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Obstacle Avoidance and Tracking Control of

Redundant Robotic Manipulator: An RNN based

Metaheuristic Approach
Ameer Hamza Khan, Student Member, IEEE, Shuai Li, Senior Member, IEEE,

and Xin Luo, Senior Member, IEEE

Abstract—This paper presents a metaheuristic-based control
framework, called Beetle Antennae Olfactory Recurrent Neural
Network (BAORNN), for simultaneous tracking control and
obstacle avoidance of a redundant manipulator. The ability
to avoid obstacles while tracking a predefined reference path
is critical for any industrial manipulator. The formulated
control framework unifies the tracking control and obstacle
avoidance into a single constrained optimization problem by
introducing a penalty term into the objective function, which
actively rewards the optimizer for avoiding the obstacles.
One of the significant features of the proposed framework
is the way that the penalty term is formulated following
a straightforward principle: maximize the minimum distance
between manipulator and obstacle. The distance calculations
are based on GJK (Gilbert-Johnson-Keerthi) algorithm, which
calculates the distance between manipulator and obstacle by
directly using their 3D-geometries. Which also implies that our
algorithm works for arbitrarily shaped manipulator and obstacle.
Theoretical treatment proves the stability and convergence, and
simulations results using LBR IIWA 7-DOF manipulator are
presented to analyze the performance of the proposed framework.

Index Terms—Obstacle Avoidance, Tracking Control, RNN,
Metaheuristic Optimization.

I. INTRODUCTION

For a redundant robotic manipulator, the problem of

tracking control and obstacle avoidance aims at computing

an optimal control action to steer the end-effector along

a required reference trajectory, while avoiding obstacles

present in the environment. With the advances in robotics,

the robotic manipulators have found increased research

attention from academia as well as from industry [1]–[4].

Industries are interested in using the manipulators to automate

the common tasks, e.g., moving, assembling, packing, and

transporting the products. Accurate tracking control, along

with obstacle avoidance, is a critical requirement for the

industrial manipulators [5], [6]. To fulfill those requirements,

redundant manipulators [7] are particularly desirable because

the extra degree of freedoms (DOFs) provided by redundant
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joints helps in achieving secondary design objectives, such as

obstacle avoidance [8]–[10]. It is well-known in the literature

that the tracking control and obstacle avoidance in itself are

challenging problems [11]. Unifying these two problems into

single framework present an intricate technical challenge.

Several aspects of industrial manipulators have been

extensively studied in the academic literature. Apart

from tracking control algorithms, particular emphasis

has also been placed on designing optimal task-space

trajectories for the manipulator as well as analyzing the

repeatability of the controller to repeatedly track the

generated trajectory have been of great interest [12], [13].

For example, one of the traditional control algorithm, called

Jacobian-matrix-pseudo-inverse (JMPI), was shown to have

poor repeatability [14]. Jerzy et al. [15] proposed a systematic

procedure to measure the pose repeatability of an industrial

manipulator and discussed the concerning factors additional

to the control algorithm, e.g., mechanical and thermal

strain. Similarly, several algorithms have been proposed to

increase the repeatability of the manipulator during long-term

operation [16]. Other approaches to improve the repeatability

of the manipulator involves the learning algorithm to estimate

the kinematic model of the manipulator in real-time [17].

The learning algorithm continually adapts to variation in

the system model and compensate for them in real-time.

Similarly, visual Servoing based approaches have also been

proposed to use computer vision algorithms in improving the

control of industrial manipulators [18].

Kinematic tracking control of a redundant robotic

manipulators is a well-studied problem in robotic literature [7],

[10], [19]. For example, consider an industrial manipulator,

assigned to move an object from one point to another by

following a specified trajectory in the cartesian task-space. For

a redundant manipulator, corresponding to a given trajectory

in cartesian space, infinite numbers of trajectories exist

in joint-space. Traditionally, Jacobian-matrix-pseudo-inverse

(JMPI) [20] is to used resolve the redundancy. However, JMPI

can only be used to solve equality constraint and therefore,

does not respect the joint-angle limits. Additionally, it cannot

accommodate obstacle avoidance, which usually modeled as

inequality constraints [11], [21]. Furthermore, the calculation

of pseudo-inverse of Jacobian is a computationally extensive

task. Modern approaches to redundancy resolution model

the kinematic control as a constrained optimization problem

[8]–[10]. These optimization-centric approaches are capable
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of solving additional inequality constraint simultaneously with

the tracking control problem. For example, Wei et al. [22] and

Wang et al. [23] used it for tracking control of manipulators

with flexible joints. Li et al. [19] proposed a dual Recurrent

Neural Network (RNN) for solving the tracking-control

optimization problem for multiple manipulators in real-time.

Adaptive control techniques have also been proposed in

literature [24]–[27] which estimate the system model in

real-time to increases the robustness of the tracking controller.

Obstacle avoidance is also an essential goal, along with the

tracking control of the robotic manipulator [11]. The industrial

robots often need to operate in a complex environment

and interact with other robots and objects present in the

surrounding. A traditional method for obstacle avoidance uses

the concept of “artificial force field”, like one proposed by

Khatib [28] in which the goal position act as attractive

pole whereas obstacles act as repulsive poles. However,

their proposed algorithm is formulated in cartesian space

and needs further computation for calculating the necessary

control actions in the joint-space. Similarly, Flacco et al. [29]

proposed an algorithm based on the robot-obstacle distance

information obtained using a depth sensor. Guo and Zhang

[21] proposed an approach at joint-acceleration level approach

by minimizing the joint-acceleration norm. Zhang et al. [11]

proposed a tracking control and obstacle avoidance algorithm,

however, there proposed algorithm treats the obstacle as a

point object and does not account for 3D-geometry of the

manipulator and the obstacle. The traditional methods mostly

incorporate obstacle avoidance as inequality constraint in the

optimization problem. These constraints do not actively reward

the optimizer for avoiding obstacles and only act passively.

Our proposed problem formulation tries to overcome this

issue by using a penalty term in the objective function. To

summarize, the problems being addressed in this paper are

1) Formulating a tracking controller for a redundant

manipulator to compute the necessary control actions

in joint-space to track a specified task-space trajectory.

2) While tracking the reference trajectory, the controller

should satisfy the joint-angle limits.

3) The objects present in the surrounding of the

manipulator are considered obstacles, and their collision

with the manipulator should be avoided.

In this paper, we take advantage of the fact that

optimization-centric approach allows any arbitrary goal to be

achieved by adequately formulating the objective function [8],

[9]. We incorporate the obstacle avoidance problem into the

tracking control framework by adding a penalty term in the

objective function along with an inequality constraint. The

penalty term approach used in our paper actively reward

the optimizer for avoiding the obstacle, which is in contrast

with the traditional obstacle avoidance approaches, which

simply add an inequality constraint [11]. With this, the

obstacle avoidance and tracking control problem essentially

reduces to solving the formulated optimization problem in

real-time. Our formulated objective function has two goals:

1) Tracking control, i.e., minimize the Euclidean distance

between reference trajectory and the end-effector’s trajectory,

2) Maximize the distance between the links of the manipulator

and the obstacles. We used the Gilbert-Johnson-Keerthi (GJK)

algorithm [30], to calculate the distance between manipulator’s

links and the obstacle by directly using their 3D-geometries.

To solve the optimization problem in real-time, we take

a metaheuristic approach; called Beetle Antennae Olfactory

Recurrent Neural Network (BAORNN). We leverage the

metaheuristic optimization algorithms, which are well-known

[31], [32] for their ability to efficiently solve the complex

nonlinear non-convex optimization problem. Our proposed

algorithm is based on a nature-inspired metaheuristic

optimization algorithm; Beetle Antennae Olfactory (BAO)

algorithm [33], [34], inspired by the food searching behavior

of beetles. Although recently introduced, BAO has shown

practical applications in several real-world scenarios [35],

[36] and therefore, the reason for our choice for solving

the formulated optimization problem. Specifically, The

formulation of the BAO algorithm allows the use of the

“virtual robots”, which virtually anticipate the consequences

of joint-actions and only move the real robot when accuracy

and collision-safety are guaranteed. We modeled the BAO

algorithm as a Recurrent Neural Network (RNN) which

enables fast prototyping and will be able to leverage the

hardware acceleration, distributed processing, and software

optimizations, offered by modern computing frameworks when

implemented in an industrial setting.

It should be further noted that the tracking controller

presented in this paper is designed on position-level as opposed

to velocity-level as done by the most traditional works on

tracking control of redundant manipulators [11], [17], [19].

This approach is advantageous because it does not require that

initial position of end-effector to lie on the reference trajectory,

whereas the velocity-level controllers explicitly require

moving the end-effector to the initial point on the reference

trajectory. Additionally, the velocity-level controllers require

the computation of Jacobian pseudo-inverse at each time-step,

resulting in high computation cost. Position-level control,

however, altogether avoid the mathematical manipulation

of the Jacobian matrix, thereby significantly reducing the

computation cost. Additionally, It is also worth noting that

unlike the traditional obstacle avoidance algorithms, the

proposed algorithm does not make an assumption about the

shape of the obstacle, neither consider it as a point object

[11]. The proposed algorithm directly use the 3D-model of

the manipulator to calculate the distance of its link from the

obstacle. As such, it works for any arbitrary manipulator and

obstacle shape, which makes it realistic for an actual industrial

setup. Although the algorithm requires 3D-geometry of the

obstacle, with modern depth mapping sensors, this can be

easily achieved. The main highlights of this paper are:

1) We propose an optimization framework for unifying

the tracking control and obstacle avoidance problems

by using the penalty term approach. It fulfills two

objectives: i) Minimize the tracking error, ii) Maximize

the manipulator-obstacle distance.

2) We formulate the tracking control problem on

position-level as compared to velocity-level as done in

most traditional works. The position-level control avoids
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the manipulation and pseudo-inversion of the Jacobian

matrix, consequently reducing the computation cost.

3) Using the GJK algorithm, to efficiently measure the

distance between a manipulator and an arbitrarily-shaped

obstacle by directly using their 3D-geometries, without

making any assumption about their shapes.

4) We propose a metaheuristic based recurrent neural

network, BAORNN, to efficiently solve the formulated

optimization problem so that the manipulator can be

controlled in real-time.

5) Extensive numerical analysis using a simulated model

of KUKA LBR IIWA-14, a popular 7-DOF industrial

robotic arm, are performed to demonstrate the

performance of the proposed algorithm.

The remainder of this paper is organized as follows: Section

II presents the problem formulation of the tracking control and

obstacle avoidance. In Section III, firstly, the GJK algorithm is

described briefly, and then the details of BAORNN algorithm

are laid down. Theoretically, analysis is presented to prove the

global convergence of the algorithm. Section IV outlines the

simulation methodology, present the results, and discuss their

implications. Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, we will mathematically formulate the

tracking control and obstacle avoidance problem and unify

them into one optimization framework.

A. Tracking Control

Consider the task of moving a payload using robotic

manipulator along a specified trajectory, say a circular path.

Tracking control deals with the calculation of the joint-space

trajectory, which will move the end-effector in the specified

circular path. For a given robotic manipulator, the position

of its end-effector is a function of its joint-angles. For

example, consider a m-DOF robotic manipulator operating

in a n-dimensional task-space (n = 3 for position control).

The forward kinematic mapping is a surjective function of the

joint-space coordinates

x(t) = f(θ(t)), (1)

where x(t) ∈ R
n and θ(t) ∈ R

m are the task-space

and joint-space coordinates respectively. Note that m >
n for a redundant manipulator. The forward kinematic

mapping f(.) is a nonlinear vector-valued function, which

is trivial to formulate using the mechanical design and

Denavit–Hartenberg (DH) parameters for a given manipulator.

However, the task for a manipulator is usually specified in

the cartesian task-space instead of the joint space. Therefore,

we are more interested in the inverse mapping, i.e., mapping

from the task-space to the joint-space. Using 1, an inverse

kinematics model can be defined

θ(t) = f−1(x(t)), (2)

where f−1(.) denotes the inverse kinematic mapping.

Now consider a reference trajectory xr(t) for end-effector

position in cartesian task-space. To trace this trajectory, the

corresponding angles θr(t) in joint-space must satisfy the

following equation,

xr(t) = f(θr(t)). (3)

Our goal is to solve the above equation for the value of θr(t).
If a closed-form expression for f−1(.) exist, we can trivially

solve this equation using θr(t) = f−1(xr(t)). However, for a

redundant manipulator, the forward kinematic mapping f(.) is

surjective-only and not one-to-one, i.e., there exist an infinite

solutions θr(t) in the joint-space, which are mapped to the

same reference trajectory xr(t).
To resolve the redundancy, i.e., calculate an optimal

joint-space trajectory out of infinitely many possible

trajectories; we model the tracking control as following

optimization problem

min
θ(t)

gtr(xr(t),θ(t)), (4)

where gtr(.) is the tracking objective function and defined as

gtr(xr,θ) = ||xr − f(θ)||2. (5)

where xr is the current point on the reference trajectory and

θ are the current joint-angles.

Remark 1. In the formulation of tracking control objective

function, only the kinematic model of the manipulator

is considered. The tracking control algorithm based on

kinematic models are intensively studied for the control of the

manipulator as shown by recent works [17], [37]. Apart from

the academic research, kinematic control is also widely used

in commercial robotic systems such as ping-pong manipulator

[38], ABB IRB 360 [39], Adept Quattro 650HS [40], DOBOT,

and UR 10 manipulator.

B. Obstacle Avoidance

The solution to optimization problem (4) does not guarantee

that the manipulator does not collide with an obstacle.

Our obstacle avoidance strategy is based on the principle:

maximizing the minimum distance the links of the manipulator

and the obstacle. To incorporate this principle into our control

framework, we formulate an additional objective function

which penalizes the angles in joint-space which bring the robot

close to the obstacle. The obstacle avoidance optimization

problem is defined as

min
θ(t)

gOI(O,θ(t)), (6)

where gOI(.) is called the obstacle avoidance objective

function; which is a function of O ∈ R
nO×3, the 3D-geometry

of the obstacle, i.e., cartesian coordinates of all its vertices, and

θ, the joint-angles of the manipulator. Here nO is the number

of vertices in the 3D model of the obstacle. High value of

nO results in a fine-grained 3D-mesh. The objective function

gOI(.) is defined as

gOI(O,θ) =
1

[mini∈{1,2,...,m}{di(O,θ)}]β
, (7)

where θ are the current joint-angles, m is the total number

of links in the manipulator and di(O,θ) is the distance of
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ith link from the obstacle O. The reciprocal relation ensures

that decreasing the value of objective function increases the

distance between links and obstacle. β is a hyper-parameter,

and from simulation analysis, we found that β = 1 provides

the best performance. The value of the distance is calculated

using the GJK algorithm (refer to Section III-C for further

details)

di(O,θ) = GJK(O,Mi(θ)), (8)

here again i ∈ {1, 2, ...,m}. Since GJK algorithm requires

3D-geometry of the two objects, so we defined a function

Mi(θ) ∈ R
ni×3 which returns the vertices of ith link. Similar

to nO, ni is the number of vertices in the 3D-geometry ith

link. It must be noted that the location of vertices change

when manipulator moves, i.e., it is a function of joint-angles

θ. The initial geometry, Mi(0), is a given information for a

manipulator based on its mechanical model. The subequent

values of M(θ) are calculated using

Mi(θ) = Ri(θ)Mi(0) + Ti(θ)

where Ri(θ) and Ti(θ) are the rotation and translation matrix

for the ith link. These matrices can be calculates using the

forward kinematic model of manipulator.

C. Joint-Angle Limits

A solution to optimization problem of (4) or (6) does not

guarantee that the solution will lie within the mechanical limit

of the joint. To guarantee the solution does not violate the

joint-angle limits, the following constraint must be satisfied

θ
− < θ(t) < θ

+, (9)

where θ
− and θ

+ denote the lower and upper limits on the

joints-angles respectively, the value of these limits depend on

the mechanical construction of the manipulator and the type

of actuator used to move the joints.

D. Unified Tracking Control and Obstacle Avoidance

Above, we formulated three seperate component of the

problem: tracking control (4), obstacle avoidance (6) and

joint-angle limits (9). These can be unified into the following

optimization problem

min
θ(t)

g(O,xr(t),θ(t))

s.t. θ
− < θ(t) < θ

+, (10)

where g(.) is the unified objective function defined as

g(O,xr,θ) = gtr(xr,θ) + ΛgOI(O,θ), (11)

where Λ is a constant parameter which controls the

trade-off between tracking performance and maximizing the

manipulator-obstacle distance. A value of Λ = 0 turns off the

obstacle avoidance completely. The value of Λ greatly affect

obstacle avoidance performance. Its effect is discussed in detail

in Section IV.

Remark 2. The obstacle avoidance objective function

gOI(O,θ) acts as a penalty term in the unified objective

function above. When the manipulator is moved far from the

obstacle, the value of the penalty term becomes small, and the

algorithm rewards the optimizer by reducing the overall value

of the objective function.

Although the penalty term approach actively reward the

optimizer to avoid the obstacle, but consider a circumstance

where the position of obstacle makes it impossible to track the

reference trajectory; to avoid the collision in such a condition,

we add inequality constraint to (10),

min
θ(t)

g(O,xr(t),θ(t))

s.t. θ
− < θ(t) < θ

+

di(O,θ(t)) > dmin for i ∈ {1, 2, ...,m}. (12)

The second constraint puts a hard lower-bound, dmin, on

obstacle-manipulator distance.

Based on the above formulation, the complete form of the

optimization problem can be written as

min
θ(t)

||xr(t)− f(θ(t))||2 + Λ
1

[mini∈{1,2,...,m}{di(O,θ(t))}]β

s.t. θ
− < θ(t) < θ

+

di(O,θ(t)) > dmin for i ∈ {1, 2, ...,m}. (13)

The solution to this optimization problem gives the joint-space

trajectory θr(t). Now we will formulate the BAORNN

algorithm in Section III to solve this optimization problem

in real-time.

III. CONTROL SYSTEM DESIGN

In this section, we will first formulate the BAORNN

algorithm. Then we will briefly describe the GJK algorithm

used for calculating the distance between the manipulator and

the obstacle.

A. BAORNN Algorithm

After the problem formulation in Section II, the tracking

control and obstacle avoidance finally boils down to solving

the optimization problem (13) in real-time while the

manipulator is operating. BAORNN algorithm mimics the

behavior of a beetle; which uses its pair of antennae and

olfactory sense to probe an unknown environment in search

of food (i.e., search for the region with maximum smell). At

each step, beetle measure magnitude of smell at both antennae

before deciding the direction of its next step. Especially, note

the intermediary action; i.e., instead of randomly moving in

any directions, the beetle stops after each step, uses just the

olfactory sense to develop better intuition about goal direction

and only then makes a calculated decision to take the next

step. This overall behavior especially the intermediary action

inspired us to incorporate the concept of “virtual manipulators”

(analogous to antennae’s olfactory sense) into our control

framework and develop a heuristic mechanism to control the

manipulator.

Suppose, at time-step k, the manipulator starts at θ0 in

joint-space. The algorithm generates a normalized normally

distributed random direction vector ~b ∈ R
m analogous to the
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Fig. 1: (a) The topology of the RNN for the BAORNN algorithm. The diagram illustrates the working of the algorithm

formulated in Section III-A. (b) Illustration of GJK algorithm.

Algorithm 1: BAORNN algorithm - Tracking control

& Obstacle avoidance

Input: kinematic model f(.) and 3D-geometry matrix

Mi(0) (i ∈ {1, 2, ..m}) of the manipulator,

3D-geometery of the obstacle O, reference

trajectory xr(t) ∈ R
n, an objective function

g(O,x,θ). Additionally, the values of

hyper-parameters: β, Λ, c1 and c2.

Output: An optimal trajectory θr(t) in joint-space.

θ0 ← Initial joint coordinates

k ← 0 kstop ← maximum number of time-steps

allowed

while k < kstop do
Generate a normalized random direction vectors,
~b ∈ R

m in the joint-space.

Use the generated random vector to calculate the

location of left and right antennae, θkL and θkR

respectively, using (15).

Project the location of these antennae on the

constrained set Ω using the projection function

PΩ as defined in (16) to . Calculate the value of

objective function at both location using ”Virtual

manipulators” as defined in (17).

Calculate he updated location in joint-space using

(18).

Check if the updated location improves the value

of objective function using (20).

Move the manipulator to θk+1 and update the

value of gk+1.

k ← k + 1
end

antenna of the beetle. Using direction vector ~b, the location

of end-point of the antennae can be calculated as

θkL = θk + λk
~b, θkR = θk − λk

~b, (14)

where λk is a hyper-parameter representing the length of the

antenna, θkL and θkR denotes the location of left and right

antennae respectively at time-step k. However, these vectors

might not satisfy the constraint of the problem (13). Therefore

we project these vectors onto the constrained set

Ω
θkX = PΩ(θkX), (15)

where X ∈ {L,R}, PΩ(.) is the projection function which

restrict the input inside the constrained set Ω. The set Ω is

mathematically defined as,

Ω = {θ ∈ R
m|θ− < θ < θ

+ ∧ di(O,θ) > dmin}.

There are several way to project a vector θ on a set Ω,

here we define a computationally straightforward projection

function

PΩ(θkX) =

{

max{θ−,min{θkX ,θ+}} if di > dmin

θk if di < dmin,

(16)

where again X ∈ {L,R}, di is same as defined in (8). The

projected antennae locations Ω
θkL and Ω

θkR, is then used to

evaluate the value of objective function

gkX =g(O,xr(t),
Ω
θkX), (17)

where gkX (X ∈ {L,R}) is the value of objective function at

antenna locations.

We then use the calculated values of the objective function

at antennae locations, gkX , to move in a direction, inside

joint-space, where the value of the objective function is

decreasing by using the following update rule

Ω
θ
′
k+1 = PΩ(θk − δk(λk)sign(gkL − gkR)~b), (18)

where Ω
θ
′
k+1 is the updated location in joint-space projected

on set Ω, sign(gL − gR)~b term ensure that the next step is

taken in direction of the antennae with small objective function

value. δk(λk), is a hyper-parameter and denotes the step-size,

i.e., euclidean distance between Ω
θ
′
k+1 and θk locations. The

step-size is a function of antennae length λk; there relationship

will also be discussed later. After calculating Ω
θ
′
k+1, the value

of objective function is re-evaluated

g′k+1 = g(O,xr(t),
Ω
θ
′
k+1), (19)
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the value of g′k+1 is compared to the value of objective

function at previous time-step gk. If there is any improvement

(i.e., the updated value is smaller), then the robot moves to
Ω
θ
′
k+1 in joint-space; otherwise, it remains at the current

location

θk+1 =

{

Ω
θ
′
k+1 if g′k+1 < gk

θk if g′k+1 ≥ gk.
(20)

Similarly, the value of gk+1 is assigned to use in next iteration

gk+1 =

{

g′k+1 if g′k+1 < gk

gk if g′k+1 ≥ gk.
(21)

After moving to θk+1, the iterative procedure is repeated

for the next time-steps. The steps of the proposed BAORNN

algorithm are systematically presented in Algorithm 1.

The choice of hyper-parameter λk and δk(λk), where

k denotes time-step, affects the speed of convergence.

By empirical analysis, we found that the following rules

for the selection of hyper-parameters provide a reasonable

convergence rate

λk = c1

√

g′k (22)

δk(λk) = c2λk (23)

where c1 and c2 are constant design parameters. The above

relation regulate step-size such that the algorithm takes large

steps when the end-effector is far from the goal position and

make the steps extremely small when reached near the goal.

The small step-size is necessary to prevent the overshooting

of end-effector near goal position. For c1 and c2, we propose

the following rules for fast convergence.

c1 ∝ Ts

c2 ∈ [1, 3]

where Ts is the sampling time of the control loop.

The proposed BAORNN is formulated as RNN, as shown

in Fig. 1a. The formulated RNN has a two-layered topology

with a temporal-feedback connection from the second layer

to the first layer. RNN architecture has a total of 3m + 6
neurons. The block ”Random” represents a random vector

generator and provide normally distributed unit direction

vector ~b for the BAORNN algorithm. The neurons, shown as

circles, use projection PΩ(.) as their activation function. The

neurons shown as curved rectangular boxes represent “virtual

manipulators”, and their activation function is given by f(.).
Similarly, the neurons represented by curved boxes (in cyan)

represent the objective function evaluation, and their activation

function is given by g(.).
By parsing the RNN architecture shown in Fig. 1a,

it can be shown that the algorithm has a complexity

of O(m), i.e., the computational complexity is just a

linear function of the number of joints. The algorithm

involves elementary floating-point operations, which can be

executed very efficiently on embedded processors since

modern embedded processors have dedicated hardware unit

for floating-point calculations.

B. Theoritical Analysis

Theorem 1. For the tracking control and obstacle avoidance

of a redundant manipulator, starting from an initial joint-space

angles θ0; the joint-space trajectory θr(t) generated by

BAORNN algorithm is stable, i.e.,

gk+1 ≤ gk, ∀ k ≥ 0, (24)

the values of objective function are monotonically decreasing.

Proof. See Lemma 1 of [34].

Theorem 2. For the tracking control and obstacle avoidance

of a redundant manipulator, starting from an initial joint-space

angles θ0; the end-effector trajectory f(θr(t)) is convergent

to the reference trajectory xr(t), i.e.,

f(θ(t))→ xr(t), as t→∞. (25)

Proof. See Theorem 1 of [34].

C. GJK-Distance Algorithm

GJK algorithm is an efficient algorithm to calculate the

minimum distance between two arbitrarily shaped convex

3D-polygons. Although, in our case, the 3D-geometry of a

manipulator link or the obstacle might be non-convex shape,

however, the collision avoidance between convex-hulls of both

objects is a sufficient condition for real collision avoidance.

Consider two convex polygons A and B in 3D-space, their

vertices defined by matrices V A ∈ R
nA×3 and V B ∈ R

nB×3

respectively. nA and nB are the numbers of vertices of polygon

A and B respectively. Each row of these matrices represents

the location of a vertex of the corresponding polygon. The GJK

algorithm takes these matrices and calculates the minimum

distance between the closest vertices of the two polygons,

GJK(V A, V B) = min
i ∈ {1, 2, ..., nA}
j ∈ {1, 2, ..., nB}

||V A
i: − V B

j: ||2

where the notation Vi: is used to represent the ith row of a

matrix V . Fig. 1b illustrates GJK-algorithm.

D. Computational Complexity

Here we will estimate the computational complexity of the

BAORNN algorithm formulated in Section III-A. The first

step in the algorithm is the generation of is a random vector
~b with m elements; the operation requires m floating-point

operations. Next, we calculate θkL and θkR, each requiring

m multiplication and m additions, totalling 4m floating-point

operations. Next step requires the projection of two vectors

using the projection function fΩ(.), which require a total of

4m comparisons. Then we use (17) to calculate the value of

objective function at both antennae location. The evaluation

of objective function is the most computationally intensive

step of the algorithm since it requires the calculation of

Euclidean distance as well as GJK-distance, as given in

(11). The calculation of Euclidean distance require a total

of 3m − 1 floating-point operations (m subtractions, m
squaring operations and m − 1 additions). The calculation

of GJK-distance depends on the number of vertices in the
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3D models of two objects and require a total of nA +
nB operations, as shown by [41]. Where nA and nB are

the numbers of vertices in the 3D model of both objects,

respectively. For the case of manipulator and obstacle distance,

using the notation of Section II-B, the total number of

operation comes out to be nO

∑m

i=1 ni. Although this number

is large, these operations are only required in the first iterations

of the algorithm, the later iterations of GJK-algorithm are

near-constant time, as pointed out by [41], [42]. Therefore,

the total number of operations required by GJK-algorithm are

effectively m. It means that a total of 4m + 2 operations

are required for evaluating the objective function; some

additional operations are required for the scalar addition and

multiplication as given in (11). Since objective function is

evaluated twice in (17), therefore this step require a total

of 8m + 4 operations. The next step, as given in (18),

requires a total of 2m+1 floating-point operations. Similarly,

the subsequent step is again objective function evaluation

requiring 4m+ 2 operations. The final step of the algorithm,

as given in (20) and (21), require a total of 2m comparisons.

Adding the floating-point operations required for each step as

calculated above; the final count comes out to be (m+4m+
4m+ (8m+ 4) + (2m+ 1) + (4m+ 2) + 2m) = 25m+ 7.

The above analysis shows that the BAORNN algorithm

have a complexity of O(m), where m are the total number

of links of the manipulator. This show that the complexity

of the BAORNN algorithm is only linearly related to the

number of links of manipulator. For m = 7, as in the case

of IIWA14 manipulator, the required number of operations

per iterations are of the order of 182. Modern embedded

processors can efficiently perform floating-point operations of

this order withing few hundred of microseconds.

IV. SIMULATION RESULTS & DISCUSSION

In this section, simulation methodology, for evaluating the

performance of the proposed algorithm, is presented along

with the obtained results and discussion. Simulated model of

KUKA LBR IIWA-14 manipulator is used as a testbench. The

IIWA-14 has 7-DOF. 3D-model of the manipulator is shown

in Fig. 2.

A. Simulation Methodology

We used the model of IIWA-14 provided by MATLAB

Robotic System Toolbox [43]. The model provides an excellent

representation of a real-world industrial manipulator and

therefore act as a desirable simulation testbed. To test the

obstacle avoidance performance, we placed an arbitrarily

shaped obstacle in front of the manipulator. The simulation

setup, including manipulator and obstacle, is shown in Fig. 2.

We used two reference trajectories [19] in our simulations:

a rectangular and a circular trajectory as shown in Fig. 3.

The four corners of the rectangular paths used in simulation

are: [0.2 0.6 0.8]T , [−0.1 0.6 0.8], [−0.1 0.6 0.2], and

[0.2 0.6 0.2]. The total time for tracking the rectangular

trajectory is 50 seconds. For generating the circulat trajectory

we used following parameteric equation

x
circle
r (t) = ~C+ r cos(2πt/T )~A+ r sin(2πt/T )~B. (26)

obstacle

−1.0

−0.5

0.0

0.5

1.0

−0.5

0.0

0.5

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x(m
)

y(m)

z
(m

)

Link-1

Link-2

Link-3

Link-4

Link-5 Link-6

Link-7

End-effector

Top View

Fig. 2: 3D model of KUKA LBR IIWA-14 7-DOF manipulator

with the obstacle used in simulations. The obstacle is placed

in front of the operational region of the robot.

where ~C is a position vector to center of the circle, ~A and ~B
are two perpendicular unit vectors defining the plane of the

circle in 3D space, r is the radius of the circle. T denotes the

total time duration. Following values were used in simulation:
~C = [0.0 0.6 0.5], ~A = [1 0 0], and ~B = [0 0 1].
These values represent a circlular path in x − z plane at

y = 0.6. The two trajectories mentioned above were chosen

for developing simulation results in this paper. Without the loss

of generality, the proposed algorithm works for an arbitrarily

shaped reference-trajectory, provided that all the points on the

trajectory are reachable by the end-effector without violating

the mechanical limits of the manipulator’s joints.

To systematically study the effect of the proposed

algorithm, we first conducted a simulation without any

obstacle-avoidance, i.e., setting Λ = 0 in (13) and ignoring

the 2nd constraint. Then we performed simulations with

different values of Λ and its effect on the obstacle avoidance

performance is discussed in details.

B. Trajectory tracking results

The first set of the simulation consists of analyzing the

response of the manipulator without obstacle avoidance as

described in Section IV-A. The results for rectangular and

circular trajectories are both shown in Fig. 3. It can be

seen that several angles in joint-space resulted in a collision

with the obstacle. It is because the algorithm calculated

a joint-space trajectory which minimized the tracking error

without considering the obstacle in its path.

Next we simulated the response of the system with different

values of Λ as defined in (11). Fig. 4 shows the result for

rectangular reference trajectory. The initial configuration of

the manipulator’s joint is assumed to be home configuration,

i.e., all joint-angles are zero at the beginning. Fig. 4a to Fig.

4e summarizes the manipulator’s response for Λ = 0.002.
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Λ = 0
Initial Configuration: θ0

Reference: x
circle

r

(t) Reference: x
rect

r

(t)Collision
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Fig. 3: Performance of tracking controller after switching-off

the obstacle avoidance term, i.e., Λ = 0 as defined in (11).

The links collide with obstacle for both trajectories.

Fig. 4a shows the motion of each links of the manipulator

along with the reference trajectory (shown in blue). The

initial portion of the manipulator’s trajectory lies away from

the reference trajectory because the manipulator starts from

home configuration and algorithm takes some time to find

an optimal joint-space trajectory which takes the end-effector

near the reference trajectory while avoiding the obstacle.

Once the end-effector reaches near the reference trajectory,

it accurately follows it for the rest of the path. Top view of

the manipulator’s trajectory is also shown as inset graphic,

which confirms that the manipulator does not collide with an

obstacle at any point. Fig. 4b shows the cartesian coordinates

of end-effector motion and Fig. 4c shows the joint-space

coordinates of the manipulator trajectory. It is worth pointing

out that the unsmooth response shown by these trajectories is

typical of metaheuristic algorithms because of the stochastic

nature; however, the resultant gain in computational efficiency

is much greater. Fig. 4d shows the position tracking error

which is defined as e(t) = xr(t) − f(θr(t)). At t = 0, it

shows a huge tracking error of ≈ [0.5 − 0.5 0.7]T ; again,

this is the result of starting from the home configuration,

which requires some time for reaching the reference trajectory.

However, after some time, he tracking error converges as

the end-effector finally converges to the reference trajectory.

It also proves that the global convergence performance of

the proposed algorithm, i.e., the tracking error converges to

zero and does not rise again, except for some small ripples

caused by the stochastic nature of the algorithm. Similarly,

Fig. 4e shows the minimum distance of any link of the

manipulator from the obstacle as defined in (7). A high value

is desirable because it reduces the risk of collision in case

of uncertainty in obstacle position or error in the manipulator

model. We set dmin = 0.02, which acts as a lower limit for

the minimum manipulator-obstacle distance. We repeated the

same set of simulations with Λ = 0.0002. Fig. 4f to Fig. 4j

summarizes the manipulator’s response. The major difference

between these two situations is the quality of the obstacle

avoidance performance. Fig. 4j shows that the minimum

manipulator-obstacle distance is smaller as compared to Fig.

4e, i.e., the links of manipulator were closer to the obstacle

as compared to the latter case, increases the risk of collision.

The same conclusion can be drawn from the inset graphics

of Fig. 4f and Fig. 4f which shows that the links are much

closer to obstacle in second case as compared to the first case.

We had to reduce the value of dmin to 0.002 to successfully

simulate a complete rectangular trajectory without colliding

with an obstacle.

The simulation results for the circular reference trajectory

are shown in Fig. 5. These results show a similar trend. For a

small value of Λ, the manipulator-obstacle distance decrease,

and we had to reduce dmin to complete the simulation.

However, for a higher value of Λ, the algorithm shows an

excellent performance in avoiding the obstacle. It should,

however, be noted that increasing the value too much will

significantly decrease the tracking performance because the

algorithm will aggressively try to avoid the obstacle.

V. CONCLUSION

In this paper, we proposed a framework to simultaneously

address the problem of tracking control and obstacle avoidance

in real-time. The proposed framework unifies the two goals

into a single constrained optimization problem. The penalty

term approach significantly improves the performance of the

proposed algorithm by actively rewarding the optimizer for

avoiding the obstacle. This approach results in a joint-space

trajectory which maximizes the distance manipulator-obstacle

distance. To solve the formulated optimization problem, in

real-time, we proposed an RNN based on a metaheuristic

optimization algorithm, called Beetle Antennae Olfactory. A

key feature of the proposed framework is that it does not make

assumptions about a specific shape of the obstacle. It directly

uses the 3D-geometries of the manipulator and obstacle for

formulating the penalty term using GJK-algorithm. Potential

application of such an approach includes the operation

of a manipulator in a dynamic environment where the

shape of the obstacle is time-varying. The application of

the GJK-algorithm to measure manipulator-obstacle distance

allows the controller to work for an arbitrarily-shaped obstacle.

Similarly, the proposed algorithm is also particularly useful

for surgical-robots where it is critical to maintaining a safe

distance, between the links of the manipulator and the patient,

to ensure safety. The theoretical treatment is also presented

in the paper to prove the stability and convergence of the

proposed algorithm. Simulations using a KUKA LBR 7-DOF

industrial manipulator are presented to prove the performance

of the proposed algorithm.

VI. FUTURE WORK

Potential further directions to improve the capability

and performance of the proposed algorithm includes;

extending the formulation of the optimization problem to

incorporate multiple obstacles while keeping the calculation

of manipulator-manipulator distance computationally efficient.

Another exciting application of the proposed algorithm

is to enhance the safety of surgical-robots by actively
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Fig. 4: Simulation results for rectangular trajectory tracking for different values of Λ as defined in (11). (a-e) shows result for

Λ = 0.002. (a) The trajectory of each manipulator link along with reference trajectory. (b) Profile of task-space trajectory of

the end-effector. (c) Profile of joint-space trajectory of the manipulator. (d) Profile of the position tracking error. (e) Minimum

GJK-distance of the manipulator from obstacle as defined in (7). (f-j) Shows similar results for Λ = 0.0002. It must be noted

that the minimum manipulator-obstacle distance for Λ = 0.002 is much better (i.e., larger) as compared to Λ = 0.0002. (k)

Simulation model of the LBR IIWA-14 robot while tracking the reference trajectory for Λ = 0.002.

ensuring that the link of manipulator does not touch the

patient. An advanced version of the proposed algorithm

will incorporate multiple mobile-manipulators operating in

a dynamic environment with several obstacles of different

shapes. Such an algorithm will require decentralized control

algorithm and collaboration between manipulators to ensure

efficient operation.
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