As a first attempt, it is tried to compare the frequency spectra made during different types of 

construction works, and the initial situation. However, this comparison is not possible due to a couple 

of reasons. In the first place, the comparison is not fair. The initial situation is observed over a period 

of three days, while the different types of construction works only last a couple of hours. Besides, not 

all construction works have multiple traces available. This means no average can be made, and 

outstanding train passages can have a big influence on the graph.  

As a reaction to this, an overview is created containing the graphs of March, July and every day 

during construction works. This overview can be seen in appendix T. In this overview, the shift of lines 

is more clear. A disadvantage is that every day during construction works contains multiple types of 

work, which makes the comparison a bit unrealistic. 

Hence, a different approach is chosen. During the construction phase, small settlements and large 

settlements occurred. Chosen is to analyse 3 days in a row with small settlements, and 3 days in a 
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row with large settlements. In this way two averages are made over the observed data, which are 

comparable with the average of the initial situations.  

A settlement curve can be found in appendix U. During 2 till 5 August, almost no settlements 

occurred. From 3 to 4 August, the settlements even decreased. Therefore, this situation is seen as a 

period in which the construction was at rest. After the 5th of August, the construction starts to settle 

again. During the 6th, 7th and 8th of August, the pillar settled with a maximum of 0,5 millimetres a day. 

These days are therefore chosen as the days when small settlements occurred. After these three days, 

the settlements became larger. During the 9th, 10th and 11th of August, the pillar settled with a 

maximum of 2 millimetres a day. These three days are therefore chosen to observe the construction 

during large settlements. For the average of each day, 5 to 8 train passages are analysed.  

5.1.5 After construction works 

After all diaphragm walls around pillar 1 are constructed, the vibration measurements continue. The 

data that is used for the analysis is selected in the same way as the data for the initial phase. So over 

3 days, 9 train passages are analysed.  

5.1.6 Resume 

So finally, the data that is used for the analysis and comparison are: 

 

Situation Month Days 

Initial situation 1 March 27th, 28th and 29th of March 2013 
Initial situation 2 July 18th, 19th and 20th of July 2013 
During small settlements August 6th, 7th and 8th of August 2013 
During large settlements August 9th, 10th and 11th of August 2013 
Post situation October 3rd, 4th and 5th of October 2013 

Table 8: Data used for the analysis 

 

5.2 Analysis of the results  

The analysis phase will be briefly discussed in this paragraph.  

All frequency spectra made by Fugro GeoService B.V. are more or less identical to the one showed 

in Graph 34. On the x-axis the frequency of the vibrations is plotted in hertz. On the y-axis, the 

velocity is plotted in millimetres per second, divided by the square root of the corresponding 

frequency. Probably, this is done in order to compare the higher frequencies with the lower 

frequencies in a glance. Since the higher frequencies have a higher velocity, dividing by the square 

root of the corresponding frequency makes the values of the y-axis more equal.  

The red, blue and green line show the vibrations in X-, Y- and Z-direction respectively.  
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Graph 34: Frequency spectrum of a trace, measured by Fugro GeoServices B.V. 

 

To observe the change in stiffness of the soil, only the lower frequency range, from 0 to 25 hertz, 

is considered important. Therefore the frequency spectrum is zoomed in, as can be seen in Graph 35. 

The frequency spectrum has multiple peak frequencies in the lower frequency range. It is assumed 

that all vibrations recorded in a particular direction have an average of 4 clear frequency peaks in the 

range below 15 hertz. The value for these peak frequencies with the corresponding velocity is noted 

for every graph. An example can be seen in Graph 35, where the 4 peak values for the vibration in the 

Z-direction are defined.  

 

 

Graph 35: Analysis of the frequency spectrum 

 

In this way all graphs are analysed and put in Excel. Finally, a graph is made showing the five 

different phases of measurement. See Graph 36, Graph 37 and Graph 38. The velocities of the 

vibrations are shown on the y-axis for the sake of completeness, although conclusions have already 
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been made about the incorrect velocities after a Fast Fourier Transform. But in this part of the 

research, the values of the frequencies and the velocities are an average of multiple vibrations. 

Therefore, there may also be a useful trend visible in the progress of the vibrations.  

 

 

Graph 36: Comparison frequencies and velocities during different phases, X-direction 

 

 

Graph 37: Comparison frequencies and velocities during different phases, Y-direction 
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Graph 38: Comparison frequencies and velocities during different phases, Z-direction 

 

5.2.1 Analysing the frequency peaks 

The average frequency of each peak is now known. Next, a selection can be made. The peaks that 

will be analysed further are the ones that may have a relation to the eigenfrequency (i.e. stiffness) of 

the soil. To determine which peaks are important to observe, the conclusions from the previous 

chapters are taken into account. It is assumed that the eigenfrequency of the soil is in the zone 

between 5 and 15 hertz. According to this, the two peak frequencies around 8 and 10 hertz are 

analysed. The frequencies below 5 hertz are not further investigated.  

The values of the third and fourth peak frequency are summarized in the following tables Table 9, 

Table 10, and Table 11. The tables show the frequencies of the vibrations with the corresponding 

velocities in X, Y, and Z-direction. The moment of measurement is shown in the first column, in 

chronological order. The frequencies and velocities shown in the second and third column are the 

values associated with the third peak of the frequency spectrum. The frequencies and velocities 

shown in the fourth and fifth column are the values that are associated with the fourth peak. The 

frequencies are shown in hertz. The velocities are converted to millimetres per second. The plus and 

minus signs indicate if the value is decreased (minus sign) or increased (plus sign) with respect to the 

value from the previous phase.  

 

X-direction Values of 3rd peak Values of 4th peak 

When Frequency [Hz] 
Velocity 
[mm/s] 

Frequency [Hz] 
Velocity 
[mm/s] 

Initial March 7,44 0,28 10,81 0,37 
Initial July 7,66 (+) 0,34 (+) 10,44 (-) 0,33 (-) 
Small settlements 6,93 (-) 0,23 (-) 10,21 (-) 0,25 (-) 
Large settlements 7,08 (+) 0,21 (-) 10,01 (-) 0,25 (-) 
Post phase 7,33 (+) 0,33 (+) 10,14 (+) 0,63 (+) 

Table 9: Peak frequency and velocity values, X-direction 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 2 4 6 8 10 12

V
e

lo
ci

ty
 [

m
m

/s
] 

Frequency [hertz] 

Measurements Fugro GeoService B.V. - in Z-direction 

March Z

July Z

Small Settlements Z

Large Settlements Z

October Z



96 
 

 

Y-direction Values of 3rd peak Values of 4th peak 

When Frequency [Hz] 
Velocity 

[mm/s] 
Frequency [Hz] 

Velocity 

[mm/s] 

Initial March 7,78 0,10 10,46 0,11 
Initial July 8,11 (+) 0,08 (-) 10,47 0,12 
Small settlements 7,28 (-) 0,24 (+) 10,08 (-) 0,10  
Large settlements 7,03 (-) 0,30 (+) 9,38 (-) 0,15 
Post phase 7,14 (+) 0,08 (-) 10,67 (+) 0,13  

Table 10: Peak frequency and velocity values, Y-direction 

 

Z-direction Values of 3rd peak Values of 4th peak 

When Frequency [Hz] 
Velocity 

[mm/s] 
Frequency [Hz] 

Velocity 

[mm/s] 

Initial March 7,31 0,16 10,17 0,22 
Initial July 7,67 (+) 0,18 (+) 10,17 0,18 (-) 
Small settlements 6,78 (-) 0,15 (-) 9,66 (-) 0,14 (-) 
Large settlements 7,03 (+) 0,12 (-) 9,67 (-) 0,14  
Post phase 7,22 (+) 0,20 (+) 9,97 (+) 0,36 (+) 

Table 11: Peak frequency and velocity values, Z-direction 

 

In advance, a decrease in stiffness should mean a decrease in frequency of the soil according to 

formula 2.10. As a response, a decrease in frequency should mean an increase in velocity of the 

vibration, according to formula 3.10. Initially, the peak frequency is observed. Remind that the 

velocities may not correspond with the real velocities, as proven in paragraph 3.4. 

A logical progression of the frequencies should be a decrease of all values, except the last value. 

The soil should be stiffer in March than in July due to the high water table (as discussed earlier in 

paragraph 5.1.3). In August, the construction works start, which should cause a decrease in stiffness 

of the soil. Finally, in the post phase, the diaphragm walls are installed and the soil is ‘locked’. It can 

only compact due to the vertical forces of the trains. This means, the stiffness of the soil should 

recover (i.e. increase) again.  

What can be concluded from the tables above is that the values corresponding to the third peak 

are not showing this progression. What is most striking is the lower frequency in March than in July in 

all three directions of measurement. Although it has to be noted that changes are small, it seems that 

the third peak frequencies do not have a relation to the stiffness of the soil.  

On the other hand, the values corresponding to the fourth peak frequencies do show a logical 

progression. Especially during construction and during the post phase, the frequencies develop as 

expected. It is therefore assumed that these frequencies do have a relation to the stiffness of the soil. 

Comparing the measured frequency in March and July in X-direction, some variation can be seen. 

But in Y and Z-direction, the eigenfrequency in March and July is the same. Therefore, it can be said 

that the difference in groundwater table does not have a significant influence on the eigenfrequency 

of the system. This means that an observed change in eigenfrequency is caused by a change in 

stiffness of the system, and not by a change in environmental conditions.   



97 
 

When comparing the changes in eigenfrequencies in the X, Y and Z-direction, it can be noted that 

the changes in X-direction are the smallest. Since the distance from the pillar to the constructed 

diaphragm walls is smaller in Y than in X-direction, the stiffness in Y-direction should indeed decrease 

more than in X-direction. Therefore, this result also implies that the monitoring system is working 

correctly.  

When observing the corresponding velocities of the vibrations, it can be concluded that the 

progression is the opposite of what was expected. In the Y-direction, the velocity values are more or 

less the same during all measurements. But in the X and Z-direction, the velocity decreases when the 

stiffness decreases and vice versa. Since the changes of the velocities are really small, it is possible 

that this change in velocity is a coincidence and due to leakage, see paragraph 3.4. 

 

To see whether or not these results give a realistic value for the change in stiffness of the system, the 

results are compared with results following from the analytical model. Afterwards, they are compared 

with an approximation of the stiffness change during construction works. This is done by coupling the 

settlements that occurred in Nijmegen to an approximated change in stiffness of the soil.  

The analytical model only analysed vibrations in the Z-direction. Therefore, also in this part of the 

research vibrations in Z-direction are analysed to be able to make a good comparison. The change in 

frequency in the Z-direction according to the dataset of Fugro GeoServices B.V., when comparing the 

initial state with the large settlement state, is:  

                    (     )  (          )          

                    (     )(      )  (          )(        )        

 

This change in frequency can be coupled to a change in stiffness by rewriting formula 2.10 for k. 

The exact mass of the system is irrelevant, since this mass remains the same before and after 

construction of the diaphragm walls. Therefore, the mass does not have an influence on the change in 

stiffness, when the change is expressed as a percentage.  

The frequency decrease of -4,9% as calculated above, gives the following relative change in 

stiffness: 

                (     )    (        )               

                (     )    (       )               

 



98 
 

                   (     )(      )  (                   )(            )        

 

Which seems to be a very small, but plausible decrease.   

The small change in stiffness can be explained in two ways. On beforehand, only a slight change in 

stiffness was expected. The first explanation is that the stiffness during construction indeed did not 

change that much. This would mean that the monitoring system is working. A second explanation can 

be that a change in stiffness of the soil cannot be observed by monitoring the change in 

eigenfrequencies of the soil, because the changes are too small.   

The first explanation can be further investigated by estimating the decrease in stiffness of the soil. 

This is done by coupling the change in stiffness of the soil to the settlements that occurred during 

construction. Of course, the exact change in stiffness cannot be calculated in this way. But, the 

calculation is used only as an approximation of the change in soil stiffness. It is used to check the 

order of magnitude, and to compare this order with the order calculated with the measured change in 

eigenfrequency.  

During construction works, the pillar settled. These settlements can be related to a stiffness 

change of the soil. The construction works around pillar 1 started at the 22nd of July. The last 

measurement of the pillar’s settlement dates from October 22nd. The maximum settlement that 

occurred during this period of time contained 41,4 millimetres at the east side of the pillar, and 33,8 

millimetres at the west side of the pillar. The profound system of Fugro GeoServices B.V. is located at 

the west side of the pillar. Therefore, the 33,8 millimetres of settlement will be used to calculate the 

change in stiffness of the soil.  

The stiffness is calculated with formula 3.1. The initial stiffness of the soil was calculated with 

Plaxis and amounts 17.500.000.000 N/m. It was then assumed that the soil was already fully settled 

by the dead weight of the construction. Only the passing trains caused an extra settlement of 8 

millimetres. Now, the soil is being rearranged due to the construction works. This means that not only 

the dynamic load of the passing trains will cause settlements, but also the dead load of the 

construction. Since the dynamic stiffness of the soil is much larger than the static stiffness, the 

dynamic load will cause small settlements compared to the dead load. Therefore, this dynamic load is 

ignored for the approximation of the change in soil stiffness. Only the dead load is considered 

responsible for the 33,8 millimetres of settlement of the pillar.  

The dead load amounts 5.500.000 kilograms (i.e. 55.000.000 Newton) as calculated in paragraph 

3.1.1. This gives a change in stiffness of the soil of: 

  

                                             
 

This means that the soil stiffness during construction works has been reduced with: 
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  (       )           (            )        

 

This change of -9,3% is comparable with the -9,6% calculated from the analysed measurements of 

Fugro GeoServices B.V. So, it seems that the measured values in the field and the calculated values 

from the settlements are comparable. Therefore, it can be said that there was indeed only a small 

change in stiffness during the construction works. And it is possible to observe this small change in 

stiffness with the results from the vibration measurements that have been made.   

 

5.3  Conclusion 

A decrease in soil stiffness is detectable by monitoring the decrease in eigenfrequency of the soil. In 

this particular case, the changes were very small but comparable with expected and calculated values. 

With this research it is proven that a decrease in eigenfrequency occurs when settlements occur, 

so when the stiffness of the soil is already decreased. Because during this particular project the 

construction almost immediately started to settle, it was not possible to conclude if vibration 

monitoring shows changes before settlements occur. It can therefore not be said if vibration 

monitoring can act as an early warning system. But there is reason to believe it can, since the 

decrease in frequency of 0,5 hertz in the Z-direction was already visible during small settlements of 

the construction, as can be seen from the tables Table 9, Table 10, and Table 11. After these small 

settlements, the settlements increased further while the frequency did not further decrease. This 

means that the frequency was at its minimum value before settlements were at their maximum value. 

Further investigation is required with respect to this.  

When comparing the initial eigenfrequency (July) and the eigenfrequency in the post phase 

(October), it seems plausible to conclude that the stiffness of the soil has recovered or is recovering to 

the original conditions. This is as expected. After installation of the diaphragm walls, the stiffness is 

supposed to increase again since the soil is being compacted in the box of diaphragm walls.  
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6. Conclusions and recommendations  

In this final chapter, the conclusions and recommendations with respect to this Master’s thesis will be 

outlined. The problem statement of the research was: 

 

Monitoring systems, such as traditional deformation monitoring, do not give information about  

the stiffness behaviour of a soil-structure system  

 

In order to find a type of monitoring which can offer information about the dynamic response (i.e. 

stiffness behaviour) of a soil-structure system, a mass-spring model is used to model a change in soil 

stiffness and to observe the shifts in eigenfrequencies of the soil-structure system. To verify the 

model, ambient vibrations are measured in the field after which both results are coupled. 

 

6.1  Conclusions 

It is possible to observe a change in stiffness of a soil-structure system by shifts in eigenfrequencies, 

using rail traffic induced vibrations as a vibration source. Even though the ambient vibrations are in 

the higher frequency range (i.e. in the range of 50 to 100 hertz), vibrations around the soil stiffness 

eigenfrequencies are recognizable in the measurements. A restriction that has to be made is that only 

a relative stiffness change with respect to the initial stiffness can be observed when a Fast Fourier 

Transform is used to analyse the data. By a relative change is meant the change in stiffness with 

respect to the initial stiffness, expressed as a percentage. 

6.1.1 Research question 1 

To what extent does the stiffness of the subsoil contribute to the total response of the system, and 

can the frequency components caused by the soil and the frequency components caused by the 

structural part of the system be distinguished from each other?  

 

The situation can be modelled with an analytical mass-spring model. When using a two-mass-spring 

model, the peak frequency in the lower frequency range represents the eigenfrequency of the soil. 

The peak frequency in the higher frequency range represents the eigenfrequency of the structure. 

With a changing stiffness of the construction, the eigenfrequency of the construction changes 

significantly while the change in eigenfrequency of the soil is not worth mentioning. The opposite is 

also true. When the stiffness of the soil decreases, the eigenfrequency of the soil decreases 

significantly while the eigenfrequency of the structure remains almost unchanged. 

By knowing this it can be concluded that for observing a change in soil stiffness, only changes in 

the lower frequency range are of importance.  
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6.1.2 The Fast Fourier Transform 

During analysis of the model, attention was also concentrated on the Fast Fourier Transform. When 

analysing data after a Fast Fourier Transform, only a relative change in stiffness can be monitored. 

Since it is impossible to determine the phase of the signal when dealing with ambient vibrations, a 

phase difference between the first and last data point cannot be avoided. This will cause leakage 

during a Fast Fourier Transform. Due to leakage, the velocities in the Fast Fourier frequency spectrum 

do not correspond to the real corresponding velocities of the eigenfrequency. The differences can be 

even more than 30%, where the velocities after a Fast Fourier Transform are always lower than the 

velocities in reality.  

With respect to the approximation of the real velocity of the mass, the difference is caused only by 

a different phase from the starting point and final point of the analysed vibration. A different sampling 

frequency does not make a difference. On the other hand, a higher sampling frequency (i.e. a smaller 

frequency resolution) will give a better approximation of the eigenfrequency.  

6.1.3 Research question 2 

Are there visible changes in the measured frequencies of the system when comparing measurements 

of the initial state with measurements made during the construction and post phase and if so, do the 

observed changes correspond to the changes predicted with the analytical model? 

 

From the dataset recorded by the author in cooperation with the Municipality of Rotterdam it can be 

concluded that the eigenfrequency of the structure increases significantly after the installation of 

hydraulic jacks. Both the frequency peak values representing the pillar and the girder increase. The 

eigenfrequency of the soil-part of the system remains almost unchanged after installation of the jacks.  

This also follows from the analytical mass-spring model, as described above. The hydraulic jacks 

make the joint in between the girder and the pillar stiffer, which means they are changing the 

stiffness of the construction part of the system. According to the mass-spring model, this should 

indeed cause a significant change in eigenfrequency of the structure, while the change in 

eigenfrequency of the soil can be neglected.  

After installation of the jacks, the structure of the input signal (i.e. geophone 1) changes. But the 

reaction of the soil remains the same. Therefore, it can be said that the reaction of the soil depends 

on the amount of energy that is put into the system, and not so much on the structure of the input 

signal. The amount of energy remains the same, since the type of train and its velocity during 

construction works do not change. 

The eigenfrequency of the soil cannot be determined really precise. But when observing the results 

from more closely, it seems indeed that the eigenfrequency of the soil decreased.  

 

With the traces recorded by Fugro GeoServices B.V. it is possible to analyse and compare the results 

from the initial phase, the construction phase and the post phase. It can be concluded that a change 

in stiffness of the soil can be observed by a shift in eigenfrequencies. A decrease in eigenfrequency 
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with respect to the initial measured eigenfrequency is observed during the construction works. The 

decrease in eigenfrequency is small but comparable to the estimated amount calculated with the 

formulas and mass-spring model.  

In the post phase, the eigenfrequency increases again. This too is as expected, since after 

installation of the diaphragm walls the stiffness is supposed to recover again because of soil 

compaction inside the diaphragm walls. 

When comparing the changes in eigenfrequencies in the X, Y and Z-direction, it can be noted that 

the changes in X-direction are the smallest. This implies that the monitoring system works correctly. 

Since the distance from the pillar to the construction works is larger in X than in Y-direction, the 

stiffness of the soil-structure system in X-direction should indeed decrease less than in Y-direction.  

 

6.1.4 Research question 3 

Is it possible to set up a monitoring system that monitors the relative stiffness change of the soil-

structure system during construction works and, if so, is the monitoring system that is in operation in 

Nijmegen able to monitor a stiffness change? 

 

The system that is in operation in Nijmegen proved to be able to observe a change in stiffness of the 

soil. It is sufficient to measure at one location when focussing on the lower frequency range.  

However, some adjustments can be made. For example, when only the stiffness of the soil is of 

interest, a low pass filter can be used since only the low frequencies are of importance. The higher 

frequencies are of importance for observing the stiffness of the construction. They do not show a 

significant decrease when the stiffness of the soil is changing.  

 

6.2  Relevance 

The relevance of this research for the project in Nijmegen is the conclusion that the stiffness of the 

system did not change significantly during construction works. Also, the stiffness recovered after the 

construction works. This means that the construction does not have to be adapted, and costs for 

repairing the construction can be saved.  

This can also be relevant for other projects where the deformation of a construction is rather 

irrelevant if the stiffness of the construction is not being influenced significantly. For these projects a 

vibration monitoring system, which monitors shifts in eigenfrequency, can offer information about the 

dynamic response (i.e. stiffness behaviour) of the construction, additionally to the traditional 

deformation monitoring.  
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6.3  Recommendations 

Overall, when using a vibration monitoring system to observe a change in stiffness, it is recommended 

to first check the frequency range in which the frequencies of interest are situated. A simple mass-

spring system can be of good use for a first approximation. Also, measuring a larger frequency range 

will give useful information. When the frequency range of interest is known, a filter can be used to 

minimize the amount of data, the time needed to analyse the data, and therefore the costs of the 

measurement.  

 

Because of a limited time span, some interesting phenomena with respect to this research were not 

investigated into detail. Therefore, some further investigations will be suggested in this paragraph.  

6.3.1 Recommendations related to the research 

Because of the leakage occurring after Fast Fourier Transform, only a relative stiffness change can be 

monitored with vibration measurements. In this research, leakage is only briefly investigated. But the 

Fast Fourier Transform is very much used to generate the frequency spectrum during all kinds of 

vibration measurements, all over the world. When leakage is not taken into account, this can have an 

enormous impact on the implementation of vibration measurements. For a better understanding of 

the impact of leakage, and to get a better grip on this phenomenon, it is recommended to investigate 

leakage more into detail. This can for instance be done by a mathematician.  

It was suggested that when vibration measurement would show changes sooner than 

measurements like normal displacement measurements do, a monitoring system based on vibration 

measurements might be able to function as an early warning system. During this particular project in 

Nijmegen, the construction almost immediately started to settle. Therefore, it was not possible to 

conclude if a shift in eigenfrequencies was visible before settlements occurred. But there is a reason 

to believe that eigenfrequencies decrease before settlements occur, since the eigenfrequency was 

already decreased during small settlements of the construction, and since it did not further decrease 

while the settlements increased a lot further. Further investigation is required with respect to this. 

6.3.2 Recommendations only partly related to the research 

During the empirical part of the research, vibrations were measured in three different directions on 

ten different locations on and around the structure of the railway bridge. For this research, only 

particular results were used which were interesting with respect to the stiffness of the soil. But it 

would be interesting to use the other available information to investigate if tilting of the construction 

and attenuation of different materials could also be monitored by vibration measurements. When 

investigating this, the raw data have to be used. The data after a Fast Fourier Transform will not 

provide the information that is necessary about the real velocity of the vibrations.  
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8. Appendices 

Appendix A. Drawing of the pillar including sensor setup 
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Appendix B. Excel file 1 mass-spring model 
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Row What? Description  Formula 

A t Time steps dt [s] 0,005 
B F(t) Input force from the train [N] Given values for every time step dt 
C Fkt Sum of spring forces [N] = - x (t-1) * k 
D Fct Sum of damper forces [N] = - c (t-1) * v 
E SumF Sum of all forces [N] Sum row B, C and D 
F at Acceleration of the mass [m/s2] at = sum F / m 
G vt Velocity of the mass [m/s] vt = vt(t-1) + at * dt  
H xt Displacement of the mass [m] xt = xt(t-1) + vt * dt  
I vt(mm/s) Velocity of the mass in [mm/s] vt [mm/s] = vt [m/s] * 1000 
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Appendix C. Fast Fourier Transform in Excel 

 

 

 
 

Description of creating an FFT in Excel 
 

Make 2 blocks 
- Sampling rate = Fugro samples at 200 hertz (i.e. 200 times per second), which means the 

sampling rate is 200. 
- Data points = The maximum amount of data points that can be analysed in Excel is 4096. 

The more data points, the more accurate the result. So chosen are 4096 data points.  
 
Make 4 columns  

- Numbering = 0:2048 
- FFT Frequency = the column with the values for the frequency axis (i.e. the x-axis) in the 

frequency spectrum. To calculate this value:  
‘Corresponding numbering’ * (sampling rate / data points) 
Since the sampling frequency of Fugro is 200, the frequency axis goes till 200/2 = 100.  

- FFT Magnitude = the magnitude that corresponds with the frequency (i.e. the y-axis of the 
frequency spectrum). This magnitude can be calculated with the formula: 
2/data point * C.ABS(‘corresponding FFT Complex’) 
C.ABS takes the absolute value of the complex number that is in the FFT Complex column 
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- FFT Complex = The real and complex value that comes out of the Fourier Analysis as 
described below.  

 
So for example for row 2 the formulas are: 
Numbering 0 
FFT Frequency =A2*($H$2/$G$2) 
FFT Magnitude =2/$G$2*C.ABS(D2) 
FFT Complex Data out of Fourier Analysis 
 
 
To start the Analysis: 

- Tools – data analysis – Fourier Analysis 
The input range of the data for the analysis is column I of the one-mass-spring system (figure 
appendix B) from 2:4097.  

- This gives an outcome of real and complex numbers. This output has to be put in the FFT 
Complex column. All columns will now be filled. 

- The Frequency spectrum can be drawn by creating a scatter plot graph. On the x-axis the FFT 
Frequency is plotted. On the y-axis the FFT Magnitude is plotted.  
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Appendix D. Frequency and velocity calculated with formulas in Excel 
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Appendix E. Excel file 1 mass-spring model with pulse load 
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Appendix F. FFT analysis in Excel with pulse load 
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What has been done?  

4 different FFT graphs have been made 

- 200 Hz 

- 400 Hz 

- 800 Hz 

- ‘Perfect FFT’ (described in section 3.4.3) 

An FFT has been performed over the data of the one-mass-spring model as described in appendix F 

(with pulse load). Depending on the sampling frequency, the time step dt has been modified. The 

time which is analysed has to be the same for each sampling frequency. Hence, when 200 Hz (with a 

dt of 0,005) has 1024 samples, 400 Hz (with a dt of 0,0025) needs 2048 samples and 800 Hz (with a 

dt of 0,00125) needs 4098 samples to analyse the same total time.  

This has been done for each frequency for the stiffness k initial till k=10% of the initial value, with 

steps of -10%. The peak frequency and corresponding velocity are noted each time, and in the end 

plotted in a graph shown in the figure above (Change Frequency and Velocity).  
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Appendix G. Excel file two-mass-spring model 
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Row What? Description  Formula 

A t Time steps dt [s] 0,005 
B F(t) Input force from the train [N] Train input force for every time step 
C Fkt1 Sum of spring forces [N] = - k1 * xt1(t-1) + k1 * xt2(t-1) 
D Fct1 Sum of damper forces [N] = - c1 * vt1(t-1) + c1 * vt2(t-1) 
E SumF1 Sum of all forces [N] Sum row B, C and D 
F at1 Acceleration of the mass [m/s2] at1 = somF1 / m1  
G vt1 Velocity of the mass [m/s] vt1 = vt1(t-1)+ at1 * dt  
H xt1 Displacement of the mass [m] xt1 = xt1(t-1)+ vt1 * dt  
I vt1(mm/s) Velocity of the mass in [mm/s] vt1 [mm/s] = vt1 [m/s] * 1000 
    
P Fkt2 Sum of spring forces [N] = - (k2+k1) * xt2(t-1) + k1 * xt1(t-1) 
Q Fct2 Sum of damper forces [N] = - (c2+c1) * vt2(t-1) + c1 * vt1(t-1) 
R SumF2 Sum of all forces [N] Sum row P and Q 
S  at2 Acceleration of the mass [m/s2] at2 = somF2 / m2  
T  vt2 Velocity of the mass [m/s] vt2 = vt2(t-1)+ at2 * dt  
U  xt2 Displacement of the mass [m] xt2 = xt2(t-1)+ vt2 * dt  
V  vt2(mm/s) Velocity of the mass in [mm/s] vt2 [mm/s] = vt2 [m/s] * 1000 
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Appendix H. Outline situation Nijmegen 
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Appendix I. Drawing of construction works during measurement 2 

 

Pink = diaphragm wall finished 

Blue = diaphragm wall open and filled with bentonite 

White = construction works of the diaphragm wall did not start yet  
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Appendix J. Matlab code for matrix with all times 

 

function DataWithTime = saveCorrectMatrix(file) 
  
load(file); %Loads the data as a matrix with the name ‘double_data’,  
%with on the first row the times and on the second row the corresponding 
millivolts measured 
DataNoTime = double_data; %Renames ‘double_data’ to ‘DataNoTime’ 
start = DataNoTime(1,1); %The start value of time is the first value of the 
first row of the matrix ‘DataNoTime’ 
last = DataNoTime(1,end); %The end value of time is the last value of the 
first row of the matrix ‘DataNoTime’ 
Sensitivity = 23.3; %Recalculates the millivolts to velocity: Vs/m = 
volt*second/meter 
  
C = DataNoTime(1,:);  
Volt = DataNoTime(2,:); 
  
% K=0; %check; in the end K has to be the amount of values in the matrix 
without time 
  
B = (Volt/Sensitivity) * 1000; %Gives velocity vibration = mm/s 
  
LastTime = last; 
time = start; %Start value time 
deltaTime = C(2)-C(1); %Normal time step in between samples 
  
DataWithTime = zeros(2,((LastTime-time) /deltaTime)); %Fills the matrix 
with zeros when there is no sample 
place = 1; %Place of column in where it all starts 
  
for n = 1 : length(C) 
   if(time == C(n)) 
       DataWithTime(1,place) = C(n); 
       DataWithTime(2,place) = B(n); 
       %K = K + 1; 
       place = place + 1; 
       time = time + deltaTime; 
   else 
       while(time < C(n)) 
               if((time+deltaTime) >= C(n)) 
                   DataWithTime(1,place) = C(n); 
                   DataWithTime(2,place) = B(n); 
                   %K = K + 1; 
               else %(time <(C(n)) 
                   DataWithTime(1,place) = time; 
                   DataWithTime(2,place) = 0; 
  
               end  
               place = place + 1; 
               time = time + deltaTime; 
       end 
    end 
  
end 
  
%check; K has to be the amount of values in the matrix without time  
%K 
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% double_dataLoc = 1; 
% bool = 0; 
% for n = 1 : length(DataWithTime) 
%     if (DataWithTime(1,n) == double_data(1,double_dataLoc)) 
%         if (~(DataWithTime(2,n) == double_data(2,double_dataLoc))) 
%             bool = bool + 1; 
%         end 
%         double_dataLoc = double_dataLoc + 1; 
%     end 
% end 
% bool 
 

Procedure:  

Appendix Matlab conversing data into data with correct time 

 

To start the procedure for one of the measurements, the following command is typed in the 

Command Window of Matlab:  

DataWithTime = saveCorrectMatrix(‘..file..’) 
Where; 
file = the name of the file (i.e. matrix) you want to convert.  
 
For example:  
DataWithTime = saveCorrectMatrix(‘S1Z1415matlab.mat’) 

This will convert the original matrix of Sensor 1 in the Z direction into a matrix were all the time steps 
are 1/1000 second.  
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Appendix K. Matlab code for 3D graph 

 

% Function to retrieve the 3D-Plot for all frequencyvectors. 
% Input 'seconds' is the count of seconds you want to see the vectors from. 
% PRE: STARTSECOND > 0 
function plotPeriodofFile(startsecond, endsecond, namegoodmatrix); 
  
double_data = namegoodmatrix; 
  
% TimeAxis = datestr(double_data(1:10000:(endsecond*1000))); 
  
Fs = 1000;                        % Sampling frequency 
L = 1000;                         % Length of signal 
NFFT = 2^nextpow2(L);             % Next power of 2 from length of y 
start = (startsecond-1)*1000;      % Position where you get your first data 
from (in the loop) 
  
% Creates the matrix where all frequencyvectors are saved in. 
% Standard this gives for colf 513, but is here automated maybe for later. 
f = Fs/2*linspace(0,1,NFFT/2+1); 
[rowf colf] = size(f); 
matrix = zeros((endsecond-startsecond+1),colf); 
  
% Indicates the right row for the matrix with the Fourier data! 
row = 1; 
  
for second = startsecond : endsecond 
    % Retrieves a vector of 1000 samples that represent the 'second'. 
    vector = double_data(2, (start + 1) : second*1000); 
    % Updates the starting point with one second (is 1000 samples). 
    start = start + 1000; 
     
    % Fourier function and extra function for scaling. 
    vectorFFT = fft(vector, NFFT)/L; 
    newVector = (2*abs(vectorFFT(1:NFFT/2+1))); 
     
    % Saves the found frequencyvector in the total matrix. 
    matrix(row,:) = newVector; 
    row = row + 1; 
end 
  
matrix; 
  
% Plots the 3D graph, and all settings for the Plot. 
figure(2) 
surf((1:colf), (startsecond : endsecond), matrix(:, 1:colf)) 
xlim([1 colf]) 
zlim([0 1.5]) 
xlabel('Frequency (hertz)') 
ylabel('Time (seconds)') 
%set(gca, 'YTickLabel','TimeAxis') 
%datetick('y','dd-mmm HH:MM:SS'); 
zlabel('Intensity (mm/s)') 
ylim([startsecond endsecond]) 
shading interp 
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Procedure:  

 

To start the 3D plot, the following line is typed in the Command Window of Matlab:  

plotPeriodofFile = (startsecond,endsecond,‘matrix’) 

Where; 

startsecond = the desired start second of the measurement (Note: because 1 is the first measured 

second, this startsecond has to be > 0) 

endsecond = the desired end second 

matrix = DataWithTime 

 

The matrix DataWithTime is first divided into parts of 1000 samples (i.e. 1 second). A Fast Fourier 

Transform is then performed over every part, which results in a 2D graph for every second. All these 

2D graphs are put after each other in time, which creates a 3D graph. More information about the 

Fast Fourier Transform can be found in paragraph 2.6. 

 

For example:  

plotPeriodofFile (1,3600,DataWithTime) 

 

This command creates a 3D graph of second 1 till second 3600 (i.e. the first hour) of the matrix 

DataWithTime.  

The figures below show the 3D graphs of the recorded measurements of sensor 1 in the Z direction. 

The first figure consists of the dataset made at day 1. The second figure consists of the dataset made 

at day 2. As already can be seen from these graphs, the frequency spectrum of both days differs a lot. 

The reason for this is discussed in the report. 
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Appendix L. Matlab code for 2D graph 

 

% Step 1; Fill in the name of the data that has to be loaded  
% Step 2; Change Name for titel figure and name saved file  
% Step 3; Change num to one higher! Because otherwise the 'hold function' 
holds also the previous plot 
% Step 3; Change datenum in the for loop for desired plotted data 
  
load('S1Z1214.mat'); 
C = double_data(1,:); 
Volt = double_data(2,:); 
Sensitivity = 23.3; 
B = ((Volt/Sensitivity) * 1000); 
DataWithTime = [C;B]; 
  
Name = 'Sensor 1 - low frequency range - Z - 12.43.24 12.43.41'; 
num = 2172; 
  
% Take uneven steps for 'n', otherwise the total graph does not have 
gridlines 
  
for n = 1:17 
% Seconds can be + more than 60. Matlab makes a new minute automatically    
Sec(n) = datenum(2013,9,12,12,43,(24+(n-1))); 
Place(n) =  find(DataWithTime==Sec(n)); 
Sec(n+1) = datenum(2013,9,12,12,43,(24+n)); 
Place(n+1) =  find(DataWithTime==Sec(n+1)); 
  
x = DataWithTime(1,(((Place(n)/2)+0.5):(((Place(n+1)-2)/2)+0.5)));  
% -2, makes the value for n+1 for the next n only, and not double used 
y = DataWithTime(2,(((Place(n)/2)+0.5):(((Place(n+1)-2)/2)+0.5)));  
% /2 + 0.5, because it has to be a p;ace in the matrix, not only in the row 
  
Fs = 1000;                          % Sampling frequency 
L = ((Place(n+1)-Place(n))/2);      % Length of signal 
NFFT = 2^nextpow2(L);               % Next power of 2 from length of y 
Yfft = fft(y,NFFT)/L; 
  
f = Fs/2*linspace(0,1,NFFT/2+1); 
  
% This plots a single-sided amplitude spectrum for second n 
  
figure(n); 
plot(f,2*abs(Yfft(1:NFFT/2+1))); 
set(gcf, 'Visible', 'off'); % Does not show the graph that has been made  
grid on; 
set(gca, 'GridLineStyle', '-'); 
grid(gca,'minor'); 
xlim([0 200]); 
ylim([0 0.5]); 
title([Name,' - Second ', num2str(n)]); 
xlabel('Frequency (Hz)'); 
ylabel('Velocity (mm/s)'); 
saveas(gcf,[Name,' - Second ', num2str(n), '.jpg']); % Saves the graph 
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% This plots a single-sided amplitude spectrum for all seconds in one graph  
  
figure(num); 
hold all; 
plot(f,2*abs(Yfft(1:NFFT/2+1))); 
set(gcf, 'Visible', 'off'); 
grid on; 
set(gca, 'GridLineStyle', '-'); 
grid(gca,'minor'); 
xlim([0 25]); 
ylim([0 1]); 
title([Name,' All Seconds']); 
xlabel('Frequency (Hz)'); 
ylabel('Velocity (mm/s)'); 
saveas(gcf,[Name,' All Seconds.jpg']); 
  
  
end  
  
% Makes the sound of a train when everything is ready 
load train  
sound(y,Fs) 
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Appendix M. Graphs to compare the three directions X, Y, Z 
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Appendix N. Graphs to compare all sensors 

 

 



129 
 



130 
 

 



131 
 



132 
 

 
 



133 
 

 
  



134 
 

Appendix O. Graphs to compare day 1 and day 2 

Comparison day 1 and day 2 measurements municipality of Rotterdam – Z-direction 
 
Day 1 sensor 1 
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Day 1 sensor 2 
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Day 1 sensor 5 
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Day 1 sensor 8 
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Day 2 sensor 1 
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Day 2 sensor 2 
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Day 2 sensor 5 
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Day 2 sensor 8 
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Appendix P. Graphs to compare low frequency range of day 1 and day 2 
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Appendix Q. Results Sensor 4  

 
Sensor 4 – measurement day 1 – sensor number 00600 
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Sensor 4 – measurement day 2 – sensor number 00936 
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Appendix R. Other measurement sensor 4 
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Appendix S. Overview selected data analysis Fugro 
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Appendix T. Overview graphs made with data Fugro 

 

At first, different train passages during different construction works have been selected with the 

criterion described in paragraph 5.2. In the Excel overview in appendix S, the selection of for example 

the 6th of August can be seen. All peak values (frequencies and corresponding velocities) were noted 

and in the end averaged.  

Afterwards different graphs were plotted to see which method would be the most suitable method 

to compare the results. Below, the results of the first two attempts are showed in the Z-direction, also 

described in paragraph 5.2. These graphs give an impression of the ‘mess’ of information. Because of 

this mess, the selection of data has been further averaged as described in paragraph 5.2. The results 

of the chosen method (i.e. the initial situation compared to small and big settlements and the post 

situation) have been showed in paragraph 5.2. 
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Appendix U. Settlement curve 

 

 
 
This settlement curve has been produced and provided by Arie van den Heerik.  


