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Abstract: With the rise of urban population, updated spatial information of indoor environments is

needed in a growing number of applications. Navigational assistance for disabled or aged people,

guidance for robots, augmented reality for gaming, and tourism or training emergency assistance units

are just a few examples of the emerging applications requiring real three-dimensional (3D) spatial data

of indoor scenes. This work proposes the use of point clouds for obstacle-aware indoor pathfinding.

Point clouds are firstly used for reconstructing semantically rich 3D models of building structural

elements in order to extract initial navigational information. Potential obstacles to navigation are

classified in the point cloud and directly used to correct the path according to the mobility skills of

different users. The methodology is tested in several real case studies for wheelchair and ordinary

users. Experiments show that, after several iterations, paths are readapted to avoid obstacles.

Keywords: indoor modeling; navigation; laser scanner; point clouds; obstacle detection; evacuation

routing; disabled people

1. Introduction

Over the last few years, indoor navigation became a subject of research interest because people

spend a considerable amount of their time in indoor spaces such as houses, office buildings, commercial

centers, and transportation facilities, among others. According to the Environmental Protection Agency,

people spend on the average 90% of their time indoors [1]. Furthermore, in 2008, the percentage of

people living in cities surpassed those living in rural areas, and this trend is expected to continue;

the United Nations estimates that 70% of the world’s population will be living in cities and towns by

2050 [2], where buildings and their large variety of associated spaces such as underground passages, sky

bridges, garages, yards, etc. are becoming increasingly complex conglomerates of enclosed spaces [3].

Indoor navigation consists of finding the most suitable path connecting two positions within

an indoor environment while avoiding collision with obstacles. Indoor navigation is related to the

specific tasks of pathfinding and route-planning; while pathfinding deals with the detection of possible

routes between two locations, route-planning is directed to optimization of the route given certain

constraints [4].

One direct application of indoor pathfinding is the navigational assistance for blind or wheelchair

people, where algorithms generate efficient paths according to their mobility restrictions [5]. Local

authorities are increasingly being required to make accessibility diagnoses and to take corrective

actions in public spaces for enabling navigation for disabled people [6]. Building crisis management,
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such as fire protection or planned terrorist attacks, is another application where planned paths can

provide possible safe and efficient evacuation paths under different emergency conditions [7]. Other

applications are related to augmented reality, very important for gaming, tourism purposes, or for

training emergency assistance units such as fire brigades or military and police corps. Moreover, the

guidance of robots and drones inside buildings constitutes an application of interest for the future,

which is also of special interest in emergency situations.

Navigational information is extracted from geometric models representing as-built environments.

Traditionally, two-dimensional (2D) drawings or building layouts were used as input. However,

they usually contain 2D geometric information, while three-dimensional (3D) and semantic data are

missing. Successful pathfinding for a 3D indoor environment depends on the accurate and updated

geometry, semantics, and topology of building components and spaces [8]. Openings in buildings such

as doors and windows, transition spaces such as staircases or corridors, and structural elements such

as beams and columns are relevant for indoor planning specially in crisis management applications.

The position and size of indoor obstacles are also of a great interest because they usually disturb the

navigation process.

Building information models (BIMs) stand as a valuable source for facilitating navigation [9].

However, they are usually not up to date, thereby not representing the current state of buildings and

their content.

Laser scanners are well established in the robotics and remote-sensing communities for collecting

and analyzing three-dimensional data of the as-built status of large-scale infrastructures. Acquisition

is fast and point clouds depict the reality with high quality. The raw data from the acquisition process

need to be processed in order to extract the useful information for the purpose for which it is intended.

Although intense efforts were made in the last few years for extracting geometric, semantic, and

topological features from point clouds [10–12], as-built modeling is still an active research of interest.

Efforts are mainly aimed to reconstruct building components, spaces, and openings, while less

attention is paid to obstacle detection. Indoor environments are often busy and cluttered with the

presence of objects such as pieces of furniture that can act as obstacles in indoor pathfinding, affecting

the safety of pedestrians. Although obstacle detection is fundamental for obstacle-aware indoor

pathfinding, state-of-the-art research on indoor navigation does not usually deal with the obstacle

issue, and routing algorithms mostly consider empty spaces [13].

The focus of this work is to develop an obstacle-aware indoor path-planning methodology based

on 3D point clouds. Most indoor models in the literature ignore real architectural characteristics

such as the number of doors, openings, and windows, as well as obstacles [14]. The contribution of

this work is related to the perception and understanding the role of the as-built models of indoor

environments in order to enable pathfinding according to the spatial restrictions of pedestrians. Point

clouds are firstly used to reconstruct semantically rich 3D indoor models, which constitute the basis for

network generation. Next, point clouds are directly used to update the network. The navigable space is

extracted from the surfaces representing floors and doors, and initial paths are updated when obstacles

are detected in the point cloud, and when they are considered to interrupt the navigation process.

This paper is organized as follows: Section 2 reviews related works and establishes their differences

with respect to our work. Section 3 describes the proposed methodology. Section 4 reports the results

obtained from applying the methodology to different case studies. Finally, Section 5 is devoted to

concluding this work.

2. Related Work

Several reviews were presented in the last few years with regard to as-built modeling from point

clouds [11,12,15]. Most of the works addressed, with great success, the reconstruction of structural

building components [16–18] and openings [19–22], while less attention was paid to the accurate

modeling of floor elements, to the modeling of the free space, and to the modeling of obstacles, although

they are essential for indoor path finding.
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The detailed modeling of floor elements was recently addressed by several works. The combined

use of point clouds and mobile laser scanner trajectories was used to segment and classify floors into

stairs, ramps, and flat surfaces in indoor environments [23,24]. The procedure is based on the angle

formed by trajectory with regard to a horizontal plane, followed by a projection in the point cloud

discretized into a voxel-based model and a region growing. The trajectory path was also used outdoors

to detect road regions and thereby classify ground elements into curbs, sidewalks, ramps, and stairs

from geometrical and topological features [25,26].

Trajectory is a valuable source of information also in terms of modeling the free space. It can be

assumed that trajectory depicts the path followed by the system during the acquisition process. This

fact is exploited in indoor modeling for detecting open doors, which are the transition elements between

two adjacent spaces [26,27]. In Reference [26], after door detection, the timestamp correspondence

between trajectory and point cloud was used to subdivide the raw point cloud into connected rooms

by implementing an energy-minimization function. Subdivided spaces were next submitted to a

surface-based modeling approach. Trajectory was also used by Reference [27] to label doors, floors,

walls, and ceilings in indoor spaces. This work was extended in Reference [28], in which the indoor

space was subdivided by implementing morphological operations and connected components.

In terms of indoor navigation, a methodology extracting topological relationships between

the spaces of an 3D indoor environment modeled from point clouds was recently presented by

References [18,29]. Although these works solved, with great success, the modeling of indoor structures

and the extraction of topological relationships between them, obstacles were not taken into account.

Another very interesting work is the one presented by Reference [30], in which indoor geographic

information system (GIS) maps were used to create a topological navigation graph to perform

path-planning for wheelchair users. Also, in this paper, obstacles were not considered.

Most of previous works on indoor navigation considering obstacles were mostly 2D approaches.

A skeleton-abstraction algorithm which generates a graph of intervisible locations was proposed by

Reference [31]. Each node in the graph represents a point location, and each edge represents a visible

connection between them. The proposal considered the presence of obstacles but as a set of 2D points,

for example, from computer-aided design (CAD) files or 2D floorplans. Also, considering the 2D

representation of indoor environments, a formal definition of an indoor routing graph was presented

by Reference [32], in which the presence of obstacles inside rooms was manually represented in the

indoor network by adding nodes around the obstacles. A data model to support pathfinding for

vehicles among moving obstacles in forest fires was implemented in Reference [33]. Static obstacles

such as trees and buildings, and dynamic simulated obstacles such as the spread of fire were considered

in the pathfinding. The GIS-based simulation was tested in a case study, in which the geometric model,

composed by the terrain, road network, trees, and buildings, was obtained from OpenStreetMap, and

the fire spread was the obstacle represented by moving polygons crossing the network. Mortari et

al. [14] presented a network-generation strategy taking into account obstacles in indoor scenes. The

approach was based on predefined models, where obstacles were represented as 2D geometry in the

floor plane. The result was a 3D network because 2D floor plans were abstracted at different height

levels. Xiong et al. [8] introduced a method that supports 3D indoor path-planning from semantic

3D models represented in LoD4 CityGML. Although the method considered obstacles, experiments

for testing the method were carried out with models without the presence of obstacles. Lui et al. [34]

developed a methodology for real indoor navigation based on grid models, which were obtained

from 2D floor plans where obstacles were predefined. Rodenberg [35] proposed a methodology for

indoor pathfinding based on an octree representation of indoor point clouds. The A* pathfinding

algorithm, based on using heuristics to guide the search, was conducted through empty nodes and,

consequently, obstacles were avoided. Li et al. [36] also recently presented a path-planning method for

drones indoors based on occupancy voxel maps, and on which the navigable space was composed of

the empty voxels.
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In this paper, the methodology is based on the use of point clouds which have the capability to

depict the real state of the indoor scene. Point clouds are not only the basis for reconstructing permanent

building elements such as envelope or openings, but they are also directly detected from point clouds,

enabling obstacle-aware indoor pathfinding. Preliminary experiments on indoor pathfinding from

point clouds considering obstacles are presented in Reference [37].

3. Methodology

The methodology starts with the reconstruction of a simple surface-based indoor model including

openings. Point cloud regions not belonging to permanent building elements, and consequently

belonging to elements such as furniture are used for obstacle detection. Indoor paths are initially

generated from the 3D building model, and the original point cloud is used to check if obstacles

intersect with the indoor path. If obstacles exist, the indoor path is readapted until no obstacles

are detected, enabling accurate pathfinding. The methodology is organized in terms of building

reconstruction (Section 3.1), obstacle detection (Section 3.2), and indoor path-planning (Section 3.3).

3.1. Building Reconstruction

This section includes the steps implemented to generate simple 3D models, enriched with

semantics and topology, which are the basis of the indoor pathfinding algorithm. Building envelope

elements, including floors, ceilings, and walls, are modeled using a data-driven approach (Section 3.1.1),

while openings, i.e., windows and doors, are extracted with a model-driven approach based on the

generalized Hough transform (Section 3.1.2). The geometry of these building elements is represented

according to a gbXML schema (Section 3.1.3), because it can be directly used for extracting the initial

navigable network.

3.1.1. Envelope Reconstruction

The first step of the methodology aims to parameterize the building envelope including ceilings,

floors, and walls, as well as to isolate points belonging to indoor elements such as furniture, columns,

plants, and other objects that can behave as obstacles to navigation (Figure 1).

 

 

Figure 1. Workflow of the building envelope reconstruction.

The point cloud is segmented into planar regions by implementing a region-growing algorithm.

The algorithm includes in the region all those points satisfying two geometric conditions: planarity

and surface smoothness. In this process, thresholds are coarse enough to ensure that window and door

elements are included in the region of the wall where they are contained.

Hereafter, regions are labeled by simple geometric and topologic hierarchical classification into

four classes: ceilings, floors, walls, and obstacles. Floors and ceilings are the lower and the higher

horizontal regions, respectively. Walls are those vertical regions adjacent and perpendicular to floors

and ceilings. Obstacles are the remaining regions, that is, all regions not satisfying the conditions to

be floors, ceilings, and walls. The first three are intersected with one another in order to obtain the

boundary points defining envelope elements. The last class consists of the remaining regions of an

indoor scene such as those belonging to furniture. Although columns are structural elements, they are

also considered as obstacles for navigation purposes if they are inside the space enclosed by envelope

elements. Points belonging to this class are considered as obstacle candidates and used in the following

steps for obstacle detection and routing correction (Sections 3.2 and 3.3).
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3.1.2. Detection of Openings

As in Reference [20], windows and doors are modeled by finding parametrized rectangular

shapes in images based on the generalized Hough transform (GHT) (Figure 2). In comparison

with Reference [37], in which closed doors were extracted from color images, in this work, no color

information is surveyed, and the reconstruction of openings is based on the detection of holes in

wall regions.

 

Figure 2. Workflow of the opening detection process.

To ensure a successful rasterization, wall regions are rotated around the Z-axis in a way that they

become parallel to the XZ or YZ plane, as appropriate [38].

For each wall, the associated planar region (Figure 3a) is converted to a raster by projecting the

points on the wall plane defined by its boundary points (Figure 3b). For this purpose, a rectangular

matrix is created, and pixels are assigned a value of either one or zero depending on whether or not

any points fall inside the pixel (Figure 3c). The binarized raster is submitted to a median filter to reduce

salt-and-pepper noise. Finally, edge detection is performed using the Canny method, which finds

edges by looking for local maxima of the gradient of the image (Figure 3d).

 

. 

Figure 3. (a) Point cloud; (b) point cloud projected into a rectangular matrix; (c) binarized image;

(d) edge image (adapted from [35]).

Edge images are the input of the GHT. Rectangles are found and detection is enforced taking into

account a minimum and maximum width and length. As openings are assumed as holes in the wall

region, they can be confused with holes caused by the presence of other objects with similar size and

shape such as cupboards, bookshelves, etc. In this case, candidates could be pruned by analyzing the

original 3D point cloud through histograms point-to-plane as in Reference [39], in which the number

and position of the peaks with regard to the wall plane made possible the classification of candidates

in closed doors, open doors, or furniture. Alternatively, door candidates can be verified as doors if

they are detected from two adjacent indoor spaces. If the trajectory followed by the system during

acquisition is available, it can also be used for door verification.

3.1.3. Model Generation

Features extracted from the previous steps are organized into an explicit format. Although other

schemas such as cityGML, indoorGML, and IFC are more complete, we consider gbXML as a suitable

model since detailed geometry is simplified, enabling the preservation of the essential relationships

between rooms and indoor passes. The gbXML model represents buildings with their geometry,

semantics, topology, and appearance. Even though the schema was developed to support energy

analysis, semantic contents such as constructive materials make it appropriate for other applications

such as emergency routing in a fire crisis, etc. Spaces are represented as enclosed units defined by
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building envelope components, and their geometry is simplified, since building components are

represented as surfaces delimited by their boundary points, which are defined by Cartesian coordinates

(x, y, z). Consequently, building elements such as walls have no thickness. Openings are included in

the walls where they are contained, and they are also represented by their boundary points. Several

works already support the use of gbXML for route-planning in emergency response applications [7,40].

3.2. Obstacle Detection

In this approach, an obstacle is defined as the presence of a set of 3D points interrupting the

navigation between two nodes. The existence of obstacles is analyzed by checking if there are points

inside the volume of a buffer representing a person (Figure 4). A rectangular prism is selected as

the buffer shape. The buffer size varies upon considering the user as a walking person or a person

on wheelchair.

 

Figure 4. Schema of the obstacle detection strategy (adapted from [35]).

The algorithm moves the buffer along the path (from Node O (origin) to Node D (destination))

considering a step (d) equal or inferior to the buffer depth to ensure that the whole path is analyzed.

For each step, the algorithm checks if there are points of the obstacle class inside the buffer. In case a

set of points is detected, it is analyzed to determine if the obstacle candidate is a true of false obstacle

for indoor navigation. For instance, we consider a piece of furniture as a real obstacle in contrast to

plant leaves or spurious points.

Size and aggregation are the features considered for evaluating obstacle candidates. Size is

measured as the number of points, and it is related to the obstacle size. Aggregation is measured as

the median of the Euclidean distance from each point to the closest point, and it is related to obstacle

consistence. An obstacle is considered a true positive if it has a size greater than a size threshold and

an aggregation less than an aggregation threshold.

Since both features depend on the point cloud density, the thresholds are also a function of it. In

this way, the average point spacing of the entire dataset plus a 10% safety margin, and the number

of points in an area equal to 10% of the buffer section are the thresholds for aggregation and size,

respectively. In both cases, the parameters are selected with respect to empirical knowledge. They are

tested to be appropriate for distinguishing real obstacles from spurious points or other small objects

not impeding the navigation.
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3.3. Indoor Pathfinding

The gbXML model introduced in Section 3.1.3 is used for the construction of a navigable model,

which consists of a logical model including all indoor spaces and navigable networks for individual

spaces [20]. The logical model is a graph reflecting the building topology, where graph nodes represent

individual spaces, and links represent spatial relations among adjacent spaces. The navigable network

is generated based on the Voronoi diagram with initial nucleation nodes located at the doors and

concave corners, while additional nodes are added later in order to densify the network. Links allowed

for navigation have a distance attribute used for the shortest pathfinding. The gbXML model conceives

building elements as surfaces and, consequently, in a correct representation according to the schema,

walls would have no thickness. In case of a building representation in which doors are represented by

two surfaces or by a prism, the condition for the initial network generation would be a one-to-one

representation for doors.

Dijkstra’s algorithm is used in this research to find the shortest path [41]. It computes a path

between start and goal nodes by searching for the minimal travel cost based on distance attributes.

Because the algorithm expands by means of analyzing all neighbors, the speed of the algorithm

depends on the size of the network and the distance between the start and goal node. Therefore, it

can be replaced with any pathfinding algorithm to improve the computational efficiency, such as the

widely used A* [42].

Because the initial model does not include information about indoor objects, such as furniture

or installations, the resulting paths are only a rough approximation of the real situation and may not

be precise enough for applications like robot navigation. However, the paths are updated locally

when obstacle objects are added to the navigable model. A polygon identifying an area of obstacle

points detected by the buffer described in Section 3.2 triggers modification of the navigable network. A

new obstacle area is calculated and added to the network. In order to reduce the number of points

added to the network, the obstacle polygon is processed as follows: (a) a convex hull is calculated; (b)

consecutive collinear points and edges shorter than a minimum edge length threshold are removed as

they do not change the shape of the polygon; and (c) in order to avoid collision detection with the

same obstacle points in the next iteration of the algorithm, the polygon is expanded by the half of the

buffer depth size (d/2). The obtained polygon is added to the obstacle area defined in the previous

iteration. Points belonging to the final polygon are then used to update the navigable network. Links

between network nodes, which are within the obstacle area, are excluded from navigation.

In theory, introduction of a new obstacle area to the network (see Figure 5a,c) should result in

paths which are longer than those obtained in a previous iteration, as it is necessary to go around

a detected obstacle object. However, in some cases, consecutive paths get shorter. For instance, the

length of the shortest path shown in Figure 5b is 5.42 m, while the path length obtained after adding a

new obstacle polygon to the network is 5.14 m (see Figure 5d). This is related to the location of network

nodes and navigable network generation method. The method may be improved by introduction

of additional nodes in areas not covered by the network; random or regular distribution may be

considered. However, it is out of the scope of this research.

The presented network is a discrete model and, thus, calculated paths are an approximation of

real paths. It was shown that the method used in this research produces better accuracy of the route

length in comparison to prevailing approaches [40].
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. 

Figure 5. Pathfinding procedure: (a,c) navigable networks (solid lines) with obstacle areas (dashed

polygons); (b,d) paths (thick solid lines) calculated in consecutive iterations.

4. Discussion

The methodology was applied to several real case studies and experiments were carried out both

for walking persons and for persons on a wheelchair. Section 4.1 introduces the instruments and data

used, while Section 4.2 presents the results.

4.1. Instruments and Data

4.1.1. Case Studies

Several case studies with different levels of complexity were tested. Figure 6 shows two individual

rooms. The first one is a videoconference room in an academic building. It was chosen because it has

two doors, seven windows, and a big conference table in the middle of the indoor space (Figure 6a).

The second one is an office space inside the same academic building. In this case, one door and two

windows are present inside the space, as well as two cupboards and one table (Figure 6b).

 

 

Figure 6. Three-dimensional view of the point clouds used as case study 1 and case study 2:

(a) videoconference room; scale bar of 4.5 m; (b) office; scale bar of 3.0 m. The ceiling is removed in all

views to facilitate visualization.

The third and fourth scenarios were composed of several rooms. Case study 3 was composed of

the two previous scenes together with a corridor linking them (Figure 7a). Case study 4 comprised

eight rooms and two corridors (Figure 7b). Case study 4 was provided by the ISPRS -International

Society for Photogrammetry and Remote Sensing- Benchmark on Indoor Modeling [43].



ISPRS Int. J. Geo-Inf. 2019, 8, 233 9 of 18

 

 

Figure 7. Three-dimensional view of the point clouds used as (a) case study 3 (scale bar of 6.0 m), and

(b) case study 4 (scale bar of 10.0 m). The ceiling is removed in all views to facilitate visualization.

4.1.2. Instruments and Data

The survey of case studies 1, 2, and 3 was carried out with a terrestrial laser scanner FARO

Focus3D X 330, while case study 4 was acquired with an indoor mobile mapping system Viametris

iMS3D [43]. The technical characteristics of the laser devices are summarized in Table 1.

Table 1. Technical characteristics of the FARO Focus3D X 330 and Viametris iMS3D according to the

manufacturer datasheet.

Technical Characteristics FARO Focus3D X 330 Viametris iMS3D

Maximum measurement range 330 m 80 m
Ranging error ±2 mm 30 mm
Step size (vertical/horizontal) 0.009◦/0.009◦ 0.25◦/0.25◦

Field of view (vertical/horizontal) 300◦/360◦ 360◦/360◦

Measurement rate (points per second) 122,000–976,000 86,000
Trajectory No Yes

Most processes are data-driven and, consequently, they are highly influenced by point cloud

quality, especially in terms of completeness. This means that acquisition has to be performed such that

the whole scene, and in particular the obstacles are covered. The coverage of the complete scene is

relatively easy when data are acquired with an indoor mobile mapping system such as in case study 4;

however, acquisition has to be carefully planned when a terrestrial laser scanner is used such as in case

studies 1, 2, and 3. On the other hand, openings are detected as holes in the methodology. Therefore,

they should be open during the acquisition process.

Point clouds from the same building were registered into the same coordinate system. Thus,

datasets of case studies 1, 2, and 3 were registered by manually selecting at least four control points

between point clouds and minimizing the sum of squared distances among all point pairs, followed by

a fine registration performed based on the Iterative Closest Point (ICP) method [37]. The point cloud

of case study 4 was already registered due to the intrinsic acquisition process based on Simultaneous

Localization And Mapping (SLAM). In the latter, the point cloud was manually subdivided into rooms.

All point clouds were filtered using a 0.03-m octree (for X-, Y-, and Z-directions) to reduce the number

of points and to ensure uniform density.

4.2. Building Indoor Models

As explained in Section 3.1.1, the first step in building indoor reconstruction consisted of

segmenting the point cloud into planar regions and classifying them into four classes: walls, floors,

ceilings, and obstacles. It should be noted that each room was processed individually and, consequently,

the point cloud of case study 4 was manually segmented into 10 subsets correspondent to the 10 rooms.

The methodology was implemented in Matlab software.
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Normal vectors were calculated per point using Principal Component Analysis (PCA) and

considering a neighborhood of 50 closest points. Segmentation was carried out by considering an

angle threshold of 45 degrees and a point-to-plane distance of 0.3 m. The use of these coarse thresholds

guaranteed that most window and door components such as frames were included in the region of the

wall where they were contained. Regions with a size inferior to 50 points were directly assigned to the

obstacle class. Horizontal and vertical regions were classified into walls, ceilings, and floors according

to their size, adjacency relationships, orientation, and position with regard to the center of the scene.

Those regions not labeled as building envelope classes (walls, floors, and ceilings) were included in the

obstacle class. Figure 8 shows the obstacle class obtained for case study 3 and case study 4. Indoor

elements such as columns or pieces of furniture like chairs, tables, desks, or bookshelves were classified

as obstacles.

 

Figure 8. Obstacle class obtained after segmentation for case study 3 (a) and case study 4 (b).

Once regions representing walls, ceilings, and floors were intersected to obtain the boundary

points that defined them, they were used to create a raster image for each wall in order to search for

windows and doors. The resolution of the raster was 0.04 m. As in Reference [30], input parameters to

detect windows and doors were required, meaning that previous knowledge about the size of openings

was required. The minimum and maximum width and height used in these case studies were 100 cm,

130 cm, 80 cm, and 100 cm for windows, and 70 cm, 90 cm, 180 cm, and 240 cm for doors. Because

doors and windows were searched from edge images in two independent processes and the GHT is

based on a maximum analysis, there could be detected both a door candidate and a window candidate

for the same opening.

In case studies 1 and 2, the most voted candidates were selected. No other false positives were

obtained because of the low presence of other objects with the same shape and size as windows and

doors. Figure 9 shows an example of the detection of windows and doors in case study 1. Openings

were finally submitted to a regularization process to make windows and doors with equal width

and height.

In contrast to case studies 1 and 2, in case study 4, several false positives were found due to

the presence of false holes in the walls caused by doors themselves when they were open. Since

the trajectory followed by the system during the acquisition was available, doors were pruned as in

Reference [19]. For this reason, only doors traversed by the trajectory were included in the model.

Despite the fact that it implied an incomplete modeling of the indoor environment, the models were

suitable for testing the indoor pathfinding for different users in an environment with multiple obstacles.

The evaluation of the accuracy of the modeling method is out of the scope of this paper, since all steps

implemented were already evaluated in the literature.
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Figure 9. Results of window (a) and door (b) detection in case study 1 (videoconference room). From

top to bottom: raster image, raster after median filtering, and edge image with detected openings

in green.

Once openings were found, their 2D geometry was reprojected to 3D, and information was

structured in semantic 3D building models according to gbXML schema specifications. In Figures 10

and 11, 3D models of the four case studies are visualized in FZK software. The elements of the building

are visualized in different colors according to their type of surface.

 

Figure 10. The gbXML models for (a) case study 1 and (b) case study 2. The ceiling was given

transparency to improve visualization.

 

Figure 11. The gbXML models for (a) case study 3 and (b) case study 4. The ceiling was given

transparency to improve visualization.

4.3. Indoor Pathfinding in Real Scenarios

Experiments were carried out for both walking people and people on wheelchairs. Therefore,

the rectangular buffer size representing a person was different for both cases, as along with the buffer

displacement (d), which was calculated from the minimum number of steps necessary for analyzing the
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whole path (Figure 12). With regard to wheelchair people, buffer width was selected as the minimum

width according to the United Nations [40].

 

Figure 12. Buffer size for (a) walking people and (b) people on wheelchairs.

Taking into account that point clouds were filtered with an octree of 0.03 m in X-, Y-, and

Z-directions, aggregation and size thresholds were calculated according to the criteria defined in

Section 3.2. As the objective was simply to distinguish elements causing an obstacle to navigation such

as pieces of furniture rather than spurious points or small elements not interrupting the navigation, real

obstacles were defined as those sets of points for which aggregation was higher than 0.033 m and size

was higher than 28 points and 83 points for walking people and people on wheelchairs, respectively.

This means that an obstacle was a continuous object with the size of at least 10% of the buffer size.

Different routes were simulated for testing the methodology. Origin nodes representing the initial

position were manually determined for simulating representative situations. In Figure 13, a schema

with the nodes used for testing the methodology is represented. For case studies 1, 2, and 3 (Figure 13a),

the static obstacles such as pieces of furniture are represented. For case study 4 (Figure 13b), most of

obstacles belonged to dynamic elements such as people; therefore, just one table is represented.

 

Figure 13. A schema of the indoor scenes in which doors are represented in green, main pieces of

furniture in blue, and indoor positions selected as origin nodes in red: (a) case studies 1, 2, and 3;

(b) case study 4.

Results for both walking people and people on wheelchairs are shown in Figures 14–16. Red

points represent obstacle points detected through successive iterations. Green points represent the

path followed from the origin to the destination node. Blue points represent the buffer section in the

origin and destination nodes.



ISPRS Int. J. Geo-Inf. 2019, 8, 233 13 of 18

 

 

 

Figure 14. The resulting indoor paths are represented in green for the tests carried out inside the

videoconference room (“Node A to closest door” and “Node B to closest door”) (units in meters).

 

 

Figure 15. The resulting paths for “Node C to office door” and “Node D to office door” are represented

(units in meters).
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Figure 16. “Node D to closest exterior door” and “Node D to Node E” tests are represented. In these

cases, no obstacles were found in the first indoor path; thus, no iterations were needed (units in meters).

The tests simulated in the interior of the videoconference room are shown in Figure 14. For the test

carried out from Node A (origin) to the closest door (destination), the shortest path was determined

after 10 iterations for walking people, and after six iterations for people on wheelchairs. For the test

performed from Node B (origin) to the closest door (destination), no iterations were needed for both

buffer sizes.

Figure 15 represents the results for the tests carried out inside the office room in which the

destination was the only door of the office. Starting from Node C, the algorithm needed 11 iterations

for walking people, while it was not possible to reach the office room for people on wheelchair due to

the presence of obstacles. No iterations were needed when starting from Node D.

Figure 16 shows two tests were performed taking into account the whole indoor environment

encompassing three rooms. From Node D to the closest exterior door, and from Node D to Node E, no

obstacles were detected in the initial path; thus, no iterations were needed.

Figure 17 represents the tests carried out for case study 4. Node F to Node G corresponds to a

route between two different rooms. As no obstacles were found, the shortest route was obtained after

the first iteration for both walking people and people on wheelchairs. Node H to Node I represents the

route from a position inside the corridor to the door on the corridor. The method did not distinguish

between static obstacles and dynamic obstacles; for this reason, the door could not be reached since

several people in the corridor were detected and considered as obstacles.

Figure 18a represents a zoom view of the “Node C to office door” test for wheelchair people and

“Node H to Node I” for pedestrians. The four blue points represent the wheelchair buffer in the first

case (a) and the walking person buffer in the second case (b). As it can be observed, there was no space

for moving the buffer to reach the destination. The big circle highlights the obstacle points, while the

small circles highlight points that were detected as potential obstacles at first, and discarded as real

obstacles after checking their size and aggregation.
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Figure 17. “Node F to Node G” and “Node H to Node I” tests are represented. While, in the first case,

no obstacles were found, in the last case, the destination could not be reached due to the presence of

people in the corridor detected as obstacles (units in meters).

 

 

 

 

 

 

Figure 18. Zoomed view of the office room during the “Node C to office door” test for the wheelchair

buffer (a) and during the “Node H to Node I” for walking people (b). In both cases, the destination

could not be reached due to the presence of static and dynamic obstacles, respectively.

5. Conclusions

This paper proposes an automatic methodology for obstacle-aware indoor pathfinding. Point

clouds were firstly processed to parameterize and reconstruct 3D indoor maps which constituted

the basis for the network generation. Next, classified point clouds were directly used to update the

network by obstacle detection and path correction.

Similar to the update of highly autonomous driving maps for autonomous vehicles, the

methodology is based on the concept of updating the network from the use of point clouds. Obstacle

detection is dependent on data completeness. The better the scene is depicted, the more accurate the

paths are that are obtained. However, the methodology is not dependent on the complete acquisition

of the entire building, since the correction of paths is considered just for the immediate area of the

path instead of for the entire scene. In this way, although the paper is not conceived for a real-time

application, it could be used for pathfinding with mobile laser scanning data as the input, such as for

the case of autonomous wheelchairs. The distinction of dynamic and static obstacles is not considered
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in the methodology; however, this is an important topic for the generation of highly detailed 3D indoor

maps. Consequently, this topic will be considered for future work.

From the results, the following main conclusions could be drawn:

• Results show a robust methodology for indoor pathfinding under the presence of obstacles;

• Buffer size can be changed for simulating different user conditions, such as pedestrians or people

with reduced mobility;

• Although obstacles are searched in the 3D space, the network is created for each room in the

2.5D space. For instance, if a table is detected as an obstacle, the route cannot continue above or

under it;

• The methodology is quality-dependent since obstacle detection depends on the input data

completeness. The presence of occlusions from an incomplete survey can generate false negatives.

Future work will aim to extend the methodology to more complex scenarios including different

floors elements such as stairs, ramps, etc. Extending the network creation to the 3D space will also be

part of the future work, especially important for emergency applications.
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