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REVIEW Open Access

Observing the unwatchable through acceleration
logging of animal behavior
Danielle D Brown1*, Roland Kays2,3,4, Martin Wikelski4,5,6, Rory Wilson7 and A Peter Klimley8

Abstract

Behavior is an important mechanism of evolution and it is paid for through energy expenditure. Nevertheless, field
biologists can rarely observe animals for more than a fraction of their daily activities and attempts to quantify
behavior for modeling ecological processes often exclude cryptic yet important behavioral events. Over the past
few years, an explosion of research on remote monitoring of animal behavior using acceleration sensors has
smashed the decades-old limits of observational studies. Animal-attached accelerometers measure the change in velocity
of the body over time and can quantify fine-scale movements and body postures unlimited by visibility, observer bias, or
the scale of space use. Pioneered more than a decade ago, application of accelerometers as a remote monitoring tool
has recently surged thanks to the development of more accessible hardware and software. It has been applied to more
than 120 species of animals to date. Accelerometer measurements are typically collected in three dimensions of
movement at very high resolution (>10 Hz), and have so far been applied towards two main objectives. First, the
patterns of accelerometer waveforms can be used to deduce specific behaviors through animal movement and body
posture. Second, the variation in accelerometer waveform measurements has been shown to correlate with energy
expenditure, opening up a suite of scientific questions in species notoriously difficult to observe in the wild. To date,
studies of wild aquatic species outnumber wild terrestrial species and analyses of social behaviors are particularly few in
number. Researchers of domestic and captive species also tend to report methodology more thoroughly than those
studying species in the wild. There are substantial challenges to getting the most out of accelerometers, including
validation, calibration, and the management and analysis of large quantities of data. In this review, we illustrate how
accelerometers work, provide an overview of the ecological questions that have employed accelerometry, and highlight
the emerging best practices for data acquisition and analysis. This tool offers a level of detail in behavioral studies of
free-ranging wild animals that has previously been impossible to achieve and, across scientific disciplines, it improves
understanding of the role of behavioral mechanisms in ecological and evolutionary processes.

Keywords: Accelerometer, Activity, Animal behavior, Bio-logging, Dead reckoning, Energy expenditure, Ethogram,
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Abstract

Resumen: El comportamiento es un mecanismo importante de la evolución y que se paga a través del gasto de
energía. Sin embargo, los biólogos de campo raramente observan los animales durante más de una fracción de sus
actividades y los intentos de cuantificar el comportamiento para el modelado de los procesos ecológicos a
menudo excluyen eventos crípticos pero importantes. En los últimos años se produjeron avances importantes en el
monitoreo remoto del comportamiento de los animales, utilizando sensores de telemétro de aceleración
(acelerómetros) que empujan los límites tradicionales de los estudios observacionales. Acelerómetros unidos a los
animales miden el cambio de la velocidad del cuerpo en el tiempo y pueden cuantificar los movimientos a escala
fina y posturas corporales ilimitadas por la visibilidad, el sesgo del observador, o la escala de la utilización del
espacio. Como pionero hace más de una década, la aplicación de los acelerómetros como una herramienta de
monitoreo remoto ha aumentado recientemente debido al desarrollo de hardware y software más accesibles. Se ha
aplicado a más de 120 especies de animales hasta hoy. Medidas de los acelerómetros se recogen típicamente en
tres dimensiones de movimiento a muy alta resolución (>10 Hz), y hasta ahora se han aplicado hacia dos objetivos
principales. Primero, los patrones de las formas de los acelerómetros de onda se pueden utilizar para deducir
comportamientos específicos a través de movimiento de los animales y la postura corporal. Segundo, se ha
demonstrado que la variación en las medidas de forma de los acelerómetros de onda se ha demostrado que se
correlaciona con el gasto de energía, abriendo una serie de preguntas de carácter científico sobre especies muy
difíciles de observar en la naturaleza. Hasta la fecha, los estudios de las especies acuáticas silvestres superan a las
especies terrestres silvestres, y los análisis de los comportamientos sociales son muy pocos en número. Los
investigadores de las especies domésticas y en cautiverio tienden a reportar metodología más completa que los
que estudian las especies silvestres. Hay retos importantes para conseguir el máximo rendimiento de los
acelerómetros, incluyendo la validación, calibración y gestión y análisis de grandes cantidades de datos. En esta
revisión se ilustra cómo funciona el acelerómetro, se proporciona una visión general de las investigaciones
ecológicas que han empleado los acelerómetros y se destacan las mejores prácticas emergentes para la adquisición
y análisis de datos. Esta herramienta ofrece un nivel de detalle en los estudios de comportamiento de los animales
salvajes que han sido hasta ahora imposibles de alcanzar y, en todas las disciplinas científicas, que mejora la
comprensión del papel de los mecanismos de comportamiento de los procesos ecológicos y evolutivos.

Palabras claves: Acelerómetro, actividad, bio-registro, comportamiento animal, gasto energético, etograma,
navegación a estima, observación a distancia, telemetría.

Review
“Man goes to nature to learn what nature is, but, in so
doing, he introduces possibilities of distortion through his
own presence.” – T.C. Schneirla (p. 1022, [1]).
Naturalists have long been aware that their presence can

affect animal behavior [1,2]. Direct observation presents
obvious difficulties when animals perceive humans as pred-
ators [3] or when they are naturally secretive and elusive
[4,5]. Habituating individuals to an observer is sometimes
possible but it is labor-intensive, and can require long-term
study [6,7]. Furthermore, though the subjects under study
may be habituated, human presence can still affect their
behavioral interactions with other non-habituated predator,
prey or competitor species [8]. The observer is rarely un-
detectable and even animals that do not appear to react to
human presence may still change their behavior in subtle
ways [9,10]. Direct observations are also biased by our own
physical limitations [11-13] and tendencies to attend to
some events and subjects more than others [14].
The field of biotelemetry grew out of the need to lo-

cate animals at will and observe and record their habits des-
pite their abilities to travel rapidly and widely in inclement

weather, underwater, or at night [12,13,15]. Locating ani-
mals in space has progressed from manual tracking of
animal-borne radio- or acoustic signals to automated depth
and geomagnetic loggers and satellite-based positioning sys-
tems that practically eliminate the observer effect and can
now provide precise worldwide locations with few temporal
or spatial constraints [11,16]. Nevertheless, a record of ani-
mal locations or a depth profile tells where the animal was
and how long it stayed there, but the behavioral context is
absent and must either be inferred or demands a return to
direct observation methods [17]. These issues underscore
the need for remote measurement of animal behavior to re-
duce or eliminate the potential effects of observer presence
while maintaining a high level of detail in data recording
that is comparable to direct observation [18]. Over the past
few years, there has been an explosion of research on re-
mote monitoring of animal behavior using measurements
of acceleration (Figure 1) [19,20]. This tool, the accelerom-
eter, has repeatedly circumvented many of the age-old
limits of direct observation of animals in the field.
Figure 2 provides a basic explanation of how an accel-

erometer works [21]. An accelerometer is a spring-like
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piezoelectric sensor. When deformed, the sensor gener-
ates a wave-like voltage signal that is proportional to the
acceleration (change in velocity) it experiences [22]. The
sensor is deformed both by gravitational acceleration as
well as inertial acceleration due to movement. From one
to three of these sensors are aligned orthogonally to one
another and affixed to an animal so that each sensor
measures acceleration in a single plane, or dimension, of
movement (surge, heave, and sway (Figure 2)). All three
sensors collecting simultaneous measurements can rep-
resent three-dimensional movement realistically [20,23].
The sensors can be user-programmed to sample acceler-
ation at frequencies ranging from 0.5 to 10,000 Hz, and
can be set to record continuously or in repeated bursts
(e.g., every 2 min). The voltage signals, also known as
raw accelerometer output, may be used in their raw
state, or converted to actual acceleration if the unit is

carefully calibrated (measured in g; 1 g = 9.8 m/s2). Under
static circumstances, such as during rest or after death, the
accelerometer signal only represents the gravitational force
acting on the sensors. When an animal is moving, sensor
output represents acceleration due to gravity combined
with the inertial acceleration generated by movement [23].
Accelerometers typically incorporate a microprocessor and
digital memory to store logged measurements until the in-
strument is retrieved [24].
Measurement of acceleration is a well-established re-

search tool in biomechanics [25,26] and exercise science
[27,28]. The first (wired) accelerometers were used to
examine the biomechanics of movement in humans [29]
and fish [30] and then to ascertain the correlation be-
tween bodily acceleration and oxygen consumption in
human subjects [28]. The introduction of air-bag tech-
nology in passenger vehicles lead to the development of
relatively inexpensive accelerometers that use very little
power [31]. These were quickly adopted for studies out-
side the laboratory environment, because they are “small,
low-cost instruments that provide quantitative [and ob-
jective] measurements [of activity]” p. 679, [32]. Animal
studies using these modern, truly portable acceleration
sensors did not appear in the literature until the late
1990s [33,34]. Initially, animal studies were confined to
captive and domesticated species, as well as aquatic taxa,
for whom few other behavioral observation methods
were possible [12,35,36]. Since then, the ongoing reduction
in the size of computer microprocessors and improve-
ments in battery size, weight, and longevity combined with
these small solid-state acceleration sensors have resulted
in a modern accelerometer that can weigh 0.7 g (without a
battery) and measure 9.5 × 15 × 4 mm (available from:
http://www.technosmart.eu/axy.php). Modern accelerome-
ters also consume very little digital memory with each
measurement [37], so data collection and data storage on-
board the instrument itself is possible for up to several
months or years, depending on the sampling schedule. Ac-
celerometers that simply log their data must be retrieved
after the sampling period, as with other types of telemetric
data loggers. However, some accelerometers incorporate
ultra-high frequency data download technology in similar
frequency bandwidths as those used in cellular phones
[38]. This feature makes it possible to download the data
from the accelerometer from a reasonable distance (up to
500 m, personal observation) even if the device and its
bearer are not visible or the instrument cannot be re-
trieved because it has been discarded in a tree cavity, for
example [21]. Radio or acoustic beacons are commonly
used on loggers that must be retrieved [21,24].
Movement is the fundamental behavioral response to

both internal motivations and the external environment
[13,17]. Using accelerometers, biologists can measure the
movement behavior of wild animals over biologically and

Figure 1 Primary papers using accelerometers in animal
behavior research 1998–2012.

Figure 2 How an accelerometer works and typical orientation
of instrument axes on a terrestrial mammal (Tamandua
mexicana) [21].
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ecologically significant events and periods, practically un-
limited by visibility, observer bias, or geographic scale. Ac-
celerometers can be deployed with other sensors, such as
those recording location (GPS, acoustic telemetry, water
depth), physiological measurements (heart rate, body tem-
perature), and environmental variables like air temperature,
light levels and magnetic heading [24,39,40]. Particularly
when combined with other instruments, measurements of
acceleration can provide a wide range of detailed informa-
tion on the environmental context of animal behavior and
physiology that can exceed the descriptive abilities of the
human observer and deepen our knowledge even for well-
known species such as domestic animals. Here, we review
how accelerometers have been used to date in the study of
animal behavior, including the taxonomic and research
trends in the literature and we illustrate the type of data
produced by this technology from instruments deployed
on a variety of species. Further, we provide a summary
of the currently available techniques for data calibration,
management and analysis, and suggest key directions for
future research.

Methods
We accessed BIOSIS® Previews and ISI Web of Know-
ledge® online and ran searches for any publication contain-
ing references to accelerometry in the title, abstract or
keywords. We limited our analysis to primary research
published in peer-reviewed journals and book chapters
through December 2012. From those, we selected studies
utilizing animal-borne sensors applied to non-human spe-
cies. We assessed the resulting works for the following: i)
study purpose; ii) species and whether subjects were cap-
tive/domestic or free-ranging, and aquatic or terrestrial;
iii) number of acceleration axes; iv) sampling frequency
utilized; v) the behavioral resolution of the resulting mea-
surements; vi) the parameters of the accelerometer data
used for analysis; vii) whether or not behavioral classifica-
tion accuracy was reported (if pertinent); and viii) whether
accelerometry was combined with other telemetry sensors.
Results are presented as percentages; not all percentages
will sum to 100 because not all categories were mutually
exclusive.

Results
We discovered 176 accelerometry studies and counted 125
animal species that have borne accelerometers (Additional
file 1). Studies were relatively evenly split between aquatic
(48.3%) and terrestrial (52.8%) habitats and between free-
ranging wild animals (50%) and domesticated/captive wild
animals (33/27.3%), but there were biases among taxa for
these categories (Figures 3 and 4). Mammals represented
45.6% of all study species with domestic cattle and Pinni-
peds being the most-studied among the mammals (14% of
studies and 18% of species, respectively). Birds comprised

33.6% of all study species and 38% of avian species were ei-
ther Sphenisciformes or Suliformes. Fishes included 11.2%
of species and half of all fish species were Elasmobranch
sharks. Eight reptile species, five of them Chelonians, com-
prised 6.4% of study subjects. Giant cuttlefish (Sepia
apama), Humboldt squid (Dosidicus gigas), King scallop
(Pecten maximus) and Cane toad (Bufo marinus) were the
four study species remaining outside of these four taxon
categories.
More than half of all studies (62.3%) utilized 3-axis ac-

celerometers; 90.3% of studies utilized either 2- or 3-axis
accelerometers. Sampling frequencies ranged from 0.5 Hz
to 10,000 Hz, with 60% of studies using one of the follow-
ing most common sampling frequencies of 8, 10, 16, 32,
64 or 100 Hz. Forty-eight percent of studies collected

Figure 3 Accelerometry studies performed on wild free-ranging
animals compared to domestic/captive animals by taxon.

Figure 4 Accelerometry studies performed on aquatic animals
compared to terrestrial animals by taxon.
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acceleration data continuously and 13.3% collected data in
discrete bursts or intervals; 38.7% of studies did not clearly
report their collection method. Sixty-three percent of stud-
ies combined an accelerometer with other telemetric in-
struments; however, free-ranging wild species were 3 times
more likely than captive wild species and 6 times more
likely than domesticated species to be outfitted with telem-
etry devices that contained multiple sensors. The most
common remote sensors used in tandem with accelerome-
ters measured depth (35.6% of studies), travel speed (16%
of studies) and temperature (14.7% of studies).

Survey of questions currently served by accelerometry:
body posture and body movement
The acceleration waveforms over short (millisecond) to
long (minutes) periods can be used to deduce behavior-
specific body postures and body movements (Figures 5
and 6) [41,42]. Across taxa, 36.4% of studies reported ac-
celeration ethograms or acceleration-based descriptions
of behavior. Just under half (46.6%) of all studies utilized
the accelerometer waveforms to determine activity budgets.
As shown graphically in Figure 5, accelerometer voltage
output of inactive or rest behavior is more or less constant,
while whole-body movement of any kind produces fluctuat-
ing acceleration waveforms with high levels of variance
among measurements. Of the studies examining activity
budgets, 35% of authors used this variance characteristic of
accelerometer waveforms to simply identify the timing of
activity vs. rest [43-46]. Sixty-five percent of authors identi-
fied distinct waveforms for specific behaviors and then esti-
mated the amount of time animals spent engaged in these
behaviors such as chasing prey or feeding, flight, swimming,

walking, running, climbing, standing, lying down, thermo-
regulation and sleeping. Quantifying foraging effort is an
application of accelerometry that few other telemetry tech-
nologies can accomplish and is particularly useful for ani-
mals that forage or hunt out of sight. Researchers have
documented foraging strategies that differ by species, age
or sex [47-52]. Other studies placed accelerometer sensors
on the head/mandible to directly measure attempts at food
capture [53], although foraging effort did not necessarily
correlate with foraging success [54]. There are several
methods for identifying and categorizing waveforms that
represent specific behaviors (see ‘Best Practices’ , below).
On average, these studies were able to identify four distinct
acceleration waveform profiles (range 2 to 7), typically fall-
ing under the broad behavioral categories of locomotion,
resting, and feeding/foraging [55-57]. In general, while the
accelerometer patterns of active locomotory behaviors
(walking, running, climbing, swimming and flying) are
clearly distinguishable from inactive behaviors such as
sleep, thermoregulation and digestion, the waveforms of
these types of relatively immobile behaviors are not par-
ticularly distinct from one another [19].
When an accelerometer is combined with other sen-

sors on a tagged animal, researchers can describe the
broader ecological context of accelerometer-determined
behaviors. Light level and ambient temperature sensors
in tandem with accelerometry permit examination of activ-
ity timing in relation to environmental conditions [58-61].
Accelerometers and remotely-sensed location via GPS,
compass, depth or acoustic sensors provide the spatial dis-
tributions of accelerometer-determined behaviors [62-66]
and can lead to novel insights about species’ behavioral
ecology. For example, traditional observation-only research
of the little-known oilbird (Steatornis caripensis) led to the
hypothesis that these nocturnal frugivorous birds were not
seed dispersers because the seeds from their diet were re-
gurgitated in the dark caves where the birds roost. Holland

Figure 5 Accelerometer-based determination of body posture
and the timing of rest vs. activity. Data are from a study of the
northern tamandua anteater Tamandua mexicana [21]. Acceleration
was sampled at 19 Hz for ~3 seconds every 2 min. For simplicity, the
y-axis is not shown and waveforms represent the average voltage
measured every 2 min for each axis.

Figure 6 Heave-axis acceleration waveforms of three behaviors
of the Swallow-tailed gull (Creagrus furcatus). The y-axis shows the
unit-free voltage output of the accelerometer sensor. Photograph
and data prepared by Sebastián Cruz (unpublished).
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et al. [38] determined that oilbirds outfitted with GPS/ac-
celeration loggers spent only every third day in caves,
otherwise remaining in the rainforest where they regurgi-
tated seeds onto the forest floor at considerable distances
from both feeding sites and cave roosts. The authors main-
tained that oilbirds should be reconsidered as an important
long-distance seed disperser in Neotropical forests, a novel
hypothesis for the ecology of that ecosystem.
Behavioral analysis applied to monitor animal welfare

was a significant component of accelerometry research
on terrestrial animals; 80% of the terrestrial studies (and
25% of all studies) examined the welfare of domesticated
species. Typically, authors used accelerometry to monitor
behavioral changes associated with reproduction [67,68]
or behavioral responses to veterinary or husbandry prac-
tices [69-74]. In studying welfare of free-ranging wild spe-
cies, mortality sensors are a common feature of telemeters
and typically provide a special signal to alert researchers
to the animal’s demise [75]. The advantage of using accel-
erometers to detect mortality is that it includes a record of
behavior leading up to the time of death, providing a
richer context that a simple location and time of death
often do not. For example, Krone et al. [76] were able to
identify a change in activity and, ultimately, the moment
of death, due to toxin exposure in a white-tailed sea eagle
(Haliaeetus albicilla).
What is largely absent from this body of 82 articles

about activity budgets is the measurement of social behav-
iors. While numerous studies compared behavior budgets
during particular reproductive states and reported etho-
grams for brooding or nest preparation [52,57,66,77-81],
only two studies examined whether mating behavior had a
characteristic acceleration profile [82,83]. The scarcity of
published accelerometry ethograms for aggressive interac-
tions, territorial or courtship displays, and play and
parent-offspring behavior [84,85] could be because these
social behaviors were generally rare in the majority of the
species that have been studied, the acceleration waveforms
of social behaviors were indistinguishable from those of
non-social behaviors, or because it was not feasible to tag
multiple animals in the same group. Inter-individual tel-
emetry, with animals bearing tags that are able to record
the date and time of proximity to other tagged animals
has recently been reported for acoustic transmitters [86].
The application of accelerometers to studies of social be-
havior would benefit mightily from accelerometer tags
that have the ability to record proximity, identity or even
behavior of tagged individuals in contact with the animal
that bears the primary tag.

Survey of questions currently served by accelerometry:
biomechanics and the energetics of movement
Energetics have long been of interest to behavioral ecolo-
gists [87,88] because all movements require energy, and

prudent allocation of energy to specific activities such as
foraging has direct consequences for fitness and natural
selection [77,89,90]. Prior to the recent developments in
accelerometry, measuring energy expenditure in wild ani-
mals in the field involved doubly-labeled water or heart
rate telemetry, both of which have logistical limitations that
have restricted their use [91,92]. Accelerometer technology
has dramatically advanced our understanding of the role of
energy in behavioral strategies by making it possible to
study fine-scale, behavior-specific energy expenditure out-
side the laboratory in diverse taxa [93]. Wilson and Halsey
et al. have tested for correlations between bodily acceler-
ation and oxygen consumed (assuming at least predomin-
antly aerobic metabolic pathways) across a wide range of
species from aquatic mammals [94,95], birds [64,77,96-99],
fishes [100,101], reptiles [52,102-104] and a bivalve [105],
to terrestrial mammals, birds [56,106-108] and one am-
phibian [109]. Although the strength of the relationship be-
tween bodily acceleration and oxygen consumption (as a
proxy for metabolic rate) varies and depends on a number
of factors, the relationship is valid across all species exam-
ined to date [110]. Wilson’s metric ‘Overall Dynamic Body
Acceleration’ (ODBA) [77] has become the most com-
monly used acceleration-based proxy of metabolic rate (en-
ergy expenditure) and several articles have been devoted to
standardizing this proxy or variants of it [19,106,110-112].
The current available research indicates that bodily acceler-
ation can qualitatively assess how the amount of mechan-
ical work performed by the body differs among active
locomotive behaviors, a distinct improvement on older
techniques that were not behavior-specific (Figure 7) [110].
Seventy-three articles applied accelerometry to bio-

mechanical research (42.7% of all articles examined). A
small minority of these studies (7), eschewed applications
to metabolism and instead remained within the traditional
realm of evaluating performance: running in racehorses
[113-117], swimming in sea snakes [118], and flight in
Procellariform sea birds [119]. The remaining 90% of arti-
cles focused on energy efficiency during locomotion for
travel or foraging [31,35,94,120-124]. In order to better
understand the selection pressures on current patterns of
locomotor behavior, researchers compared movement en-
ergetics across species, movement strategies, demographic
classes and behaviors [42,48,102,107,122-127].
There was a strong habitat bias in existing accelerometry-

based research on biomechanical energetics, with a heavy
emphasis on marine diving animals such as Pinnipeds
and Cetaceans [36,95,128,129], penguins [97,130,131],
Pelicaniform birds [77,99,126,131-133], and marine tur-
tles [79,134]. Terrestrial taxa, mainly birds, were repre-
sented in only five (of 66) studies of movement energetics
[56,106-108]. Of the terrestrial species, we were able to
identify only a single published field study of energetics for
non-volant terrestrial animals: cane toads (Bufo marinus)
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[109]. Battery size and weight still mostly preclude accel-
erometry energetics studies of the smallest wild mammals
(particularly bats) and birds. A further limitation is that ac-
celerometers do not appear to be a particularly good proxy
of energy expended during immobile but still energetically
costly behaviors such as thermoregulation or gestation
[107,135].

Potential application of accelerometry: position
and location
Acceleration measurements can be used to derive animal
speed, which, together with compass and depth/altitudinal
information, could be used to ‘dead-reckon’ an animal’s
position. There are several existing methods for locating
animals in space and time including radio telemetry [136],
satellite or geographic positioning systems [11,137,138]
and acoustic arrays [139]. None of these methods
works for all species and habitats and, consequently,
travel paths are frequently reconstructed by bridging
sporadic points and have low spatio-temporal resolution
[140,141].
Dead-reckoning (also known as path integration) uses

vector calculations from velocity and the change in height
or depth together with a known start position (usually the
animal release point) to derive new positions with respect
to those previously known [24,142]. Locations obtained by
dead-reckoning, therefore, are not subject to the same con-
straints of receiver location or satellite access and represent
an alternative method for studying movement paths when
radio- or satellite-based telemetry methods are unsuitable.
Dead-reckoning uses sensors on-board the telemetry tag
that record heading/direction (usually measured with mag-
netometers), altitude or depth (usually measured with pres-
sure sensors), and speed. In theory, speed can be calculated
by taking the derivative of acceleration over a known time
interval [130] or by using a known stride length and the
accelerometer-measured stride frequency [142]. However,
speed determined in this way can be subject to large errors
due to variation in slope and substrate during travel
[67,139]. These errors are particularly unpredictable in

aquatic or volant species, due to drift caused by water and
wind currents rather than animal locomotion [142]. In
terrestrial systems, terrain incline and substrate impact
stride length, affect speed calculations and consequently
the determination of distance moved. Furthermore, these
errors accumulate over time, making location estimates
increasingly worse further from the last known location.
Because of these problems, dead-reckoning from accele-
rometry data has been used infrequently and most
researchers interested in movement speed have added
separate speed sensors (small external propellers) to the
telemetry tags [24,137,141-144]. As GPS technology
becomes more widely integrated into accelerometer tags,
the greatest potential for dead-reckoned animal location
comes in recreating the exact travel path between
subsequent GPS locations collected at short intervals e.g.,
<15 min [24,139].

Best practices in data acquisition and data analysis: tag
attachment and tandem sensors
Attaching telemetry tags to animals is a complicated and
delicate process that requires care to reduce the influ-
ence of the equipment to the animal. Consultation with
experienced field biologists and tag companies, not to
mention proper literature review, is critical during the
planning stage of any tagging study. In addition to the
standard concerns of attachment longevity, device retrieval
and whether tag attachment affects animal behavior [138],
tag attachment for accelerometer sensors is especially sensi-
tive because shifts of the tag relative to the position of the
animal could impact the interpretation of the three-axis
data. Extensive preliminary research on readily observable
animals is often needed to fine-tune a new attachment
method for a given species [145]. Common methods of
accelerometer tag attachment include neck collars [20,55],
leg bracelets [146], harnesses [109,145], and tape- [118],
clamp- [147] or glue-on tags (Figure 2) [21,102]. A rigid at-
tachment ensures that once the tag is deployed, the axes, or
dimensions, of movement being measured do not change
over the deployment period and that acceleration of the tag

Figure 7 Overall dynamic body acceleration shown for a hopping and non-hopping cane toad Bufo marinus. This study was the first to
use accelerometry to establish a behavioral time budget and assign energy costs to those behaviors for a non-volant terrestrial animal. Graphic
reprinted with permission from [109].
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independent of the animal (by a collar bouncing up and
down on the neck, for example) is kept to a minimum
[111]. For species that must wear collars or bracelets, a
completely rigid attachment is not possible unless the col-
lar can be prevented from turning around the neck/leg
[55], which may present a welfare concern for free-ranging
animals. For some questions, for example the timing of ac-
tivity/rest, the requirement of rigid attachment may be re-
laxed. Finally, accelerometer tags can also be deployed
inside the body cavity of some species [61,148], which may
reduce concerns about tag movements that are irrelevant
to the research question. Internal deployments may pro-
vide the advantage of recording accelerations due to
physiological processes such as heartbeat and movements
of smooth muscle during digestion [148], but can also have
the disadvantage of necessitating surgical procedures for
tag deployment and retrieval/removal, which can affect
animal behavior and well-being.
The orientation of axes is typically placed so that the

surge axis is aligned with the longitudinal body axis and
sway with the horizontal body axis (Figure 2) [20]. Ensuring
that tag position is as similar as possible between individ-
uals, especially those of very different body sizes, improves
the signal-to-noise ratio of the accelerometer output and
minimizes errors in interpretation [20,63,101,131]. Beyond
its orientation on the body, the specific anatomical location
of the attached accelerometer tag largely determines, what
behaviors can be distinguished by their accelerometry pat-
terns. Both species morphology and tag placement will de-
termine the number and type of behaviors with distinct
acceleration profiles [44]. For example, tags attached to an
animal’s back, as in Figure 2 [38,109], will not provide ac-
celeration patterns of fine-scale feeding behaviors that only
involve movement of the mouth. On the other hand, accel-
erations of chewing movements may be detectable with
neck collars [33,55]. In humans, it has been well established
that precise accelerometer-based descriptions of full-body
movement require at least five acceleration sensors, one
mounted on the trunk of the body and one on each ex-
tremity [26]. Studies of free-ranging wild animal are typic-
ally limited to one telemetry tag per individual; however,
multiple accelerometer instruments have been used on do-
mesticated animals [149-152] and in a handful of wild mar-
ine species [53,54,153-157], improving the precision of
behavior measurements.
Even when contained in a single tag, most modern ac-

celerometers are combined with other types of sensors
to enhance the amount of information collected simul-
taneously from the environment, such as light, air/water
pressure, external air/water temperature, relative humidity
and magnetic field [24], as well as from the animal, such
as body temperature, heart rate and mouth/jaw move-
ments [79,99,101,133,134,157-160]. In modern telemetry
tags, each of these data sensors, including each axis of the

accelerometer, have their own separate channels for data re-
cording, so that accelerometer data are collected independ-
ently of other information like GPS [24,160]. As a result,
even if one sensor malfunctions or cannot acquire informa-
tion momentarily (for example, the GPS unit spends several
minutes attempting to access satellites and obtain a loca-
tion), the other sensors continue to record data on sched-
ule. In some tags, the activity levels of the animal as
determined by the accelerometer can be used to set the re-
cording schedules of other sensors dynamically. For ex-
ample, the GPS schedule is set to acquire locations more
frequently during active behaviors such as foraging and
travel and less frequently during rest, improving the overall
performance and battery longevity of the telemeter [21].

Best practices in data acquisition and data analysis:
sampling axes, sampling interval and sampling frequency
Sampling of all three axes of acceleration (tri-axial) is
the most accurate and precise way of measuring behav-
ior that occurs in three dimensions as well as estimating
energy expenditure [20,161]. For some research ques-
tions or for relatively immobile species, one or two axes
may be sufficient to characterize the behavior(s) of inter-
est [23,80]. However, the efficiency of modern acceler-
ometer sensors mean that little is gained, in terms of
battery life, by using fewer axes.
The majority of studies in the literature sampled accel-

eration continuously, at frequencies above 1 Hz [97].
This type of sampling produces an extremely high vol-
ume of data; because each accelerometer axis is separate,
three axes recording at 1 Hz produce three measure-
ments per second, which rapidly accumulate into mil-
lions of logged measurements for a tag deployed over
several days. In practice, continuous data are typically sub-
sampled or averaged over several seconds’ worth of mea-
surements to create a running mean [111] so an alternative
to continuous sampling is to record for a few seconds at in-
tervals of one or more minutes. By recording at high reso-
lution (e.g., 60 Hz) but short duration (e.g., 1 to 3 sec) this
strategy aims to sample just one behavior type and avoid
behavioral transitions (e.g., resting to walking) that could
complicate automated classification statistics. Each discrete
sampling period is then called a “burst” or an “epoch”
[22,158]. Because burst studies record fewer data over the
entire study period it is possible to download the data re-
motely through wireless connections [21,40], whereas con-
tinuous accelerometer data typically are logged over days or
weeks and manually downloaded upon tag retrieval [143].
If animals are expected to remain within the vicinity of a
fixed receiver, then continuous data may be transmitted
wirelessly at intervals [161]. If proximity to a receiver is
problematic, as with marine animals that can range over
very long distances, data can still be collected at high reso-
lution (high sampling frequency and continuous sampling
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interval) as long as the entire sampling period matches de-
vice storage capacity, or there is periodic offloading of data
via mobile receivers such as satellites.
Generally, the smaller the subject, the faster the move-

ment and the higher the sampling frequency necessary
to accurately characterize the pattern of acceleration
[98,123,137]. From signal processing theory we have the
rule-of-thumb that for adequate reconstruction of a con-
tinuous waveform such as acceleration, the sampling fre-
quency ought to be at least twice that of the highest
frequency movement being classified [162]. Sato et al.
[123] measured the dominant stroke frequencies for sev-
eral species of aquatic birds and marine mammals and
they ranged from 0.2 Hz for sperm whales to 9.3 Hz in
guillemots. Meanwhile, the three most common sampling
frequencies in the literature were 10, 16, and 32 Hz but
there was little a priori justification for the choice of sam-
pling frequency. Halsey et al. found that accelerometer-
sampling frequencies of 2 to 10 Hz were adequate for
characterizing energy expenditure in chickens [19]. These
studies suggest that sampling frequencies higher than 50
to 60 Hz are probably unnecessary for most research
questions and that in such cases the additional data gener-
ated is wasteful of digital storage space. However, authors
recommended that the research question and desired
tempo-spatial resolution of the data should ultimately dic-
tate the sampling frequency (and sampling interval) [19].

Best practices in accelerometer data analysis: describing
the waveforms
For both continuous and burst sampling schemes, irre-
spective of sampling frequency, acceleration sensors pro-
duce raw data in a wave-like signal with units in voltage.
Prior to analysis, researchers may use calibration equations
to convert this signal into actual acceleration measured in
m/s2 or g units where 1 g = 9.80665 m/s2 [57,127,154,159].
This calibration and conversion may be required for mea-
suring the actual biomechanical forces experienced by ani-
mals during different movements, for example, the air to
water transition for a diving seabird, or the strike force on
horses’ hooves when running. The dynamic body acceler-
ation metrics also use the signal converted to acceleration
as the proxy for metabolic exertion [96]. Alternatively, for
simple acceleration ethograms or determining activity
budgets, the signal may be used in the raw voltage state as
depicted in Figure 6.
To describe the acceleration waveform patterns, re-

searchers then calculate a wide variety of summary statistics
using each burst’s population of values or subsamples of the
continuous measurements (Table 1). The statistics listed in
Table 1 could be calculated for each axis individually or
combined to represent multiple axes simultaneously [149].
There is a dichotomy in the literature on how re-

searchers process and describe the wave-like properties

of accelerometer output. Some researchers have uti-
lized simple waveform statistics, such as the number
of peaks (frequency of the movement), the mean value
of the waveform (body angle), and their variances
[23,35,121,131,146,160]. Others have used specialized pro-
grams to perform complex analyses on the waveforms,
resulting in a large number of additional descriptive sta-
tistics [34,46,55,127,130,144,156,161,165]. There are nu-
merous complex techniques for analyzing data that, like
acceleration, exist in a time series [167,168]. The most
commonly used method with accelerometer data is the
fast Fourier transformation. Fourier transformations iden-
tify the individual frequencies that are present in the raw
acceleration waveform and determine the power spectral
densities of those frequencies, i.e., how much of the total
signal is present in each frequency [162]. Another com-
plex approach is continuous wavelet transformation, which
identifies not only which frequencies are present, but also

Table 1 Statistics used to describe acceleration
waveforms

Summary statistic Representative
source(s)

Mean [20,23,38]

Running mean for continuous data [107,111]

Minimum, Maximum, Range [125,130,163]

Variance [23,36,112]

Standard deviation

Inverse coefficient of variation [62,112]

Resultant

Overall dynamic body acceleration [79,103]

Vector dynamic body acceleration [112]

Subsequent-measurement autocorrelation [62]

Trend (linear regression coefficient through axis data)

Pair-wise correlations between axes data

Inclination, azimuth of resultant and their
circular variances

Frequency power
spectrum

Fast Fourier transformation [43,48,57,126,129]

Continuous wavelet
transformation

[164]

Δ acceleration [20]

Δ frequency

Waveform frequency [43,130]

Waveform period and amplitude [32,164]

Area under the waveform curve [163]

Skewness and kurtosis of the waveform [165]

Signal magnitude area [166]

Waveform length

Waveform inheritance
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when during the signal they are present [164]. Shepard
et al. [20] and Laich et al. [23] suggest that these complex
analyses are not essential and that simpler statistics are
both intuitively and practically more accessible for the
broadest range of potential users. However, they acknowl-
edged that when behaviors “are transitory and/or highly
variable” p. 36 [23], or are measured using only one axis of
acceleration, the more complicated techniques and the
additional statistics they provide may prove helpful for
identifying or distinguishing different behaviors.

Data filters for separating gravitational acceleration from
inertial acceleration
Recall that the accelerometer waveform output during
movement is a combination of acceleration due to grav-
ity and inertial acceleration due to animal movement
(dynamic acceleration). When isolated, gravitational ac-
celeration can be used to determine the orientation of
the body in space (posture or body angle) [23,55,57]. The
gravitational component can be isolated by: i) applying a
low-pass filter such as 0.1 Hz that removes high frequency
acceleration [41,78,79,121,164]; or ii) by smoothing (i.e.,
calculating a running mean) over a large set of measure-
ments [57]. For acceleration sampled over a few seconds in
a burst, taking the mean value of a single burst’s measure-
ments can suffice for isolating momentary gravitational ac-
celeration, or body angle [21]. One can see how this works
in Figure 5; note the relatively flat slope of voltage output
for all three axes when the animal is more or less motion-
less (left side designated ‘resting’). Between minutes 2 and
4, the mean value of the heave axis shifts dramatically as
the animal changed position during rest from a ‘feet-up’
posture to a ‘feet-down’ posture. The change in the mean
value of the heave axis represents a change in voltage out-
put stimulated by gravitational acceleration after the tag
(the animal) changed orientation. Determining exact body
angle requires calibration of accelerometer voltage output
as the tag is passed through 360 degrees along each axis.
Using this method, researchers calculated body “pitch”
angle from the heave or surge axes and body “roll” angle
from the sway axis, also correcting for the position of the
tag on the animal [41,163].
Conversely, researchers used high-pass filters to examine

accelerations due to movement in isolation from the gravi-
tational component of acceleration [63,159]. This dynamic
component was used to calculate the measures of dynamic
body acceleration in the majority of the studies on energet-
ics [19,20,24,77,97,107,109,111,142,159]. Frequency filters
were also used to reduce the noise in the acceleration signal
created by non-rigid attachments of accelerometer collars
[31] and to isolate the pattern of one particular type of dy-
namic behavior that occurred simultaneously with other
movements, namely prey capture events during swimming
[155,156]. Spectral and other waveform analyses discussed

in the previous section are often conducted on dynamic ac-
celeration after its isolation by high-pass frequency filtering.

Best practices in accelerometer data analysis: validation
and assigning characteristic waveforms to behavior
The advantage of accelerometers is that they provide a
remotely collected record of behavior: large sets of accel-
eration waveforms that were mostly not observed by the
human eye. To understand how the acceleration record
and the statistical properties of the waveforms relate to
observable behavior, researchers using this tool must have
a way of assigning the waveforms to specific behaviors or
behavioral categories with a high degree of accuracy (valid-
ation). This task requires some prior knowledge of the be-
haviors animals perform and studies, to date, have generally
obtained this information from deployments on similar do-
mesticated animals, captive individuals and brief periods of
observation on free-ranging wild animals, some via video
[36]. Carefully synchronized observations and accelerom-
eter recordings validate what behaviors correspond to what
accelerometer measurements, for example, the relatively
flat waveforms that occur during rest compared to the vari-
able waveforms that occur during activity (Figure 5). This
process also must quantify to what extent accelerometer
waveforms for the same behavior vary within an individual,
or between individuals or species [19,109]. This validation
process is a critically important part of using accelerome-
ters. The accuracy of the conclusions drawn from assigning
behaviors or energy expenditures to accelerometer wave-
forms depend enormously on the accuracy of the assign-
ments (see discussion below on methods reporting).
This fact notwithstanding, wild animals, particularly

aquatic species, may not be observed at all between re-
lease and tag recovery [42]. Even when animals are being
observed directly, it is hard to be certain that all possible
relevant behaviors have been witnessed [169], especially
when extrapolating behavior in captivity to behavior in
the wild. As accelerometry has matured, researchers have
developed special software tools to address this obstacle
and reduce the time and labor necessary for direct ob-
servation [164,170]. With knowledge of i) general body
shape, ii) form of locomotion (bipedal, quadrupedal, etc.),
and iii) how the tag is attached to the body, these software
programs can help researchers visualize the movement of
their study animals according to the accelerometer signals
recorded during tag deployment [170].
Manual examination of accelerometer data is essential

in the pilot phases of a study, but an automatic system
to categorize waveform patterns and assign them to dif-
ferent behaviors quickly becomes necessary due to the
large size of the acceleration data sets. After calculating
waveform characteristics such as those listed in Table 1,
there are two major approaches to automatic waveform
classification in the literature. The first is to use statistical
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algorithms to cluster accelerometer waveforms with simi-
lar characteristics and then assign each cluster to a general
behavioral group [163]. For example, Sakamoto et al.
[164] used an unsupervised k-means clustering algorithm
to assign accelerometer waveforms from a diving seabird
to 20 different groups, which they matched to simultan-
eously recorded depth profiles and then labeled with dif-
ferent behavior groups including ‘in flight’, ‘underwater
diving’ and ‘on land’. The second, more common ap-
proach is to use the accelerometer waveforms generated
from known (observed) behaviors of similar domesticated
or captive individuals to train an algorithm that will assign
the remaining waveforms in the dataset to those specific
behavioral categories. For example, Nathan et al. [56] ob-
served wild and captive vultures exhibit a variety of be-
haviors while wearing accelerometer tags and then used
various supervised statistical algorithms to categorize
the accelerometer waveforms as either active flight, pas-
sive flight (soaring-gliding), eating, lying down, preening,
standing or running. Both methods lessen the burdens of
extended direct observations and manual analysis of accel-
erometer data, however, the former has the potential to
detect previously unknown or unobserved behaviors and
behavioral sequences while the latter has the advantage
that behavioral categories correspond directly to observa-
tions. Both rely on the validation process for accurate con-
clusions. Table 2 summarizes the assignment methods
and algorithms represented in the literature; Nathan et al.
[56] reviews and compares several of the supervised algo-
rithms in detail.
Regardless of the method used to assign accelerometer

waveforms to behaviors, each group of researchers de-
velops its own set of waveform statistics to feed to what
are largely custom-designed automatic classification sys-
tems. Algorithms that deal with one particular domain

of activities (e.g., diving in aquatic animals) may not be
easily adapted for a different environment or different
set of movements [32]. Furthermore, 58% of scientists
working with domestic species and 47.6% of those work-
ing with captive wild species reported the performance
and reliability of their chosen automated classification
systems [55,72], while only 9.1% of those studying wild
species did so [23,44,57,83]. Lack of methods reporting,
from the accelerometer-recording schedule to whether
and how accelerometer data is validated, stymies direct
comparisons between studies and between analytical ap-
proaches. As previously discussed, validation is an essen-
tial part of using accelerometer as a stand-in for direct
observation. If accelerometers are to achieve widespread
use in studies of free-ranging wild species, there will
have to be more complete reporting of methods, particu-
larly for the classification phase of analysis.

Best practices in accelerometer data analysis: data
visualization and storage
We noted earlier that the high resolution of accelerometry
results in a large volume of data accumulating over a short
period. For example, a single-axis accelerometer tag re-
cording continuously at 8 Hz for 8 hours and 40 minutes
resulted in 249,988 measurements [170]. When combined
with the data from sensors deployed in tandem with tri-
axial accelerometry, such as GPS, depth, or temperature
telemeters, the dataset in its entirety can easily over-
whelm basic spreadsheet and statistical programs and it
becomes difficult to visualize more than one data stream
at a time. ‘Igor Pro’ (WaveMetrics, Lake Oswego, OR,
USA), ‘R’ (R Foundation for Statistical Computing, Vienna,
Austria) and ‘Matlab’ (MathWorks, Natick, MA, USA) are
commonly used for acceleration data analysis and can han-
dle large datasets [83,164,165], although all three programs
have a considerable learning curve. We are aware of two
web-based options geared towards animal-borne telemeter
data visualization, storage and analysis. MOVEBANK
(available at https://www.movebank.org/) is a free, online
database of animal tracking data that helps researchers to
manage, selectively share, protect, analyze and archive
their data. With MOVEBANK, researchers can link animal
behavior from accelerometer data with animal location
data from GPS and information from global environmen-
tal datasets, such as weather models and satellite imagery,
making it easier to explore how animals’ movements relate
to their environment. Gao et al. presented another online
accelerometer data storage and analysis system, the
Semantic Annotation and Activity Recognition system
[166]. Their interactive web interface enables ecologists to
visualize and correlate tri-axial accelerometer data streams
while also facilitating accelerometer data analysis with a
support vector machine classification algorithm. A major
benefit to using these web-based repositories is that the

Table 2 Methods for assigning accelerometer waveforms
to behavioral categories based on waveform statistics

Method Representative source(s)

Manual

Reference patterning [34,98,108,127,171]

Fixed-threshold [31,57,83,161]

Unsupervised machine learning algorithms

Cluster analysis [164]

Supervised machine learning algorithms

Classification and regression trees [24,77,172]

Random forests [55]

Linear or quadratic
discriminant analysis

[55,132,149]

Logistic regression [55,148]

Support vector machines [162,172]

Artificial neural networks [55,172]
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average biologist tracking a handful of animals gets access
to collaborations with other biologists, statisticians, engi-
neers and computer programmers who can collectively
continue to develop this tool and the hardware and soft-
ware that make the most of accelerometry’s potential.

Conclusions and future directions
Accelerometry is a tool for fine-scale observations of be-
havior, unlimited by animal visibility, terrain, climate,
observer bias or the scale of space use. To date, acceler-
ometer tags have been applied to more than 120 species
in diverse taxa in order to deduce body postures, behav-
iors and energetics in the field. Accelerometry also shows
potential as a method to ‘dead reckon’ an animal’s exact
travel path when applied in tandem with satellite-based lo-
cation systems. In all of the research described, accelero-
metry provided fine-scale behavioral measurements that,
prior to its development, were rarely attainable outside of
the laboratory setting and without the influence of the re-
searchers’ presence.
The literature shows several taxonomic biases in what

research questions have been examined and how the re-
sults have been reported. Studies of wild aquatic species
outnumber studies of wild terrestrial species. Research on
aquatic animals (whether captive or wild) has focused on
describing the biomechanics and energetic consequences
of behavior, while in terrestrial systems the focus was on
determining activity budgets. Both at sea and on land,
feeding, locomotion, and activity/rest were the behavior
categories most frequently analyzed; social behaviors (par-
ental care, territorial, mating and courtship behaviors, and
antagonistic exchanges) are nearly absent from both etho-
grams and energy budgets. Researchers of domestic and
captive species tended to report analysis methods more
thoroughly than those studying species in the wild.
There are substantial challenges to getting the most

out of accelerometer data, including device retrieval and
data calibration, validation, management and analysis. Nu-
merous techniques for addressing these challenges have
already been published in both human and animal studies
and new methods continue to develop and are awaiting
broad application to the field. With more thorough re-
porting of methodology and habitual use of web-based
data repositories, universal practices are bound to emerge
as hardware and software continues to mature and be-
come more broadly available across research groups.

Future directions
The rapid development of this tool in the field, thus far,
leads us to anticipate two promising breakthrough applica-
tions that will open even more doors in behavioral research.
The first is the incorporation of inter-individual telemeters
in the study of social behavior. Device-to-device data shar-
ing and proximity sensors exist in the consumer electronics

industry and have already been incorporated into acoustic
telemeters [86]. Most modern telemetry tags have multiple
data channels and could be modified to include these fea-
tures. Accelerometer tags that have the ability to record
proximity, identity and even behavior of tagged individuals
in contact with the animal that bears the primary tag,
would reduce the burden of extensive direct observation,
yet permit scientists to directly question how individuals
interact and how those interactions shape behavior across a
large number of social and territorial species. Secondly, we
recommend that researchers entering the field of wildlife
telemetry look to explicitly link energetic expenditure in
wild animals with behavioral responses to human-altered
habitats [163]. Whether considering climate change, re-
source competition or anti-predator defenses, the potential
toll on fitness should manifest in energetic expenditure
and allow a window onto the longer-term consequences of
our impacts on other long-lived species. Accelerometry of-
fers a level of detail in behavioral studies of free-ranging
wild animals that has previously been impossible to achieve
and it has proven itself in furthering our understanding of
the role of behavioral mechanisms in ecological and evolu-
tionary processes.
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