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The adoption of a robust collision avoidance module is required to realise fully autonomous Unmanned 

Surface Vehicles (USVs). In this work, collision detection and path planning methods for USVs are 

presented. Attention is focused on the difference between local and global path planners, describing the 

most common techniques derived from classical graph search theory. In addition, a dedicated section is 

reserved to intelligent methods, such as artificial neural networks and evolutionary algorithms. Born as 

optimisation methods, they can learn a close-to-optimal solution without requiring large computation 

effort under certain constraints. Finally, the deficiencies of the existing methods are highlighted and 

discussed. It has been concluded that almost all the existing method do not address sea or weather 

conditions, or do not involve the dynamics of the vessel while defining the path. Therefore, this research 

area is still far from being considered fully explored. 
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1. INTRODUCTION. Since their first development, the military community showed interest 

in Unmanned Surface Vehicles (USVs) for their deployment in force protection and 

surveillance scenarios (Bertram, 2008). Other examples are given by the Spartan produced by 

the US Space and Naval Warfare System Center (SSC)  in San Diego, the Delfim developed 

by the Portuguese Dynamical Systems and Ocean Robotics (DSOR)  Laboratory (Alves et al., 

2006), and the Springer developed by Plymouth University (Naeem and Sutton, 2009). Most 

of the vessels are dual-purpose vehicles, i.e. they can both be controlled remotely and operated 

autonomously. 

     USVs usually adopt catamaran and kayak shapes, for their roll robustness or ease of 

manufacture, and they are generally provided with a rudder-propeller system for propulsion 



 

 

and steering. Their kinematics are modelled ignoring pitch and roll, and considering an Earth-

fixed frame and a body-fixed one (Bibuli et al., 2009). The first is used to express the position 

and the orientation [ x y z] T, while the second for surge 𝑢𝑟 and sway velocities 𝑣𝑟
 relative 

to the water, yaw rate r and forces and moments. Linear and angular velocities are defined by 

the following equations, expressed in the Earth-fixed frame:  
  
 

 

{
�́� = 𝑢𝑟𝑐𝑜𝑠𝜔 − 𝑣𝑟𝑠𝑖𝑛𝜔 + �́�𝑐
�́� = 𝑢𝑟𝑠𝑖𝑛𝜔 + 𝑣𝑟𝑐𝑜𝑠𝑤 + �́�𝑐

�́� = 𝑟

 
(1) 

 

where [�́�𝑐 �́�𝑐]
T are the sea currents that are considered constant. Although in general, the marine 

environment introduces a number of serious disturbances which affect the control of an USV 

(Bandyophadyay et al., 2010). Examples are sea currents, tides, and sea-bed conformation. 

When transiting close to the coasts, the presence of tides dictates where a ship can go and how 

much time it will take to reach its destination. Despite the importance of weather conditions 

while traversing, there are only a small number of papers addressing this issue. 

     The existence of an obstacle detection and avoidance module requires the combining the 

sensing and decision making components, as shown in Figure 1 to navigate autonomously 

(Statheros et al., 2008; Tam et al., 2009; Hasegawa and Kouzuki, 1987; Hasegawa; 2009). The 

path planning problem has a long history in robotics, especially for Unmanned Ground 

Vehicles (UGVs) (Fahimi, 2008). A Path Planner (PP) is generally composed of a global path 

planner and a local one. The first (deliberative) must find a safe path connecting the actual 

pose of the robot and its destination. Whereas the local (reactive) must react to immediate 

collisions, moving the vehicle on a different route. Referring to unmanned boats, obstacles are 

represented by other vessels, divers, buoys, rocks, harbours, islands, and coasts. 

  

 
 

Figure 1. Architecture of an autonomous system. 

 

 

 
 

Figure 2. The proximity of the USV (Almeida et al, 2009). 

 

     The sensing module covers a key role towards full autonomy since it must identify the 

surrounding obstacles. When static, finding a safe path is easy and any graph search algorithm 



 

 

can be used. However, detecting collisions in time is still an open problem because of sensor 

limitations (e.g., false positive/negative due to noisy data). Moreover, the conformation of the 

environment can occlude the sensors field of view, preventing a moving obstacle’s detection. 

Therefore, autonomous navigation is a more complex task than connecting two points; multiple 

situations must be considered, especially under uncertainty. Hence, the scope of this paper is to 

offer an overview concerning the latest methods regarding collision avoidance for USVs and 

how to solve the problems described above.  

     This review is divided in the following way: Section 2 illustrates how to perceive the 

surrounding environment; in Section 3 the necessity of having a robust path planner is 

discussed, focusing on the difference between global and local path planners, and introducing 

intelligent methods. Finally, in Section 4 concluding remarks are given. 

 

 

2. COLLISION DETECTION. To avoid obstacles, an accurate representation of the 

environment is required. To obtain it, data from sensors (often integrated with electronic charts) 

are combined to give a Two-Dimensional (2D)/Three-Dimensional (3D) model.
 

     With regards to technology advancements, the methods for collision identification have 

dramatically changed in the last fifty years (Kemp et al., 2012) and sensor advantages and 

limitations are summarised in Table 1. 

     In Almeida, et al. (2009) a radar classifies targets in terms of a collision threat. A set of 

perimeters (Figure 2) is defined around the USV:  irrelevant (3 km), safe (500 m), warning 

(250 m) and prohibition perimeter (50 m). Based on the Closest Point of Approach (CPA), 

the estimated shortest distance between the detected object and the USV, targets are classified 

as no threat, low threat,  potential threat and dangerous. Low-cost radars are also used in 

Schuster et al. (2014) to compensate for the lack of an automatic identification system.  Despite 

the fact that the radar has been extensively used for far-field obstacle detection, its accuracy is 

low for short distances. It is then difficult to detect changes in course in time. Moreover, high 

waves and water reflectivity still represent a major challenge. 

     Other approaches use vision methods for recording obstacles near the vessel. For example, 

Wang et al. (2011; 2012) use two parallel cameras. In the first monocular phase, the horizon is 

extracted using the Random Sample Consensus (RANSAC) (Fischler and Bolles, 1981) method 

(Figure 3(a)), a binary mask is built (Achanta et al., 2009) and detected salient features are 

considered of potential interest (Figure 3(c)). Surface obstacles are distinguished (Harris and 

Stephens, 1988; Bouguet, 2000) (Figure 3(d)) and interesting ones are tracked in consecutive 

frames to validate them as potential obstacles (Figure 4). The stereo correspondence was then 

realised applying an epipolar constraint to reduce the search space. This approach showed good 

results up to 100 m from the USV using a low-resolution image. Monocular greyscale images 

are used in Azzabi et al. (2014). The Sobel operator and the Hough transform are applied to 

extract the edges (Maini and Aggarwal, 2009; Hough, 1962), then the horizon is identified 

and moving objects are detected using optical flow estimation. Finally, the distance to 

obstacles is estimated using geometric relationships (Figure 5). Using greyscale image, the 

authors reduce the computational effort required by other algorithms (e.g., Ettinger et al., 

2003). 

     Other systems use Infra-Red (IR) cameras due to their ability to discretize temperatures. 

The main advantage of IR cameras is the possibility to overcome the impact of various light 

conditions (darkness or fog), allowing operations in day and night to take place with little 

deterioration in performance. In Borghgraef et al. (2010), floating mines were identified in 

the Persian Gulf. Two background subtraction algorithms, the visual background extractor 

(ViBe) (Barnich and Droogenbroeck, 2011) and the behavioural subtraction (Jodoin et al., 

2008), were implemented. Without specifying any details about the target object, this approach 



 

 

detects every anomaly in respect to the background. IR data are used also in Park and Jeong 

(2012), where a multi-step algorithm extracts the shape of a floating object. Vertical and 

horizontal edges are initially extracted to find candidate objects. Then, the background is 

removed and a logical AND operation with the original frame is performed to highlight the 

object region. The limit shown by the previous approaches relies on detecting small obstacles 

at long distances but, unfortunately, IR applications are still very limited. For this reason, it has 

not been proved that marine situations such as sea fogs, wave occlusions, variations of lighting 

and weather, and object reflections do not affect IR camera’s performances like common video 

cameras (Liu et al., 2016). 

     From the consolidated use with an UGV, Lebbad and Nataraj (2015) adopt a LIDAR (Laser 

Direction and Ranging) because a laser entering the water dissipates itself, segmenting any 

object present there. Sensor data are combined with that of a camera and the object area is then 

identified. The authors discovered that the vessel’s motion can distort the LIDAR image and 

some of the targets may appear tilted. A similar approach was proposed in Halterman and Bruch 

(2010) where sensor data were analysed with regards to different parameters (i.e., scanning rate 

and density, coverage in azimuth, elevation and range etc.). It was noticed that most of the 

obstacles appear clearly in the returned data while the sea surface does not provide any return. 

On the other hand, problems are posed by the presence of salt spray, winds, waves, currents 

and tides that produce image blurring and vibrations (Gal and Zeitouni, 2013). 
 

 

 

 
(a) Line Fitting                                          (b) Horizon extraction 

 
(c) Saliency detection                                        (d) Corner extraction 

Figure 3. Monocular obstacle detection (Wang et al., 2011, 2012).  

 



 

 

 
Figure 4. The obstacle is tracked among successive frames (Wang et al., 2011, 2012).  

 

 
Figure 5. Estimation of the USV-obstacle distance (Azzabi et al., 2014). 

 

3. PATH PLANNER. After perception, a representation of the world is realised. This can be 

done in a 2D or 3D space but the first option is often preferred because it is less computationally 

demanding (even though the depth dimension can also be useful for navigation purposes). As 

stated in Section 1, the Path Planner (PP) is usually subdivided: the global PP identifies a free 

path from the actual pose of the robot to a destination, while the local one tries to avoid close 

moving obstacles. 

     In the following subsections, the most recent techniques used in marine robotics are 

described. Before that, certain navigation rules are introduced. 

     3.1. The International regulations for avoiding collisions at sea.   While underway, vessels 

must obey rules designed to avoid any kind of collision. Despite being manned or not, the rules 

must be obeyed by any kind of vessel operating at sea (Wilson et al., 2003; Lee et al., 2004; 

Kemp 2002; Belcher 2002). Differing, confused behaviour can lead to collisions against other 

marine craft. The COLREGS (Commandant, 1999) an abbreviation for Collision Regulations, 

are divided into three parts. Part A defines vessel and authority responsibilities, Part B regulates 

the conduct of vessels in an encounter, and Part C establishes communication protocols. Rules 

contained in Part B are defined as Steering and Sailing Rules, and the more important are 

reported in Table 2. 

     The rapid increase in the number of USVs posed interesting questions about their 

responsibilities while underway (Allen, 2012). This is still an open problem, the US Navigation  

 
Table 1. Advantages and limitation of various sensors within USVs (Liu et al., 2016). 

Sensors Advantages Limitations 

   

Radar 1) Long detecting range; 

2) Good velocity estimates; 

3) Provides nearly all-weather and 

broad-area imagery; 

1) Skewed data from fast turning manoeuvres 

depending on the context; 

2) Limited small and dynamic target detection 

capability; 



 

 

4) High depth resolution and accuracy. 3) Susceptible to high waves and water 

reflectivity. 

LIDAR 1) Good at near range obstacle 

detection; 

2) High depth resolution and accuracy. 

1) Angular resolution both vertically and 

horizontally; 

2) Sensitive to environment and USV motion. 

Sonar 1) No visual restrictions; 

2) High depth resolution and accuracy. 

1) Limited detecting range in each scan; 

2) Impressionable to the noise from near-surface 

Visual 

sensor 

1) High lateral and temporal 

resolution; 

2) Simplicity and low weight in 

practical application. 

1) Low depth resolution and accuracy; 

2) Challenge to real-time implementation; 

3) Susceptible to light and weather condition. 

Infrared 

sensor 

1) Applicable for dark conditions; 

2) Low power consumption. 

1) Indoor or evening use only; 

2) Impressionable to interference and distance. 

 

Safety Advisory Council seems inclined to recognise their status as ‘vessels’ and, therefore, 

their obligations in an encounter. 

     3.2. Global path planner.  A global path planner must continuously adapt the existing path 

to new long-range obstacles. Larson et al. (2007a, 2007b) discretise the environment in a bi-

dimensional grid. Stationary obstacles are provided by a chart server, while moving ones by 

the radar. The A* algorithm (Hart et al., 1968) was chosen as search technique and a proximity 

cost added to prevent the USV going close to obstacles. To avoid the moving ones, safe 

velocity ranges are determined using the Velocity Obstacles (VO) method (Figure 6): a 

velocity space v-θ grid (where v identifies the vehicle’s speed and θ its heading angle) is built 

where the obstacle’s size is increased and the robot treated as a point. To avoid any collision, 

the robot’s velocity must lie outside the VO. If a collision cannot be avoided, a Projected 

Obstacle Area (POA) (Figure 7), the future occupied area, is created for each obstacle and a 

new safe route is found. The authors also implemented the COLREGS, in particular rules 13, 

14 and 15.  

     Casalino et al. (2009) suggest an approach based on the Visibility Graph (VG) concept 

(Figure 9): for each couple of inter-visible points, a straight line connecting them and not 

passing into an obstacle was drawn. After transforming obstacles into polygons, the VG is built 

and Dijkstra’s Algorithm (Dijkstra, 1959) was applied to find a safe path. 

     A different solution has been proposed by Xie et al. (2014) who modified the Artificial 

Potential Field (APF) (Khatib, 1985) method (Figure 10) in a way that, in the presence of an 

obstacle, attractions decrease as a linear function and repulsions as a higher-order function. 

Chen et al. (2013) propose to adapt the scanning angle of a sonar to the distance from the 

obstacle using fuzzy logic to make the strategy timely and effective. 
 

 
Table 2. Selected Rules from the International regulations for avoiding collisions at sea (COLREGS). 

 

Number Situation Action 

   

13 Overtaking Any vessel overtaking any other shall keep out of the way of the vessel being 

overtaken. 

14 Head on When two power-driven vessels are meeting on a reciprocal course to involve risk of 

collision, each shall alter her course to starboard so that each shall pass on the port 

side of the other. 

15 Crossing When two power-driven vessels are crossing to invoke risk of collision, the vessel 

which has the other on her own starboard side shall keep out of the way and shall, if 

the circumstances of the case admit, avoid crossing ahead of the other vessel. 

 

16 Give way Every vessel which is directed to keep clear of another vessel shall, so far as possible, 

take early and substantial action to keep well clear. 

 



 

 

17 Stand on. Where one of two vessels is to keep out of the way, the other shall keep her course 

and speed. The latter vessel may, however, act to avoid collision by her manoeuvre 

alone, as soon as it becomes apparent to her that the vessel required to keep out of the 

way is not taking appropriate action in compliance with these rules. 

 

 

 

 

 
Figure 6. To avoid the collision, the relative velocity vA - vB must be outside the cone defined by the USV centre 

and the expanded obstacle (Larson et al., 2007a, 2007b). 

 

 

Figure 7. The projected obstacle area of a moving obstacle (Larson et al., 2007a, 2007b). 

 

 
Figure 8 . Manoeuvres defined for addressing overtaking (a), meeting (b), and crossing (c) obstacle (Larson et 

al., 2007a, 2007b). 

 



 

 

 
Figure 9. A visibility graph (Casalino et al., 2009). 

 
 

Figure 10. The APF model 

 

     Four scan range levels are defined: if no obstacle is detected in a cycle, the scan range will 

jump to the upper level, otherwise, it will move down to the nearest level bigger than the 

distance existing between the sonar mounted on the vessel and the identified obstacle.. At this 

point, the type of the obstacle is determined and the slope is calculated. The only limitation is 

given by the low precision of the Inertial Measurement Unit (IMU) used, which compromised 

the reaction accuracy. 

     Chang et al. (2003) extended the maze routing algorithm developed by Lee (1961) to general 

λ-geometry for λ ≥ 4. A route is defined as a data structure composed of the vessel path, the 

source cell, the destination cell and the speed. The vessel path is a list of all the cells traversed, 

characterised by their coordinates, the arrival time, and a link to the next one. Unfortunately, 

the shortest path on a raster grid is not always the optimal one since it could contain too many 

course alterations. Moreover, a change in speed often corresponds to a longer passage time. 

This problem has been addressed by Szlapczynski (2006), which found the shortest path with 

bend penalisations. The data structure of the previous work is modified to account for the cost 

of all course alterations.  

     3.3. Local path planner.  One example of a local path planner is given by Kuwata et al. 

(2014), where the COLREGS and VO are considered. Initially, the CPA for every obstacle was 

calculated and the most suitable rule is applied. A cost for every velocity vj and heading angle 

θj admissible was generated and the (vj, θj) pair with the minimum cost sent to the controller. 

Similarly, Leng et al. (2013) integrated VO with mixed linear integer programming after 

linearizing the USV’s properties, sensors data and uncertainty about the environment. The 

collision risk is checked by calculating the CPA and its distance from the vessel.  
 



 

 

 
Figure 11. The bounding boxes of a moving obstacle (Simetti et al., 2014). 

 

     In Larson et al. (2007a, 2007b) the Morphin algorithm (Simmons and Henriksen, 1996) is 

applied drawing multiple arcs in front of the vehicle over the local occupancy map. Thus, all 

the safe paths are considered, covering with at least one arc, every free cell of the map. A weight 

is assigned to each arc depending on its vicinity to obstacles. The votes are then scaled from 0 to -

1 and combined with those coming from other navigation behaviours. 

     Casalino et al. (2009) describe a method based on the Bounding Box (BB) concept, defined as 

the rectangular area the vessel should avoid.  The algorithm integrates the BB vertices with the 

vehicle position S and the goal G into a graph. The solution is any path from S to G, identified 

using A*. Since kinematic constraints are neglected, the work suffers from sub-optimality. In 

successive work (Simetti et al., 2014), a safety BB is added and all the computations are now 

performed against it; after entering the safety box, the USV must leave it without intercepting 

the main diagonals and ensuring in this way the collision BB is not crossed. To address 

uncertainty, a supporting BB is adopted (Figure 11), whose dimensions may vary from coinciding 

with the safety one’s to be identical to the maximum bounding box’s. . Thus, the path’s robustness to 

changes in speed and heading of the obstacle is increased.  

     An approach based on lane-constrained trajectory is proposed in Tan et al. (2010). Here, 

while avoiding obstacles, the vessel must meet several objectives such as maintaining a 

minimum distance from each obstacle, respecting the COLREGs, keeping as close as possible 

to the intended path and complete the trajectory in the shortest time possible. Initially, the 

platform’s motion is forward simulated for a fixed number of time steps using simple models of 

a manoeuvre tracker and the vessel. Then, objectives are ordered and an elimination multi-stage 

process takes place. Regrettably, the algorithm may sometimes be unable to find a solution 

since only a sample of possible manoeuvres is generated.  

     Blaich et al. (2015) modified the A* algorithm to allow velocity variations and different 

turning circles. The cost function is adapted adding a penalty representing the amount of path 

skipped during the evasion manoeuvre. In this way, the USV is led back to the original path 

after the deviation. Velocity and time are added to the search space to guarantee the feasibility 

of the trajectory. 

     Tang et al. (2012) developed a new method called “Obstacle Avoidance Algorithm Based 

on a Heading Window” (OAABHW). To obtain the best navigation angle θout, the heading 

yaw, is considered as an optimisation objective, while the heading window and the set of 

unfeasible heading angles as constraints. From θout and the current heading angle θUSV, it is 

possible to obtain the avoidance rotational velocity ωout. Zhang et al. (2014) illustrated a new 

adaptive collision avoidance algorithm based on Sarsa (State-Action-Reward-State-Action) 

on-policy reinforcement learning (Sutton and Barto, 1998) to face changing trajectory due to 

external conditions. It is composed of two modules:  the Local Obstacle Avoidance Module 



 

 

(LOAM) and an Adaptive Learning Module (ALM). LOAM focuses on the avoidance 

manoeuvre, ignoring external disturbance factors, dealt with instead by ALM while searching 

for a course compensation angle. LOAM calculates the guidance angle with OAABHW, which 

is the forwarded as input to the ALM together with sea winds and currents. 

     3.4. Intelligent path planner. Differing from the deterministic methods proposed before, 

some research groups developed intelligent algorithms based on Fuzzy Logic (FL), 

Evolutionary Algorithms (EAs) and Artificial Neural Networks (ANNs). These optimisation 

approaches offer multiple advantages such as lower computation effort and the ability to learn 

the near-optimal solution. On the other hand, they can fail by getting trapped in local minima 

or fail to find a solution at all. To overcome these problems, they are often combined in ‘hybrid 

systems’ (Campbell et al., 2012). 

     Hwang (2002) used a knowledge base and an inference fuzzy engine. Adopting a circular 

ship domain, the author solves a multi-ship collision one by one, suggesting the manoeuvres as 

a visual aid or sends them to an autopilot. Liu et al. (2006) coupled FL with an ANN in a three 

module algorithm. The first module classifies the collision risk given CPA, course, and 

distance of the incoming vessel and provides an avoidance manoeuvre. The second calculates 

the membership function of the speed ratio. The last one generates magnitude and action time. 

Kao et al. (2007) addressed port navigation safety using FL to calculate a Guarding Ring (GR) 

and a Danger Index (DI). The radius of the GR is established starting from the length of the 

ship, its speed, and the sea state. When two GRs start to overlap, the collision alert system is 

activated. Perera et al. (2012; 2015) and Lee and Kim (2004) provide an example where FL 

has been combined with a Bayesian network and an APF, respectively. 

     EAs are heuristic approaches developed to find a close-to-optimal solution in large search 

spaces. They follow the Darwinian principle that only the best elements of every generation 

survive a process of variation and selection (Glick and Kohn, 1996). Smierzchalski (1999) and 

Smierzchalski and Michalewicz (2000) use genetic mutation operations to modify a ship’s 

speed. COLREGS and the time variable are incorporated during the generation of a new 

population of trajectories and the solution is searched based on cost function combining space, 

time and smoothness. In this model, based on Ito et al. (1999), each chromosome has a different 

number of genes representing the coordinates of the turning points, the ship’s speed, and the 

interconnections among genes of the same chromosome. A more realistic approach is explained 

by Zeng (2003), where a single gene is characterised by some noise parameters, such as wind, 

wave and sea current. The length of each chromosome depends on the navigation (Figure 12). 

The same approach is also used by Tsou (2010). The selection of the best route is made using 

the roulette selection method, after ordering all of them per a linear fitness function. In 

Szlapczynski (2013; 2015), evolutionary algorithms were used to find a set of safe trajectories 

for all ships involved in a collision. Six types of violations were identified and corresponding 

penalties introduced. Ship tracks, modified in course and speed, are therefore evaluated with a 

fitness function inversely proportional to penalties. 

     In contrast, in Lazarowska (2015) the path planning problem is solved as an Ant Colony 

Optimisation (ACO) problem. ACO is inspired by the indirect communication mechanism 

observed among ants. 

 



 

 

 
Figure 12. The route as a chromosome. 

 

 

     A graph considering all the constraints and the ship position is built. At this point, every ant 

constructs its path from the  starting vertex until the ending one: at each step, the ant chooses 

its next position based on the value of the pheromone trail. After all the ants complete the task, 

the pheromone trail is updated penalising those vertices with a constant value and increasing 

the others. The algorithm terminates when a maximum number of iterations is reached or after 

a maximum computational time. The path selected is shown to be the shortest. 

4. CONCLUDING REMARKS. The review presented in this paper began comparing different 

sensors employed for acquiring information about the environment. Classic sensors used in the 

marine environment such as sonar and radar, as well as those mounted on a ground vehicle, i.e. 

cameras and LIDARs, have been evaluated to establish how good they are in identifying static 

and moving obstacles. Studies involving them are reported and their respective advantages and 

drawbacks have been shown. It is concluded that the radar, despite being the sensor most used 

for preventing a collision at sea in the past, suffers from a lack of accuracy while trying to 

identifying objects at close distance. Vision-based (mono and stereo) approaches can achieve 

better results than radar despite maritime phenomena like lightning changes and waves still 

posing a big challenge in the field. Infra-red cameras can offer a partial solution to the previous 

problems but only a few works have employed them thus far. Many efforts have been made to 

adopt the use of LIDAR from unmanned ground vehicles but, despite calibration problems now 

being solved, the same issues for visual sensors still hold. Therefore, it is possible to conclude 

that the obstacle detection problem remains open and a definitive robust solution is still 

missing. 

     Multiple path planners have been reported, classifying them as global or local ones. A stand-

alone section has been dedicated to the so-called ‘intelligent’ methods, based on soft computing 

techniques. ANNs have been applied to this problem due to their nonlinear mapping, learning 

ability and parallel processing. Fuzzy logic, instead, can simulate the human thinking 

represented by knowledge-based conditional rules. All the methods described must face the 

difficulty of addressing complex encounter scenarios that would require human-like experience 

to choose the best action. Considering that most of the time they work as a black-box (e.g., 

ANN), the convergence to the optimal solution is not guaranteed. In addition, these techniques 

are computationally time-consuming. Therefore, they should be discarded while considering 

real-time navigation but they can be adopted in different tasks where they have already proved 

to be efficient (e.g., convolutional neural networks for identifying possible obstacles in front 

of the vehicle). A major problem with most of solutions reported is that they have been tested 

only in simulation while proving their validity in the real world still has to be done. Moreover, 



 

 

their reliability is limited by the results that can be incomplete due to a small subset of scenarios 

tested, or small for a proper probabilistic analysis (Niu et al., 2016). It is therefore plausible to 

affirm that there is no guarantee in avoiding obstacles in all conditions with the methods above. 

In addition, three serious shortfalls have been identified: 

 while defining the path, most of the methods reported do not consider the vessel’s 

dynamics; 

 others ignore the COLREGS despite this being a mandatory requirement while 

underway in open waters; 

 almost all of them do not take in account weather and sea conditions. 

     Taking these points in order, most of the path planners previously described produce 

unexecutable paths. Treating the USV as a point and ignoring its dynamics (e.g., the minimum 

turning radius of the vehicle), generate way-point paths in which two points are generally 

connected by a straight line. This results in a trajectory characterised by high turning rates with 

the possibility of damage the vessel’s actuators. To avoid this problem, the solution is to 

incorporate the vessel’s dynamics (in terms of velocity, drag and heading angle) within a cost 

function in the formulation of the path to making it suitable for the USV’s turning abilities.  

     The second main point to address is the implementation of the COLREGS. This is an 

important requirement for all types of USVs since they must show an intelligent behaviour for 

understanding and executing the standard rules for marine navigation. There is no a universally 

agreed solution to incorporate them and most of the existing works either disregard them or 

adopt different safety domains to emulate them. Only in few cases, they are included in the 

solution space but the optimality is not guaranteed. Therefore, to simplify the decision-making 

process in an encounter, it has been decided that an autonomous vessel always has to give away 

if a doubt arises while meeting a manned vehicle. 

     Finally, future work should address environmental disturbances and uncertainties. USV 

path planning is dependent on the combined effect of wind, waves and currents, where wind 

and wave effects can be neglected for larger vessels (Lee at al., 2015). High speed currents can 

deviate the vehicle from the planned path instead. The incorporation of such environmental 

effects within the planning process, while improving the overall understanding of the 

surrounding world increases the computational complexity for the optimal path planners. In 

the same way, varying environmental conditions (e.g, fog, lighting, rain, wave occlusions, 

sophisticated background) as variations in the view angle and range, still represent an issue for 

real-time vision-based perception. 
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