
ObsPy – What can it do for data centers and observatories?

Tobias Megies1,*, Moritz Beyreuther1, Robert Barsch1, Lion Krischer1, Joachim Wassermann1

1 Ludwig-Maximilians-University, Department of Earth and Environmental Sciences, Geophysical Observatory, Munich, Germany

ANNALS OF GEOPHYSICS, 54, 1, 2011; doi: 10.4401/ag-4838

ABSTRACT

Data acquisition by seismic centers relies on real-time systems, like
SeisComP3, Antelope and Earthworm. However, these are complex
systems that are designed for fast and precisely defined standard real-time
analyses. Therefore, it is not a simple task to access or modify internal
routines, and to integrate them into custom-processing workflows or to
perform in-depth data analyses. Often a library is necessary that provides
convenient access to data and allows easy control over all of the
operations that are to be performed on the data. ObsPy is such a library,
which is designed to access and process seismological waveform data and
metadata. We use short and simple examples here to demonstrate how
effective it is to use Python for seismological data analysis. Then, we
illustrate the general capabilities of ObsPy, and highlight some of its
specific aspects that are relevant for seismological data centers and
observatories, through presentation of real-world examples. Finally, we
demonstrate how the ObsPy library can be used to develop custom
graphical user interface applications.

Why Python?
In the scientific community in general, Python has

been emerging as one of the most popular programming
languages. Its syntax is easy to learn, and it enforces a
unified coding style (e.g. by using indentations instead
of brackets) that has very little command-flow overhead.
Furthermore, it comes with a well-documented, easy-to-
use, and powerful standard library (http://docs.python.org/
library/). The readability is enhanced drastically, which
makes Python a very good choice, and not just for students
with little or no basic programming skills. In a computer
laboratory practical held in the Munich Geophysics
Department with undergraduate students with little
programming background, under supervision, the students
were able to write their own signal processing scripts after
just two afternoon lessons. Just recently, the Massachusetts
Institute of Technology also chose Python as the language
to be taught to undergraduate Computer Science and
Engineering students.

Using the interactive shell IPython (http://ipython.
scipy.org) enables scientists to work with the data and to
quickly develop complex processing routines. After
establishing the processing workflow on small example
datasets using the interactive shell, its command history can
quickly be condensed to a script for batch processing of large
datasets. For more complex programs, Python also provides
the power for full-blown object-oriented programming.

An important point for scientists is the visualization of the
data. Matplotlib (http://matplotlib.sourceforge.net/) provides
an excellent module for generating publication-quality figures.
Following the general Python paradigm, it provides
convenience functions that are easy to use for beginners, while
at the same time, any detail needed in the plots generated
is fully customizable by more experienced users. The
matplotlib gallery (http://matplotlib.sourceforge.net/gallery.
html) illustrates the wide range of plotting capabilities, with
source code provided along with all of the example plots.

What also makes Python attractive for scientists is the
vast variety of third-party packages that are available at
the Python Package Index (http://pypi.python.org/).
Currently, there are 701 freely available packages that are
tagged as "Scientific/Engineering", with many of those from
neighboring disciplines also concerned with signal
processing. How seismologists can profit from this central
package hub is illustrated by the following short examples.

Consider the conversion of coordinate data from one
coordinate system to another, for instance. When working
with data from seismic surveys or exchanging data with
geological services, these data often use regional Cartesian
coordinate systems rather than the WGS84-based spherical
system that is widely used in seismology. After looking up the
EPSG codes (http://www.epsg-registry.org/) that provide a
unique identification of the source and target coordinate
system, the conversion can be done in just a few lines of
code, using pyproj (http://pypi.python.org/pypi/pyproj).
The following example converts the coordinates of two
German stations to the regionally used Gauß-Krüger system:

Article history
Received May 5, 2010; accepted November 25, 2010.
Subject classification:
Waves and wave analysis, Instruments and techniques, Data processing, Algorithms and implementation, Seismological data.

47

Implementation of hierarchical clustering is provided in
the package hcluster (http://pypi.python.org/pypi/hcluster).
Among other things, this allows clusters to be built from
dissimilarity matrices (e.g. computed using the cross-
correlation routines in obspy.signal), and dendrogram plots
to be made. The following example shows how to do this for
an already existing dissimilarity matrix. The dissimilarity data

are deduced from events in an area with induced seismicity
in southern Germany, as obtained from the ObsPy examples
page (http://examples.obspy.org/). Note also how the
Python standard library is used to read the data (previously
saved in an interactive session) from the ObsPy example web
server in only three lines of code:

MEGIES ET AL.

48

>>> lat = [49.6919, 48.1629]
>>> lon = [11.2217, 11.2752]
>>> import pyproj
>>> proj_wgs84 = pyproj.Proj(init="epsg:4326")
>>> proj_gk4 = pyproj.Proj(init="epsg:31468")
>>> x, y = pyproj.transform(proj_wgs84, proj_gk4, lon, lat)
>>> print x, y
[4443947.179, 4446185.667] [5506428.401, 5336354.055]

>>> import pickle, urllib
>>> url = "http://examples.obspy.org/dissimilarities.pkl"
>>> dissimilarity = pickle.load(urllib.urlopen(url))
>>>
>>> import matplotlib.pyplot as plt
>>> plt.subplot(121)
>>> plt.imshow(dissimilarity, interpolation="nearest")
>>>
>>> import hcluster
>>> dissimilarity = hcluster.squareform(dissimilarity)
>>> threshold = 0.3
>>> linkage = hcluster.linkage(dissimilarity, method="single")
>>> clusters = hcluster.fcluster(linkage, threshold, criterion="distance")
>>>
>>> plt.subplot(122)
>>> hcluster.dendrogram(linkage, color_threshold=threshold)

Figure 1. Example code: Conversion of coordinate information using the Python package pyproj.

Figure 2. Example code: Hierarchical clustering and dendrogram visualization of event dissimilarity data using the Python package hcluster.

Figure 3. Left: Dissimilarity data for a set of 33 earthquakes. Bluish colors represent high, reddish colors represent low dissimilarities. Right: Dendrogram
representation of the hierarchical clustering. Groups of events below the specified dissimilarity threshold are plotted in the same color.

49

An important aspect for data centers and observatories is
also their representation on the internet. Apache web servers
provide a module to facilitate the execution of Python code
embedded in web pages (http://www.modpython.org/).

Using this module makes it easy to embed Python code,
creating diagrams for routine analysis steps from off-line or
on-line data using Python and ObsPy.

ObsPy FOR DATA CENTERS AND OBSERVATORIES

In the last example of the exploitation of existing
scientific third-party packages, we use mlpy (Machine
Learning Python, http://pypi.python.org/pypi/MLPY) to
perform a continuous wavelet transform with a Morlet
wavelet, using infrasound data recorded at the active Mount

Yasur volcano (Tanna Island, Vanuatu). The continuous
wavelet transform allows good time resolution for high
frequencies, and good frequency resolution for low
frequencies. Thus, the spectral components are not equally
resolved, as in the case of the short-term Fourier transform.

>>> import matplotlib.pyplot as plt
>>> from obspy.core import read
>>> import numpy as np
>>> import mlpy
>>>
>>> stream = read("http://examples.obspy.org/a02i.2008.240.mseed")
>>> trace = stream[0]
>>>
>>> omega0 = 8
>>> spec, scale = mlpy.cwt(trace.data, dt=trace.stats.delta, dj=0.05,
... wf='morlet', p=omega0, extmethod='none',
... extlength='powerof2')
>>> freq = (omega0 + np.sqrt(2.0 + omega0**2)) / (4*np.pi * scale[1:])
>>>
>>> t = np.arange(trace.stats.npts) / trace.stats.sampling_rate
>>> plt.imshow(np.abs(spec), extent=(t[0], t[-1], freq[-1], freq[0]))
>>> plt.xlabel('Time [s]')
>>> plt.ylabel('Frequency [Hz]')
>>> plt.show()

Figure 4. Computing a continuous wavelet transform using the Python package mlpy.

Figure 5. The result of the continuous wavelet transform. Bluish colors represent low energy, reddish colors represent high energy.

Using Python and ObsPy at data centers and observatories

Why use ObsPy?
ObsPy (http://www.obspy.org) [Beyreuther et al. 2010]

extends Python by providing routines for the handling of
seismological data. It provides read/write support for the
most relevant waveform data formats in use at data centers
and observatories, it supports the standard metadata
exchange format of Dataless SEED, and it comes with clients
to interact with the most important data centers at IRIS and
ORFEUS/GEOFON. As well as providing support for
metadata stored in Dataless SEED or Full SEED volumes,
ObsPy can also work with XML-SEED (see section Handling
metadata at data centers using XML-SEED). Furthermore, it
provides numerous routines for signal processing, data
analysis and visualization (e.g. plotting waveforms,
spectrograms and source mechanism beach balls).

When combined with ObsPy, Python represents a
powerful tool for seismologists. Using ObsPy, the general
strong points of Python are extended to fit the needs of data
centers, observatories, and seismologists in general. It can be
seen as an interface that couples various different data
formats and data servers to one common, simple object
inside Python. The interaction with the actual file formats is
handled internally by the various ObsPy submodules, so the
user only has to work with the ObsPy simple native object.
In this way, users are able to process data from all kinds of
different data sources without making any adjustments to
file format specifics in their code (see section Unified handling
of data from different sources).

The advantages of this approach can be seen by looking
at the development of the database solution SeisHub
(http://www.seishub.org) [Barsch2009]. Initially, it was
designed to serve as the new database for the MiniSEED
archive at the Geophysical Observatory, Fürstenfeldbruck. In
the final stage already, it was decided to use ObsPy for all of
the file read/write operations instead of using libmseed
directly. In this way, SeisHub can now be used not only to
store and serve MiniSEED, but it is also possible to
incorporate any other data ObsPy can read into the same
database, e.g. the GSE2 data regularly acquired during
temporary field experiments.

In addition to handling different data sources, ObsPy
provides a library of signal processing routines that are often
used in seismology. Among others, these include tapering,
filtering and instrument simulation, applying different
triggering routines, or using complex trace analyses.
Routines for beam-forming and frequency-wave-number
analyses were added recently. All of these are ready to use
and can be easily integrated in custom processing routines.
Through contributions from various graduate and
undergraduate students, the signal-processing toolbox is
continuously growing.

Less specific signal-processing tools, like the fast Fourier
transform, are provided by popular and widely used Python
packages, such as NumPy (http://numpy.scipy.org) and SciPy
(http://scipy.org). The already existing shared C or Fortran
libraries can easily be accessed using the Python foreign
function library ctypes (http://docs.python.org/library/ctypes.
html). Examples of how to re-use existing code can be found
in the source code of the ObsPy signal submodule (e.g. the
cross-correlation routine xcorr()).

To make the start of ObsPy use as easy as possible, the
most frequently used operations (e.g. filtering, instrument
simulation) are implemented as convenience methods on the
Stream and Trace objects. Reading the ObsPy Tutorial
pages (http://www.obspy.org/wiki/ObspyTutorial) is the
best way to get an impression of the capabilities of ObsPy,
and to get simple example code covering a wide variety of
problems in seismological data handling.

Unified handling of data from different sources
One of the major points of ObsPy is its support for all

important file formats for seismological waveforms,
combined with the ability to connect to the different kinds of
servers used by data centers like IRIS and
ORFEUS/GEOFON. In this way, data can either be read
from local files or imported from data centers by specifying
the desired combination of network code, station code, and
time range of interest. All of the data read or acquired by
ObsPy end up in a simple Python object: Stream. This
Stream object is basically a Python list that contains blocks
of contiguous waveform data in one or more Trace objects.
The actual data is accessible at any time as NumPy arrays
(the Python de-facto standard module for working on large
data arrays) via trace.data, which allows the use of fast
numerical array-programming routines, as found in NumPy
or SciPy, for example. Metadata are stored in a dictionary
object (a simple key-value map) as trace.stats and can be
easily accessed and modified (for details on data structures
see Beyreuther [2010] and http://docs.obspy.org/packages/
obspy.core.html). New items can be added for use inside
processing routines, and they are simply ignored if the data
is later written to an output format that does not use these
custom fields.

At observatories that run local networks regularly, the
need arises to include data from external sources into standard
analysis routines. For instance, when analyzing seismic events
at border regions of one network, it is essential to include data
from the neighboring networks. The following example
demonstrates how easy it is to work on data from all kinds of
different sources using ObsPy, without the need to adapt their
specifics in the code. This is shown using a magnitude re-
estimation for a magnitude 4.9 earthquake in Poland. The
complete example code can be found in the Appendix. Here,
only the major points are illustrated, with short code snippets.

MEGIES ET AL.

50

51

In the complete example that can be found in the
Appendix (including the output), we finally make a rough
local magnitude estimation by simply using the maximum
and minimum amplitudes in each stream. This includes
instrument correction using the instrument response
information that was attached to the waveform data earlier.
This extremely simplified estimation is shown just to

demonstrate the possibilities for automated processing of
data from arbitrary sources. The output of the complete
program shows that at least the mean of all of the results, of
4.63, fits the catalog entry of 4.9 fairly well (see Appendix).

The example given above shows how simple it is to
automate processing routines, even when working on
heterogeneous datasets (in terms of the data source).

ObsPy FOR DATA CENTERS AND OBSERVATORIES

The first thing is to acquire the data: we start off by
reading a local three-component GSE2 file, and attaching the

metadata by reading a Full/Dataless SEED using the
metadata Parser in the ObsPy XML-SEED submodule:

In the same way, we could read waveform data in all
of the other formats that are supported by ObsPy (e.g.
SEED, MiniSEED, GSE2, SAC, SEISAN, SH-Q). The format

is autodetected. Now we also want to include data from
external data centers, for example via ArcLink:

We are then free to apply arbitrary processing routines
on any acquired data-stream, regardless of the data source.
Assume we have saved all of the previously acquired
streams in a list of streams. We can then loop over this list
of streams and process them one by one (or apply more

complicated processing routines involving multiple
streams together). In the example here, we de-mean the
data and apply a cosine taper to avoid artifacts at the start
and end of the trace during the band-pass filtering that is
applied afterwards:

or via a Fissures Client:

>>> from obspy.core import read
>>> from obspy.xseed import Parser
>>> stream = read('20100206_045515_012.BGLD')
>>> parser = Parser('dataless.seed.BW_BGLD')
>>> for trace in stream:
... trace.stats.paz = parser.getPAZ(trace.stats.channel)
... trace.stats.coordinates = parser.getCoordinates(trace.stats.channel)

>>> from obspy.fissures import Client
>>> client = Client(('/edu/iris/dmc', 'IRIS_NetworkDC'),
... ('/edu/iris/dmc', 'IRIS_DataCenter'),
... 'dmc.iris.washington.edu:6371/NameService')
>>> stream = client.getWaveform('OE', 'ARSA', '', 'BH*', start, end,
... getPAZ=True, getCoordinates=True)

>>> for stream in streams:
... for trace in stream:
... trace.data = trace.data - trace.data.mean()
... trace.data = trace.data * obspy.signal.cosTaper(len(trace), 0.05)
... trace.filter('bandpass', dict(freqmin=0.5, freqmax=10))

>>> from obspy.arclink import Client
>>> client = Client('webdc.eu')
>>> stream = client.getWaveform('CZ', 'PVCC', '', 'BH*', start, end,
... getPAZ=True, getCoordinates=True)

Figure 6. Example code: Reading waveform data and attaching metadata from local files.

Figure 7. Example code: Retrieving data from an ArcLink server.

Figure 8. Example code: Retrieving data from a Fissures server.

Figure 9. Example code: Looping over a list of streams and de-meaning, tapering and filtering all of the traces in every stream.

Rapid development of useful tools for observatory practice
In this section, we want to demonstrate how the

combination of Python and ObsPy helps to speed up the
development of applications for data centers and
observatories. The scope of these applications can range
from little helper scripts with just a few lines of code, to
platform-independent, graphical user interface (GUI)
applications that accomplish complex workflows in daily
routine work.

ObsPy-Scan
ObsPy-Scan is an example of how the ability of ObsPy

to handle different data formats can be exploited in little
helper applications that are useful in daily work at data
centers and observatories.

In many cases, for example after recovering instruments
which were deployed in temporary field experiments
without a real-time data link, it is important to obtain an
overview of the data availability, and also its quality, in terms
of sometimes shorter, sometimes longer gaps in recorded
data. ObsPy-Scan is a lightweight script that was written to
provide such an overview of data stored in directory trees of
local file systems. Using the ObsPy read functionalities, it is
possible to parse all kinds of different file formats at the
same time.

After recursively scanning the specified file system
locations, ObsPy-Scan provides a diagram that groups the
data by station code, while indicating the start of contiguous
data blocks by crosses, the time periods covered by the data
by horizontal lines, and the gaps in the recordings by vertical

Handling metadata at data centers using XML-SEED
The ObsPy XML-SEED module is of especial interest

for observatories or other data hosts. XML-SEED was
introduced by Tsuboi, Tromp and Komatitsch [Tsuboi et
al. 2004]. It is a proposal for an XML mark-up standard of
Dataless SEED. The XML-SEED format is verbose, human-
readable, and easy to extend for data center internal
purposes. For instance, additional information on station
localities or comments on problems during station
operation can be included directly into the XML-SEED
(e.g. simply add custom tags using a text editor). Thus,
they do not have to be stored in a different place than the
rest of the station metadata, which facilitates the
reasonable handling of metadata at data centers. For public
distribution, the locally stored extended XML-SEED can at
any time be converted back to the standard exchange
format Dataless SEED. During this process, the additional
custom fields (which were intended for internal use
anyway) are simply ignored.

The verbosity of XML-SEED is ideal to, for example,
store and access Dataless SEED files in databases [Barsch
2009]. To date, the ObsPy XML-SEED module represents the
only publicly available XML-SEED implementation (to the

authors' best knowledge). ObsPy ships command line
programs to convert from Dataless SEED to XML-SEED
and back, as well as from Dataless SEED to RESP files
(using the ObsPy programs obspy-dataless2resp, obspy-
dataless2xseed and obspy-xseed2dataless). These
converters are tested against the complete ORFEUS Dataless
SEED archive, the whole IRIS Dataless SEED archive, and
also the ArcLink response requests.

In addition to the simple conversion, for example, from
SEED to XML-SEED (just run obspy-dataless2xseed
my.dataless.seed.file), the ObsPy XML-SEED module
can be used to adapt the values in Dataless SEED volumes
for other stations. The IRIS Portable Data Collection
Center is certainly the best tool for interactive modification
of the Dataless SEED volumes. However, if we just want
to adapt a few values in a Dataless SEED volume in an
automated way, the ObsPy XML-SEED module might well
come in handy.

The following example shows how to clone a Dataless
SEED volume and fill in values for a new station. For the sake
of clarity, only a few fields are processed (for how to change
all of the important fields, refer to the Appendix):

MEGIES ET AL.

52

>>> from urllib import urlopen
>>> from obspy.xseed import Parser
>>>
>>> url = 'http://examples.obspy.org/dataless.seed.BW_RNON'
>>> p = Parser(urlopen(url).read())
>>> blk = p.blockettes
>>>
>>> blk[50][0].network_code = 'BW'
>>> blk[50][0].station_call_letters = 'RMOA'
>>> blk[50][0].site_name = 'Moar Alm, Bavaria, BW-Net'
>>> blk[33][1].abbreviation_description = 'Lennartz LE-3D/1 seismometer'
>>>
>>> p.writeSEED('dataless.seed.BW_RMOA')

Figure 10. Example code: Reading a Dataless SEED file, changing several fields to adapt it to another station, and writing the new Dataless SEED file.

53

H/V Toolbox
The H/V Toolbox was developed in the course of a

Bachelor thesis at the Geophysical Observatory,
Fürstenfeldbruck. It demonstrates what young scientists on
courses at seismological observatories can achieve using
ObsPy. The toolbox is used to calculate horizontal to
vertical spectral ratios (HVSR), and it can interactively
adjust several parameters. The program handles the whole
workflow: from the reading and preprocessing of the data,
to the automated selection of the appropriate time
windows with little seismic activity, to the final calculation
of the HVSR in an easy-to-use interface, while giving visual

feedback, step by step. It demonstrates how ObsPy can be
used in combination with other Python libraries to quickly
develop a fully working GUI application for use in applied
seismology.

Most of the internal calculations are immensely
simplified by using ObsPy. For example, selecting quiet-time
windows is done using the built-in ObsPy triggering
algorithms in an inverse fashion to create an anti-trigger. The
final spectral calculations use Python bindings for a
multitaper library, which is written in Fortran to gain better
spectral estimates (http://svn.geophysik.uni-muenchen.de/
trac/mtspecpy).

red lines. This plot is interactively zoomable, so that it is
possible to more closely inspect especially interesting periods
(e.g. with many short gaps) in more detail.

Figure 11 shows such an example, with data from a

temporary network with twelve stations that was run for
about five months. Parsing the vertical component data
(30,000 files) takes about one hour. The script had already
been used to parse 180,000 files in a single run.

ObsPy FOR DATA CENTERS AND OBSERVATORIES

Figure 11. An overview plot for the data of a temporary network that consists of 12 stations and runs for about 5 months, created with obspy-scan.
The data coverage for each station is presented in a separate line. Gaps in data availability are indicated by vertical red lines.

.GP13..SHZ

.GP1 ..SHZ2

.GP1 ..SHZ1

.GP1 ..SHZ0

.GP ..SHZ09

.GP ..SHZ08

.GP ..SHZ07

.GP ..SHZ05

.GP ..SHZ04

.GP ..SHZ03

.GP ..SHZ02

.GP ..SHZ01

M
ay
20
09

Ju
n
20
09

Ju
l 2
00
9

Au
g
20
09

Se
p
20
09

O
ct
20
09

MEGIES ET AL.

54

Figure 12. Screenshot: The H/V Toolbox displaying the results of an analysis run.

Figure 13. Screenshot: Picking seismic phases and amplitude maxima/minima for magnitude estimation with ObsPyck.

55

ObsPyck
ObsPyck is a Qt-based (http://qt.nokia.com/) GUI

application for routine daily seismological analysis that was
developed and is used at the observatory in Fürstenfeldbruck.
It serves as an example of how ObsPy can facilitate and speed
up the development of complex, important applications for
daily use at data centers and observatories.

After switching the whole database systems of the
observatory to the new in-house development SeisHub
(http://www.seishub.org) [Barsch 2009], there was the need
for a new graphical front-end so as to be able to perform
daily routine analyses like phase picking and locating events.
This was to replace the long-serving workhorse PITSA
[Scherbaum and Johnson 1992], which unfortunately fails to
compile on modern operating systems. ObsPyck has been in
use for routine analysis by young and senior seismologists at
the observatory in Fürstenfeldbruck on a daily basis for
several months now.

Using the matplotlib plotting capabilities, ObsPyck
allows the user to zoom into the custom-filtered waveform
data and set phase picks using the mouse and/or the
keyboard. Event location is achieved by passing the pick and
station metadata via system calls to external programs (e.g.
Hypo Inverse 2000, NonLinLoc) and parsing their output.
Local magnitudes are estimated using a routine
implemented in ObsPy. At the end of the analysis workflow,
the results are visualized and converted to a QuakeML-like
[Schorlemmer et al. 2004] XML document, and uploaded to
the database system.

ObsPyck is based on several ObsPy modules for
handling waveform data and metadata, for communicating
with data servers, and also for filtering, instrument
simulation, and magnitude estimation. By not having to
worry about these details, it was possible to develop the first
running version that was usable in daily routine in only two
months of development. Another advantage lies in the
delegation of core routines to ObsPy: further developments
on data formats or protocols to communicate with data-
center servers are decoupled from the GUI application. Just
recently, ObsPyck was extended to be able to import data
from ArcLink and Fissures servers, to integrate external data
into the location process. Support for files stored locally in
the file system has also been added.

For additional screenshots, and information and news
of recent developments, please refer to the respective page in
ObsPy wiki (https://www.obspy.org/wiki/AppsObsPyck).

Conclusions and Outlook
Although ObsPy is not a real-time data-acquisition

system, it should nevertheless be a valuable add-on for data
centers when performing custom processing workflows or
performing in-depth data analyses. Especially considering the
intuitive syntax of Python, together with the available

seismological routines in the ObsPy library and the
interactive shell, this makes it easy to develop custom code
snippets and to apply them on the full data archive. Since the
beginning of the ObsPy project about two and a half years
ago, ObsPy has proven to be a valuable tool for the handling
of seismological data, and it has spread internationally. The
free and open ObsPy source package and the detailed
documentation that includes an extensive tutorial are
available at http://www.obspy.org. Recent additions are
alphanumeric SAC support, SH-Q format and beam-
forming. We are currently working on an object-based
seismic event on QuakeML, which includes communication
with common earthquake location algorithms, CM6 GSE1
support, and write capabilities for SEISAN.

To interact with the developers and to get help with any
ObsPy-related problems, the ObsPy homepage (http://www.
obspy.org) provides the possibility for support request tickets
asking for help to be opened anonymously. Usually these are
answered within the same day.

Acknowledgments. We would like to thank Heiner Igel for his
ongoing commitment and magnanimous support. We would also like to
thank Yannik Behr, Conny Hammer, Lars Krieger and Martin van Driel,
for their contributions to ObsPy, and Chad Trabant, Stefan Stange and
Charles J. Ammon, whose libraries form the basis of the MiniSEED, GSE2
and SAC modules. This study was partially funded by the Leibniz Institute
for Applied Geophysics (LIAG) and by the German Ministry for Education
and Research (BMBF), GEOTECHNOLOGIEN grant 03G0646H.

References
Barsch, R. (2009). Web-based technology for storage and pro-

cessing of multi-component data in seismology. First
steps towards a new design, PhD thesis, Ludwig-Maximil-
ians-University, München, Faculty of Geosciences.

Beyreuther, M., R. Barsch, L. Krischer, T. Megies, Y. Behr and
J. Wassermann (2010). ObsPy: A Python toolbox for seis-
mology, Seismol. Res. Lett., 81, 530-533.

Scherbaum, F. and J. Johnson (1992). PITSA - Programmable
Interactive Toolbox for Seismological Analysis, IASPEI
Software Library, 5.

Schorlemmer, D., A. Wyss, S. Maraini, S. Wiemer and M. Baer
(2004). QuakeML—An XML schema for seismology,
ORFEUS Newsletter, 6 (2), 9; www.orfeus-eu.org/Orga-
nization/Newsletter/vol6no2/quakeml.shtml.

Tsuboi, S., J. Tromp and D. Komatitsch (2004). An XML-SEED
format for the exchange of synthetic seismograms, Amer-
ican Geophysical Union, Fall Meeting 2004, SF31B-03.

*Corresponding author: Tobias Megies,
Ludwig-Maximilians-University, Department of Earth and
Environmental Sciences, Geophysics Observatory, Munich, Germany;
e-mail: tobias.megies@geophysik.uni-muenchen.de.

© 2011 by the Istituto Nazionale di Geofisica e Vulcanologia. All rights
reserved.

ObsPy FOR DATA CENTERS AND OBSERVATORIES

MEGIES ET AL.

56

 1 from obspy.core import read, UTCDateTime
 2 from obspy.xseed import Parser
 3 from obspy.arclink import Client as AClient
 4 from obspy.fissures import Client as FClient
 5 from obspy.seishub import Client as SClient
 6 from obspy.signal import estimateMagnitude, utlGeoKm, cosTaper
 7 import numpy as np
 8
 9 a_client = AClient('webdc.eu')
10 f_client = FClient(('/edu/iris/dmc', 'IRIS_NetworkDC'),
11 ('/edu/iris/dmc', 'IRIS_DataCenter'),
12 'dmc.iris.washington.edu:6371/NameService')
13 # seishub server is only accessible from intranet
14 s_client = SClient('http://teide.geophysik.uni-muenchen.de:8080')
15
16 start = UTCDateTime('2010-02-06T04:55:15')
17 end = start + 240
18 origin = dict(lat=51.52, lon=16.10)
19
20 streams = []
21 # fetch data from data centers, metadata get attached automatically
22 options = dict(start_datetime=start, end_datetime=end,
23 getPAZ=True, getCoordinates=True)
24 streams.append(s_client.waveform.getWaveform('BW', 'ROTZ', '', 'EH*', **options))
25 streams.append(f_client.getWaveform('OE', 'ARSA', '', 'BH*', **options))
26 streams.append(a_client.getWaveform('CZ', 'PVCC', '', 'BH*', **options))
27
28 # load waveform data from gse2 file and attach metadata from dataless seed
29 tmp_stream = read('http://examples.obspy.org/20100206_045515_012.BGLD')
30 parser = Parser('http://examples.obspy.org/dataless.seed.BW_BGLD')
31 for trace in tmp_stream:
32 trace.stats.paz = parser.getPAZ(trace.stats.channel)
33 trace.stats.coordinates = parser.getCoordinates(trace.stats.channel)
34 streams.append(tmp_stream)
35
36 # load waveform data from full seed file and attach metadata
37 tmp_stream = read('http://examples.obspy.org/fullseed_EE_VSU')
38 parser = Parser('http://examples.obspy.org/fullseed_EE_VSU')
39 for trace in tmp_stream:
40 trace.stats.paz = parser.getPAZ(trace.stats.channel)
41 trace.stats.coordinates = parser.getCoordinates(trace.stats.channel)
42 streams.append(tmp_stream)
43
44 # now we do some computations on the streams regardless where they came from
45 magnitudes = []
46 filter_options = dict(freqmin=0.5, freqmax=10, zerophase=False)
47
48 for stream in streams:
49 for trace in (stream.select(component='N')[0], stream.select(component='E')[0]):
50 # preprocess data: demean, taper and filter
51 trace.data = trace.data - trace.data.mean()
52 trace.data = trace.data * cosTaper(len(trace), 0.05)
53 trace.filter('bandpass', filter_options)
54 # simply use min/max amplitude for magnitude estimation
55 delta_amp = trace.data.max() - trace.data.min()
56 delta_t = trace.data.argmax() - trace.data.argmin()
57 delta_t = delta_t / trace.stats.sampling_rate
58 delta_x, delta_y = utlGeoKm(origin['lon'], origin['lat'],
59 trace.stats.coordinates.longitude,
60 trace.stats.coordinates.latitude)
61 hypodist = np.sqrt(delta_x**2 + delta_y**2) # neglect depth
62 mag = estimateMagnitude(trace.stats.paz, delta_amp, delta_t, hypodist)
63 magnitudes.append(mag)
64 print '%s: %.1f' % (trace.id, mag)
65
66 print '\nNetwork Magnitude: %.2f' % np.mean(magnitudes)

APPENDIX

Example code:
unified handling of data from different sources

Figure 14. Example code: This program shows how to fetch data from different servers, read data from local files (in the example, read from a web server)
and do batch processing on all of the streams acquired.

57

Program output:

Example Code: XML-SEED
The following code shows how to customize all of the

important fields when cloning a Dataless SEED file using the
ObsPy XML-SEED module.

ObsPy FOR DATA CENTERS AND OBSERVATORIES

 1 from urllib import urlopen
 2 from obspy.core import UTCDateTime
 3 from obspy.xseed import Parser
 4
 5 url = "http://examples.obspy.org/dataless.seed.BW_RNON"
 6 p = Parser(urlopen(url).read())
 7 blk = p.blockettes
 8
 9 blk[50][0].network_code = 'BW'
10 blk[50][0].station_call_letters = 'RMOA'
11 blk[50][0].site_name = "Moar Alm, Bavaria, BW-Net"
12 blk[50][0].latitude = 47.761658
13 blk[50][0].longitude = 12.864466
14 blk[50][0].elevation = 815.0
15 blk[50][0].start_effective_date = UTCDateTime("2006-07-18T00:00:00.000000Z")
16 blk[50][0].end_effective_date = ""
17 blk[33][1].abbreviation_description = "Lennartz LE-3D/1 seismometer"
18
19 mult = len(blk[58])/3
20 for i, cha in enumerate(['Z', 'N', 'E']):
21 blk[52][i].channel_identifier = 'EH%s' % cha
22 blk[52][i].location_identifier = ''
23 blk[52][i].latitude = blk[50][0].latitude
24 blk[52][i].longitude = blk[50][0].longitude
25 blk[52][i].elevation = blk[50][0].elevation
26 blk[52][i].start_date = blk[50][0].start_effective_date
27 blk[52][i].end_date = blk[50][0].end_effective_date
28 blk[53][i].number_of_complex_poles = 3
29 blk[53][i].real_pole = [-4.444, -4.444, -1.083]
30 blk[53][i].imaginary_pole = [+4.444, -4.444, +0.0]
31 blk[53][i].real_pole_error = [0, 0, 0]
32 blk[53][i].imaginary_pole_error = [0, 0, 0]
33 blk[53][i].number_of_complex_zeros = 3
34 blk[53][i].real_zero = [0.0, 0.0, 0.0]
35 blk[53][i].imaginary_zero = [0.0, 0.0, 0.0]
36 blk[53][i].real_zero_error = [0, 0, 0]
37 blk[53][i].imaginary_zero_error = [0, 0, 0]
38 blk[53][i].A0_normalization_factor = 1.0

BW.ROTZ..EHN: 4.4
BW.ROTZ..EHE: 3.8
OE.ARSA..BHN: 3.7
OE.ARSA..BHE: 3.9
CZ.PVCC..BHN: 3.7
CZ.PVCC..BHE: 3.2
BW.BGLD..EHN: 6.7
BW.BGLD..EHE: 5.9
EE.VSU..BHN: 5.9
EE.VSU..BHE: 5.1

Network Magnitude: 4.63

Figure 15. Example code: Output of code in Figure 14.

Figure 16 (continues on next page). Example code: Cloning a Dataless SEED file, filling in all of the important fields.

MEGIES ET AL.

58

39 blk[53][i].normalization_frequency = 3.0
40 # stage sequence number 1, seismometer gain
41 blk[58][i*mult].sensitivity_gain = 400.0
42 # stage sequence number 2, digitizer gain
43 blk[58][i*mult+1].sensitivity_gain = 1677850.0
44 # stage sequence number 0, overall sensitivity
45 blk[58][(i+1)*mult-1].sensitivity_gain = 671140000.0
46
47 p.writeSEED("dataless.seed.BW_RMOA")

Figure 16 (continues from previous page). Example code: Cloning a Dataless SEED file, filling in all of the important fields.

