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Abstract

The vast majority of work to date concerned with obstacle
avoidance for manipulators has dealt with task descriptions
in the form ofpick-and-place movements. The added flexibil-
ity in motion control for manipulators possessing redundant
degrees offreedom permits the consideration of obstacle
avoidance in the context of a specified end-effector trajectory
as the task description. Such a task definition is a more
accurate model for such tasks as spray painting or arc weld-
ing. The approach presented here is to determine the re-
quired joint angle rates for the manipulator under the con-
straints of multiple goals, the primary goal described by the
specified end-effector trajectory and secondary goals describ-
ing the obstacle avoidance criteria. The decomposition of the
solution into a particular and a homogeneous component
effectively illustrates the priority of the multiple goals that is
exact end-effector control with redundant degrees of freedom
maximizing the distance to obstacles. An efficient numerical
implementation of the technique permits sufficiently fast
cycle times to deal with dynamic environments.

1. Introduction

Kinematically redundant manipulators can be defined
as manipulators that possess more than the required

six degrees of freedom to arbitrarily position and orient
their end-effectors in space. These extra, so-called
redundant degrees of freedom result in greater dexter-
ity and flexibility in the specification of motion for the
manipulator. This paper presents a formulation that
allows the use of these redundant degrees of freedom
so that a manipulator can avoid obstacles in the work-
place while completing a specified task. Obstacles are
defined as any portion of an object with which contact
is undesirable.

Clearly, obstacle avoidance is essential for satisfac-
tory task completion. Current manipulator applica-
tions typically involve removal of potential obstacles
from the manipulator’s workspace and the use of fixed
motion commands. While preventing manipulator
collisions, this method is unduly restrictive because of
its inability to deal with unpredictable or dynamic
environments. The satisfaction of the obstacle avoid-
ance criteria for such environments would greatly
increase the autonomy of the manipulator and result
in a wider range of applications that could benefit
from the advantages of automation.

This motivation has resulted in a number of various

approaches to the resolution of the obstacle avoidance
problem (Pieper 1968; Loeff and Soni 1975; Udupa
1977; Khatib and LeMaitre 1980; Lozano-P6rez 1981 ).
A basic premise applied to the development of vir-
tually all of these approaches has been that the task can
be defined in terms of a known initial and final con-

figuration for the end-effector. Any set of joint mo-
tions that attains the goal configuration without colli-
sion is considered satisfactory completion. While this
method of task definition is well suited for many ap-
plications, particularly of the pick-and-place variety, it
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does not characterize those tasks that require a speci-
fied end-effector trajectory throughout the task, such
as spray painting or arc welding. Implementation of
these obstacle avoidance schemes for such tasks, there-
fore, is at best awkward. Since most tasks can be de-
scribed in terms of desired trajectories for a workpiece,
the basic task definition used here will be that of a

specified end-effector velocity (Paul 1979).

2. Theory

The end-effector velocity, described by the six-dimen-
sional vector X, is related to the joint velocities, de-
noted by the n-dimensional vector 0, where n is the
number of degrees of freedom, by the equation

where J is the Jacobian matrix (Paul I 981 ). In the case
of redundant manipulators, the inverse of the Jaco-
bian is not defined because J is rectangular. Useful so-
lutions to Eq. (1), however, can be obtained through
the use of generalized inverses (Boullion and Odell
1971 ), one of which can be defined as the best approx-
imate solution.

Definition. The vector 60 is a best approximate
solution of Eq. (1) if for all vectors 0 either

where II II denotes the Euclidean norm.

The best approximate solution is given by the pseudo-
inverse (Penrose 1956) and is denoted here by J+.

It can be shown (Greville 1959) that the general so-
lution to Eq. (1) is given by

where I is an n X ~t identity matrix and z is an arbitrary
vector in 0-space. Thus the resultant joint angle rates
can be decomposed into a combination of the least-

squares solution of minimum norm (Whitney 1972)
plus a homogeneous solution created by the action of
a projection operator (I - J+J), which describes the
redundancy of the system, mapping an arbitrary B into
the null space of the transformation. By applying var-
ious functions of 0 to compute the vector z, reconfig-
uration of the manipulator can be obtained to achieve
some desirable secondary criterion under the con-
straint of the specified end-effector velocity (Liegeois
1977; Ribble 1982; Klein and Huang 1983; Trevelyan,
Kovesi, and Ong 1984).

Recently, Yoshikawa (~1984) has implemented an
obstacle avoidance scheme in which the vector z is a

specified velocity toward a safe-i.e., collision-free-
joint space vector that is predetermined with a priori
knowledge of the workspace. The homogeneous solu-
tion is thus used to reconfigure the manipulator to be
as close as possible to the safe vector while tracking
the desired trajectory. In the case of dynamic environ-
ments, however, no universal safe joint space vector
exists, and the current state of the environment must
be used in the motion planning to obtain effective
obstacle avoidance.

The obstacle avoidance approach presented here is
to identify for each period in time the point on the
manipulator that is closest to an obstacle, termed the
obstacle avoidance point, and assign to it a desired
velocity component in a direction that is directly away
from the obstacle surface. Thus the primary goal of
specified end-effector velocity and the secondary goal
of obstacle avoidance (see Fig. 1 ) are described by the
equations

where

Je = end-effector Jacobian,
Jo = obstacle avoidance point Jacobian,
i, = specified end-effector velocity, and

Xo = specified obstacle avoidance point velocity.

One possible way to find a common solution to
both Eqs. (3) and (4) would be to adjoin the two
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Fig. J. Planar manipulator
illustrating the primary goal
of end-effector velocity speci-
fication and the secondary
goal of maximizing the
distance to the obstacle.

matrices and the right-hand sides into a single matrix
equation:

If the new matrix has the rank n, then mathematically
the system has been fully specified and is no longer
redundant. If the matrix in Eq. (5) is not square or of
full rank, then obviously its pseudoinverse could be
applied to give a best approximate solution. However,
for this application it is not desirable to treat end-ef-
fector and obstacle velocities in the same way. Instead
a method is described that first satisfies the primary
command of end-effector velocity and then uses the
system’s redundancy to best match the secondary
command of obstacle velocity.
The set of solutions to exactly satisfy the primary

goal can be given in the form of Eq. (2). Substituting
this solution into Eq. (4) yields

which can now be solved for the desired homogeneous
solution. Since the degree of available redundancy
may not be sufficient to exactly achieve the secondary
goal, a solution that increases the minimum obstacle

distance is provided by the pseudoinverse, given by

This equation is identical to the one obtained by Han-
afusa, Yoshikawa, and Nakamura { 1981 ) for two goals
of different priority. This result is substituted back
into Eq. (2) to provide the desired solution to both
goals under the constraints imposed by the number of
available degrees of freedom, yielding

This solution can be simplified to

since the projection operator is both hermitian and
idempotent. This result is proved in the Appendix.
Each of the terms in the preceding formulation has

an easily visualized physical interpretation. As stated
previously, the pseudoinverse solution (Je Xe) of the
desired end-effector trajectory composes the particular
portion of the solution that in the redundant case
guarantees the exact desired end-effector velocity with
the minimum joint velocity norm. The added homo-
geneous solution sacrifices the minimum norm solu-
tion to satisfy a different goal, that of obstacle avoid-
ance. The matrix composed of the obstacle Jacobian
times the projection operator, Jo(I - JeJe}, represents
the degrees of freedom available to move the obstacle
point while creating no motion at the end-effector.
This matrix is used to transform the desired obstacle

point motion from Cartesian obstacle velocity space
into the best available solution in joint velocity space
again through the use of the pseudoinverse. The vector
describing the desired obstacle point motion is com-
posed of the commanded motion, i., obtained from
environmental information, modified by subtracting
the motion caused at the obstacle point due to satis-
faction of the end-effector velocity constraint (JaJe~c~).

3. Implementation I

The preceding obstacle avoidance scheme has been
implemented in both two-dimensional and fully gen-
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eral three-dimensional computer graphics simulations
on a PDP 11/70 computer provided with a Hewlett-
Packard 1350 vector graphics display. The primary
goal, a specified end-effector trajectory, is entered
either through a file or interactively with a joystick.
The secondary goal information, obstacle avoidance
point and velocity, is determined from a mathematical
description of the world. In a physical implementa-
tion, the secondary goal information would be ob-
tained from sensory range-finding devices (Espiau and
Andre 1984). Details of the implementation can be
obtained from Maciejewski (1984).

In implementing Eq. (9) several types of decisions
must be made, one of which involves the rank of the
matrices for which the pseudoinverse is computed.
One of the aesthetic attractions of pseudoinverse for-
mulations is that they are valid independently of the
rank of the matrix. If a matrix has full rank, then the
pseudoinverse yields finite values as weights for the
input singular vectors. If a matrix becomes singular,
then the pseudoinverse yields a zero coefficient for the
direction of the input singular vector in the null space.
A simple example demonstrates that these two cases
cannot blend smoothly into each other. The matrix A
is its own pseudoinverse:

However, the matrix B has a pseudoinverse that di-
verges from A~:

as the parameter E makes B approach A. Therefore,
the main problem in a pseudoinverse formulation is
not at a singularity when the pseudoinverse formula-
tion assigns a zero component in the missing degree of
freedom but near a singularity where a very large com-
ponent may be applied. The solution involves evaluat-
ing the effective rank of B and treating it as singular
whenever it would yield unacceptably larger answers
(Noble 1975). Since this is used in a real-time con-
troller for a physical system, limits must be based on
physical speed limitations rather than loss of signifi-

cance as would apply in a numerical analysis situation.
However, independent of the value of the threshold of
rank, there will be a discontinuity when the change of
rank is noted.

If assumptions regarding the rank of a matrix can be
made, then the computation of the pseudoinverse can
be simplified. Unless the specified task is unachiev-
able, the end-effector Jacobian is of full rank, and its
pseudoinverse need not be explicitly calculated. The
approach used here is to solve, by using Gaussian
elimination, for fl, a six-element vector, and y, a 6 X r~
matrix, in the equation

where * denotes the complex conjugate transpose. It is
then easily shown (Klein and Huang 1983) that the
desired quantities J+i and Je Je are obtained from

The elements of the Jacobians are efficiently computed
by using the screw axis formulation (Waldron 1982).
On the other hand, the 3 X n matrix [Jo(I - Je J~)]

cannot always be assumed to be of full rank, and
therefore the Gaussian elimination approach used
above is not applicable. In this case the pseudoinverse
is explicitly calculated using the recursive method
presented by Greville (1960). Within this algorithm
one implicitly makes decisions regarding the rank in
terms of evaluating the linear independence of matrix
columns. Therefore, a sufficiently large threshold must
be applied to limit high velocities near singularities.
Although theoretically this technique works as well on
a matrix as on its transpose, numerically it is very
important to transpose this matrix so that Greville’s
algorithm is applied to an n X 3 - order matrix (n > 3).
Since this algorithm operates on columns, the correct
decision for rank is much more easily applied to 3,
rather than n, columns.

Proper decision making regarding rank is especially
important since the system tends to move such that
either the obstacle point cannot move any farther
without changing the end-effector or the system finds
a new point to become the obstacle point. Besides
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Fig. 2. The form of the ho-
mogeneous term gain, a,,,
and the obstacles avoidance

gain, ao, as a function of the
obstacle distance.

choosing the proper threshold, an additional method
can be applied to minimize rank change effects. This is
to consider obstacle avoidance only when sufficiently
close to an obstacle, which would be compatible with
limited-range proximity sensors. In order not to intro-
duce a discontinuity, the obstacle avoidance term
should be tapered as a function of distance.
To effectively control the degree of influence that an

obstacle has on the resultant manipulator motion, the
solution for the joint angle rates was modified to

where d is the distance between the obstacle surface
and the obstacle avoidance point, Xo is now considered
a unit vector indicating direction, ao(d) is the magni-
tude of the secondary goal velocity, and a,~(d ) is a gain
term for the amount of the homogeneous solution to
be included in the total solution. The functions ao and

a,~ are described by polynomials of the form shown in
Fig. 2.
From Fig. 2 it can be seen that there are three dis-

tances that characterize changes in the value of the
gain functions. These distances are defined as the task
abort distance, dta, the unity gain distance, dug, and
the sphere of influence distance dso; . These distances
define three zones that encompass each obstacle. If the

manipulator is further from the obstacle than the dsoi,
then the obstacle has no influence on the manipulator
and the homogeneous solution can be used to satisfy
some other desirable criterion. Between the dsoi and
the dug there is a smooth transition where avoidance of
the obstacle is included in the motion specification of

Fig. 3. Simulation results
illustrating a redundant j
manipulator following a
specified trajectory (shown in . I 

I
A) while avoiding a moving ! I

triangular obstacle.

the manipulator. Inside of the dug, the influence of the
obstacle in repelling the manipulator is inversely re-
lated to the distance. If the manipulator reaches the

dta, then a collision is considered imminent and the
specified task is suspended. This distance is determined
by such factors as the maximum velocity and physical
dimension of the manipulator, thus allowi.ng the ma-

nipulator to slow down and stop before physical con-
tact occurs.

Since use of a single worst-case obstacle point for
motion planning may result in oscillations for some
configurations or environments, the use of multiple
secondary goals has been considered as a way of mini-

mizing switching between homogeneous solutions. In
this implementation the two worst-case obstacles were
considered by modifying the solution for ’the joint
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Fig. 4. Simulation results of
the obstacle avoidance

scheme for redundant ma-
nipulators applied to envi-
ronments with workpieces on
a moving conveyor.

angles to

where hi is the ith homogeneous solution, ai is its
corresponding gain, and d; is the distance to the obsta-
cle where the subscript 1 denotes the worst-case obsta-
cle. The greater the disparity between <~ and d2, the
closer a, comes to unity, with a2 approaching zero.
With d, approximately equal to d2, a, = cx2 = 0.5
with the overall homogeneous solution split between
the two goals. When we blend the homogeneous solu-
tions in this manner, the manipulator has the capabil-
ity to make smooth transitions to allow for the varying
priorities of the secondary goals.

In implementation, certain tradeoffs in performance
must be recognized. Desirable, but contradictory,
qualities are smoothness of motion, responsiveness,
and automatic operation without planning. For exam-
ple, it is possible to formulate tasks that force the ob-
stacle point arbitrarily close to the obstacle even after
the configuration has been fully optimized. In this
situation arbitrary end-effector velocities can no longer
be permitted, and the primary goal must be modified.
By including more obstacle points, motion is
smoother but the most critical obstacle distance may

not be as large. If specific knowledge about the manip-
ulator configuration is used, the algorithm can run
faster but at the expense of generality. -

4. Results .

Most of the evaluation of the obstacle avoidance for-

mulation was performed using the two-dimensional
simulation due to the greater degree of redundancy
available with respect to the task and the correspond-
ing reduction in computation time that allows for
real-time joystick specification of the end-effector tra-
jectory. The cycle time for a seven-degree-of-freedom,
two-dimensional manipulator, including secondary
goal calculation and graphic display time, was 47 ms.
Figure 3 depicts a typical simulation run illustrating
the effectiveness of the formulation. The manipulator
is commanded along a specified end-effector trajectory
that is required to complete the task. The maximum
velocity is 20% of the total manipulator length per
second. The moving triangular obstacle is avoided
without deviation from the assigned end-effector tra-
jectory. The secondary goal terms generated from
environmental information serve to reorient the ma-

 © 1985 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at SAGE Publications on January 14, 2008 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


115

Fig. 5. Simulation results for
a redundant manipulator
working in a cavity with in-
board links avoiding the
throat.

nipulator so as to conform to the obstacle surface,
thereby retaining maximum use of the redundant de-
grees of freedom in avoiding the obstacle. Note that
the workpiece itself is seen as an obstacle by the in-
board links. From Fig. 4 it can be seen that the formu-
lation works equally well for a moving workpiece as
for an assembly line employing conveyors. Results
obtained from a somewhat more imposing obstacle
(Fig. 5) illustrate the effectiveness of the multiple sec-
ondary goal formulation. The close quarters present
with the end-effector investigating the interior of the
obstacle result in multiple worst-case goals. The ap-
propriate blending of homogeneous solutions, how-
ever, keeps the manipulator close to the center of the
opening, maintaining an optimum orientation without
oscillations.
The three-dimensional simulation was evaluated for

a nine-degree-of-freedom manipulator design pro-
posed by Waldron (1980). A single frame from a sim-
ulation in which the manipulator was commanded to
spray-paint a car door illustrates the action of the ho-
mogeneous solution in preventing contact of inboard
links with the car door while the end-effector follows
the required trajectory (Fig. 6). The computation cycle
time for the simulation, excluding graphics and sec-
ondary goal calculation, was 102 ms.
While planned for dynamically varying and unpre-

Fig. 6. A single frame from a
simulation of a 3-D redun-
dant manipulator operating
through the window of an 

’

automobile door.

dictable environments, this technique also has applica-
tions in repetitive situations. By using this formulation
in the simulation of a task using a CAD/CAM data
base for obstacle descriptions, optimal joint configura-
tions can be saved and reused in the homogeneous
term (Yoshikawa 1984). In this way the advantages of
the technique presented here can be realized at an
even faster cycle time. This would be particularly ad-
vantageous where moving conveyors are employed
and a single joint state would not be sufficient.

5. Conclusion

Past uses for the homogeneous solution of redundant
manipulators have described the secondary goals in
terms of the joint space variables. The formulation
presented here illustrates an extension to the uses of
the homogeneous solution to include criteria that are
better described in Cartesian world space coordinates.

Obstacle avoidance is clearly one such criterion.
The real-time demands of obstacle avoidance in

practical applications, particularly in dynamic envi-
ronments, demands a computationally efficient algo-
rithm. This formulation, with a cycle time of 102 ms
on a general-purpose computer, clearly demonstrates
the potential for a viable system in a physical realization.
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Appendix: Proof That BICBI+ = [CB]+ for the
Hermitian and Idempotent Matrix B

For an m X n matrix A, the pseudoinverse, A~, is
defined by the following four properties

where the operation * denotes the complex conjugate
transpose. Given an m X n matrix C and an n X n

idempotent and hermitian matrix B, to show that
B[CB]+ = [CB]+, one must show that B[CB]+ satisfies
the above conditions that define the pseudoinverse.
Let A = CB and G = B[CB]+. Evaluation of the ex-
pression AGA results in

Evaluation of the expression GAG results in

Evaluation of the expression (GA)* results in

Evaluation of the expression (AG)* results in

The above four results show that G = A+. Since the

pseudoinverse of a matrix is unique (Penrose 1956),
B[CB]+ must equal [CB]+.
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