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Obstacle Detection and Tracking for
the Urban Challenge

Michael S. Darms, Paul E. Rybski, Christopher Baker, and Chris Urmson

Abstract—This paper describes the obstacle detection and
tracking algorithms developed for Boss, which is Carnegie Mellon
University ’s winning entry in the 2007 DARPA Urban Challenge.
We describe the tracking subsystem and show how it functions in
the context of the larger perception system. The tracking subsys-
tem gives the robot the ability to understand complex scenarios of
urban driving to safely operate in the proximity of other vehicles.
The tracking system fuses sensor data from more than a dozen
sensors with additional information about the environment to
generate a coherent situational model. A novel multiple-model
approach is used to track the objects based on the quality of the
sensor data. Finally, the architecture of the tracking subsystem
explicitly abstracts each of the levels of processing. The subsystem
can easily be extended by adding new sensors and validation
algorithms.

Index Terms—Object tracking, obstacle classification, obsta-
cle detection, situational reasoning, system architecture, Tartan
Racing.

I. INTRODUCTION

AUTONOMOUS vehicles that operate in urban environ-
ments must contend with a number of challenging per-

ceptual problems. These include, but are not limited to, the
detection and tracking of roads; the detection and avoidance
of static obstacles; and the detection, tracking, and prediction
of other moving objects. The tracking requirements for au-
tonomous vehicle driving in urban settings are arguably more
complex than those for other scenarios, such as highway driving
or driving through the desert [5]. In urban settings, vehicle
speeds are slower than highway driving, but an autonomous
vehicle must contend with situations, such as stop-and-go traf-
fic, queueing at traffic signals, merging into and out of moving
traffic, and following precedence rules at intersections.

The DARPA Urban Challenge was an autonomous vehicle
race held on November 3, 2007, that took place in an urban en-
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Fig. 1. Team Tartan Racing’s vehicle “Boss” participating in the 2007 DARPA
Urban Challenge.

vironment.1 Successful completion of three different missions
culminated in an autonomous run of 60 mi in under 6 h.

Driving scenarios that the urban challenge vehicles had to
contend with included following and passing other vehicles,
safely passing a vehicle against oncoming traffic, obeying the
rules of precedence at intersections, and navigating through
parking lots. These different scenarios meant that autonomous
vehicles had to be able to detect and track other cars com-
ing from any direction, and it was necessary to differentiate
between static obstacles (such as cones, walls, and stopped
vehicles) and active vehicles that may momentarily stop (such
as at an intersection).

This paper describes the vehicle detection and tracking sys-
tem used by “Boss” (named after Charles F. “Boss” Kettering),
which was the autonomous vehicle built by Team Tartan Rac-
ing, which won the Urban Challenge in 2007. Boss, as shown
in Fig. 1, collected data from more than 13 different envi-
ronmental sensors and fused that information into a coherent
set of dynamic obstacle hypotheses. Because each sensor type
[RAdio Detection And Ranging (RADAR) or LIght Detection
And Ranging (LIDAR)] had different return and noise charac-
teristics, no single model could be used across all sensors to
describe nearby vehicles. Instead, Boss used multiple models
and a novel adaptive model switching mechanism to address the
challenges of tracking vehicles in urban settings. Section II pro-
vides an overview of related vehicle-tracking research. The per-
ception system used on our vehicle and how it models the world
is described in Section III. Our tracking system and the specific
contributions of this paper are described in Section IV. The
performance of the system and examples of how it was used
during the Urban Challenge are shown in Section V. This paper
is summarized and concluded in Section VI.

1http://www.darpa.mil/GRANDCHALLENGE/.
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TABLE I
SENSOR SETUP AND CHARACTERISTICS FOR OBJECT TRACKING

II. RELATED WORK

Most existing commercial driver-assistance systems with en-
vironmental perception are designed for longitudinal traffic in
well-structured environments (e.g., adaptive cruise control [6]).
Driver-assistance systems, which work in more complex envi-
ronments and use a multisensor fusion approach, are an active
area of research. Examples include systems for intersection
assistance or systems that assist drivers in construction sites on
a highway [7].

Research in vehicle tracking has been accomplished using
a wide variety of different sensors that include, but are not
limited to, computer vision [8], [9], LIDAR [10], [11], and
RADAR [12], [13]. In our approach, we make use of and fuse
information from our vehicle’s onboard LIDAR and RADAR
sensors to track objects around the vehicle. This fusion is
necessary to provide the proper blend of long-range detection
with short-range shape estimation. In particular, one of our
sensor modules for the SICK LMS 291 (see Table I) uses a
vehicle shape-interpretation algorithm that was originally used
for vehicle collision warnings for buses [14].

To robustly track vehicles, even in the face of sensor and
environment noise, we use a Bayesian-filtering approach [15].
Object tracking using a Bayesian filter formalism relies on an
a priori model of the object’s motion that allows the algorithm
to predict the object motion, given noisy observations. One
of the most widely used methods for state estimation is the
Kalman filter [16], [17], in which the system model is assumed
to be linear and the noise is assumed to be Gaussian. Our system
uses a more numerically stable variant of the Kalman filter
called the square root filter [18].

In our application, the autonomous vehicle must interpret
many different sensor returns, potentially from multiple targets,
and continually decide which new sensor reading corresponds
to an existing tracked object [19], [20]. We make use of an ap-
proach known as multiple hypothesis tracking [21], [22], where
multiple independent state estimators are used to estimate a
multimodal probability density. At each step of the estimation
process, new sensor data are associated with the multiple tracks
to determine whether the sensor reading corresponds to an
existing target or whether a new target should be instantiated
in the tracker. Old targets that do not receive additional sensor
information to support them will eventually be pruned from the
tracked list.

Our approach to vehicle tracking makes use of multiple
vehicle models, depending on the kind and quality of infor-

mation obtained about the object from the vehicle’s sensors.
A traditional mechanism for incorporating multiple models in
tracking is the interacting multiple model filter [23], which
uses a weighted mixture of different process models. A more
general approach is the switching Kalman filter model [24],
which represents multiple independent system state dynamics
models and switches between them (or linearly combines them)
to best fit the observed (or predicted) nonlinear dynamics of the
system being modeled. In our work, model switching is done
at a higher level than where the vehicle state is estimated. We
propose a novel voting scheme where a tracked object will be
represented by the most informative model, depending on the
quality of the sensors.

An important and cost-determining part in the process of
designing the perception system is the development of the sys-
tem architecture [25], [26]. Multiple publications that describe
general architecture concepts for sensor data-fusion systems
exist [20], [25], [27]–[29]. The architecture that we use for
object tracking was originally developed for driver-assistance
systems [30] and is designed for an efficient development
process, allowing a cost-effective extension of the system with
new sensors.

III. PERCEPTION SYSTEM

In our system, vehicle tracking is an integral part of a larger
perceptual system, which is responsible for providing a coher-
ent and consistent model of the world. The process of detecting
and tracking vehicles is directly influenced by the context in
which those vehicles are observed. Fig. 2 shows the flow of how
a world model is computed. Raw measurements received by the
individual sensors are processed in the measurement phase to be
passed to the perception phase, where features and object inter-
pretations are computed. These object hypotheses are passed to
the understanding phase, where the larger context in which the
object is detected is used to generate an understanding about
the global situation surrounding that object.

A. Modeling the Environment

To properly define the robot’s model of the world, we divide
the world into three specific domains.

1) Road structure: The road structure is a logical interpre-
tation of the environment and defines where and how
vehicles are allowed to drive.
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Fig. 2. General perception process that illustrates how raw energy detected from the environment is converted into a situational understanding of the world
around the vehicle. This figure also illustrates where noise and errors can be introduced into the system and the modeling assumptions that specify how the
information is altered at each step. (Note that the categories of errors marked with ∗ are generally referred to throughout this paper as artifacts.)

Fig. 3. Perception architecture (see [1]).

2) Static obstacles: Static obstacles are obstacles that are
assumed not to move during the observation period (on
or off road).

3) Dynamic obstacles: Dynamic obstacles are obstacles that
potentially move during the observation period. For the
Urban Challenge, only cars fall into this category. Note,
however, that a car does not necessarily have to be a
dynamic obstacle, as it can also be a parked vehicle that
will never move.

B. Perception System Architecture

The architecture of the perception system, as shown in Fig. 3,
is analogously divided to the world model into the follow-
ing three subsystems: 1) a road estimation subsystem, which
generates information about the road structure; 2) a tracking
subsystem, which is responsible for generating dynamic obsta-
cle hypotheses; and 3) a static obstacle estimation subsystem,
which estimates the location of static obstacles.

1) Road Structure: The road structure is represented as a
topological network of segments, intersections, and zones. A
segment contains a number of road lanes, and each lane has
a specified width and direction. The shape and curvature of a
particular lane are determined by a set of points that are spaced
roughly 1–2 m apart from each other. Intersections are junctions
that explicitly connect lanes from different segments. Zones
are free-form open areas, such as parking lots, which have no
explicit restrictions on where vehicles can travel.

In our system, the road structure was derived from the
given road network definition file and information from a high-
precision satellite image. With this, the data were known with
high confidence. The information was used inside the tracking
system for computational efficiency and to reduce the number
of sensor artifacts (see Section IV). The road-estimation sys-

tem, however, also included a road shape-estimation algorithm,
which could deliver information about the road in cases where
the map was not sufficient. This, however, was not necessary on
race day.

2) Dynamic Obstacle Hypothesis List: The classification of
an obstacle as dynamic obstacle requires scene understanding
(e.g., to distinguish a parked from a temporarily stopped ve-
hicle). The perception system only provides a list of dynamic
obstacle hypotheses. These are all obstacles that potentially
belong to the class of dynamic obstacles. Dynamic obstacles
are represented by a shape model and state variables, such as
position, velocity, and acceleration (see Section IV-A).

For every dynamic obstacle hypothesis, two flags are pro-
vided as follows: 1) the current movement state, i.e., moving
and not moving, and 2) the movement history, i.e., observed
moving and not observed moving. The flag moving is set once
the tracking subsystem decides that the object is currently in
motion. The flag observed moving is set once the tracking sys-
tem decides that the object has changed its position. With this
definition of a dynamic obstacle, it is obvious that, whenever
the flags moving and observed moving are set, the obstacle
hypothesis belongs to the class of dynamic obstacles. If only
the flag observed moving is set, the obstacle may belong to the
class of static obstacles (e.g., vehicle stalled). However, in our
system, all objects that have only the observed moving flag set
are directly treated as dynamic obstacles. Testing showed that
this is a good approximation for short observation periods.

In certain situations, sensors cannot detect an object. This
holds true, for example, if an object is not within the field of
view of a sensor or part of the field of view is occluded. (Sensor
occlusions were not modeled within our system.) However,
this can also occur due to sensor artifacts. Dynamic obstacle
hypotheses are only maintained by the tracking system as long
as the sensor data can support the estimation of state variables.
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This means that only short-term sensor artifacts (“measurement
dropouts”) are bridged and that no scene understanding is used
to argue the lifetime of an obstacle hypothesis. Situations where
an object is temporarily lost for a longer amount of time are
explicitly handled by the situation assessment algorithms (see
Section V).

3) Static Obstacle Map and Instantaneous Obstacle Map:
Static obstacles are represented in a map decomposed into a
regular array of cells. Within this map, dynamic obstacle hy-
potheses that are flagged as observed moving clear out any cells
within their footprint. The static obstacle map has a memory,
remembering obstacles that are no longer visible.

Evidence of obstacles is calculated as a function of the
number of LIDAR points classified as an obstacle in each cell.
Evidence decays over time at a rate that is less than the rate
at which it accumulates for a reasonably supported obstacle.
In this way, the obstacle map is filtered to reduce the effect of
spurious sensor measurements.

The perception system also maintains an instantaneous ob-
stacle map. The map contains all obstacles around the robot;
dynamic obstacle hypotheses are not removed from the map.
The map is used to validate features from planar LIDAR and
RADAR obstacles in the tracking subsystem (see Section IV).
For this purpose, the information does not have to be as accurate
as that for the motion-planning algorithms, which use the static
map. A much smaller time constant can be used to filter the
sensor input data.

C. Sensor Setup

Table I shows the autonomous vehicle’s sensor configuration
used for tracking moving objects and summarizes the charac-
teristics of the sensors [3]. Data are asynchronously collected
from each sensor but is timestamped to a common system time.
The combination of these sensors provides complete sensor
coverage around the vehicle. As will be described, the fusion
of the different sensors allows Boss to exploit the advantages
of each sensor type to increase overall performance. The re-
dundancy provided by overlapping fields of view enables the
system to be robust against false readings or failure of sensors.
The sensors are configured to maximize redundancy in front
of the vehicle (with between four and seven sensors providing
coverage) while also providing redundant sensing around as
much of the vehicle as possible (e.g., two sensors, i.e., a LIDAR
and a RADAR, provide coverage behind Boss).

Radars are used for detecting objects in the near and far
ranges. Doppler shift provides a measure of the relative speed of
an obstacle, which gives a low latency and an accurate velocity
estimate, which, in turn, can be used to efficiently distinguish
static from moving objects. The measurement accuracy of these
sensors is sufficient in associating vehicles to lanes on the road
up to a detection range of 200 m. While long-range and direct
velocity measurement are clear advantages, RADAR sensors
provide no notion of the height of the obstacles; instead, they
report RADAR cross section. It is common that small angular
objects can return significant amounts of energy, comparable
with a vehicle. Without complementary sensing, it can be
difficult to distinguish between irrelevant clutter on the road and
relevant vehicles.

Planar scanning lasers provide information about the geo-
metric cross section of an object. While this information is
generally useful, a single cross section can be insufficient in
distinguishing between an obstacle and a benign terrain feature.
For example, the side of a car may provide a contour that looks
very similar to a sloped road. Furthermore, given a fixed angular
resolution, the sensors provide sparse spatial information and,
thus, insufficient geometric information beyond some range.
This motivates the use of a dual-mode representation (bounding
boxes and points, as will be shown next).

The Velodyne HDL-64E was the only sensor with a wide-
enough vertical sensing angle to deliver reliable 3-D informa-
tion about objects around the vehicle. However, the effective
range of the sensor is not sufficient for all the required au-
tonomous maneuvers, particularly merging and passing ma-
neuvers at 30 mi/h. Despite these shortcomings, the sensor is
important for object validation in the near range as the 3-D
data allow a ground plane estimation and the creation of the
instantaneous obstacle map. In this way, the sensor can be used
to effectively reject artifacts caused by the limited vertical field
of view of other sensors (e.g., false obstacles generated by
perceiving the ground).

The last class of sensors used on the vehicle are fixed-
beam LIDAR sensors. Similar to the RADAR sensors, they
provide 2-D coordinates of the detection center of obstacles;
however, there is no direct measurement of velocity. A fixed-
beam LIDAR is mounted redundant with a RADAR on a
rotating mount on both sides of the vehicle. By appropriately
pointing these sensors, it is possible to situationally focus and
extend the vehicle’s perception capability.

It is clear that not one of the sensors is sufficient in provid-
ing the situational awareness that is necessary for safe urban
driving. The variety of sensors provides not only redundant
coverage but complementary detection and processing charac-
teristics that provide significant benefits beyond the use of a
single sensor as well.

IV. TRACKING SUBSYSTEM

The tracking subsystem was responsible for the identification
of dynamic obstacle hypotheses for use by the rest of the
system. Its design was influenced by both the available sensors
and the ways that the obstacle hypotheses are used to implement
various traffic-interactive behaviors. The robust implementation
of each of these behaviors requires complex situation-specific
reasoning that, if applied to the tracking subsystem, would lead
to a rigid system that is difficult to adapt or extend to implement
new behaviors. Instead, all possible vehicles are tracked the
same way, regardless of the scenario, and situation-specific
reasoning is isolated in another subsystem.

It is important to note that there was no attempt to do vehicle
classification in the tracking subsystem. Traditional classifica-
tion algorithms [31], [32] are generally based on camera data
and rely either on heuristics or training data to accurately clas-
sify vehicles in the environment. Both approaches work well
in relatively constrained scenarios such as highway driving, but
they break down somewhat in urban environments, where traffic
can come from arbitrary directions.
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Fig. 4. Tracking subsystem architecture. (a) Two layers that comprise the tracking subsystem. (b) Processing flow between the two layers.

A. Modeling Dynamic Obstacles

An extended Kalman filter [16] is used to estimate the state
variables of dynamic obstacle hypotheses. The data available
for tracking depend on the type of sensor (e.g., radar versus
scanning laser) and the position of an observed object in
the sensor’s field of view (e.g., increased sensor noise and/or
decreased resolution at longer ranges).

To cope with these issues, we use an adaptive model-
switching approach [3], wherein the tracking model is selected
from different discrete models based on the available sensor
information. The tracking subsystem uses the following two
models: 1) a box model and 2) a point model. Note, however,
that the approach can be extended as necessary to include other
models.

The box model describes a dynamic obstacle hypothesis as
a rectangular box with a fixed length and width; its dynamics
are governed by a simple bicycle model with constant noise
parameters, which is similar to that in [33]. The point model,
on the other hand, does not include any shape information; its
dynamics are governed by a constant-acceleration model with
adaptive noise, which is similar to that in [20].

B. Architecture

To support the use of multiple heterogeneous sensors, the
tracking subsystem is divided into two layers, as shown in
Fig. 4. The Sensor Layer is meant to hide sensor-specific
details, providing sensor-independent data to the Fusion Layer,
which is responsible for forming and maintaining dynamic
obstacle hypotheses. For each type of sensor, a unique sensor-
layer module is implemented, and a separate instance of
that module is used for each physical device on the robot.
Sections IV-C and D discuss the modules for scanning lasers
and radar sensors, respectively.

Every time a sensor generates a new measurement, its cor-
responding Sensor Layer instance first requests a prediction
of the current set of dynamic obstacle hypotheses from the
Fusion Layer. These predictions are cached for possible use
in feature extraction and validation and are eventually used to
associate validated features to existing hypotheses. Features are
extracted from the raw sensor data according to the algorithm
encapsulated within the Sensor Layer module, which searches

for features that may be used to describe a dynamic obstacle
hypothesis according to either the point model or the box
model.

Thereafter, all extracted features go through a two-step val-
idation process to reduce the number of false positives in the
extracted feature set. These may be caused by issues, such
as ground detection by planar laser scanners, where the inter-
section of the scanning plane with the ground plane can be
misinterpreted as the edge of a vehicle (see, e.g., [4] and [34]).
All features that are explicitly validated in at least one of these
two steps are used to generate dynamic obstacle hypotheses,
reducing the chances of a false negative.

In the first validation step, a sensor-specific validation
algorithm that exploits the known properties of the sensor
is used to filter out commonly encountered artifacts and to
immediately validate particularly strong features, such as when
a radar sensor indicates a strong velocity return, as discussed
in Section IV-D. In the second validation step, the feature
validation interface provided by the Fusion Layer uses the road
structure to reject features that are too far away from the road.
This reduces the required computation time that is necessary to
process the data and can reduce the number of artifacts caused
by objects that are close to roads, such as bushes or roadside
barriers. Then, the instantaneous obstacle map is used to check
whether the remaining features are likely to be caused by a
ground return; within the range of the map, features are only
validated if they are also found in the map.

All valid features are subsequently used in the next step in the
Sensor Layer, i.e., data association. Here, the system attempts to
associate the features with the currently predicted dynamic obs-
tacle hypotheses from the Fusion Layer. Sensor-specific heuris-
tics are used for data association. These are designed according
to the characteristics of the features extracted from a given sen-
sor. Features that cannot be associated to an existing hypothesis
are used to generate new proposals, as described here.

An observation is generated for each feature associated with
a given hypothesis, encapsulating all information that is neces-
sary to update the estimation of dynamic obstacles in the Fusion
Level. This includes the nonlinear equations for mapping the
measurements from measurement space to state space, the
corresponding Jacobian matrices, and the measurement vector
for the Kalman filter. This approach is the key to decoupling
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the estimation algorithms in the Fusion Layer from the sensor-
dependent details in the Sensor Layer.

Similarly, a movement observation is generated per associ-
ated feature, indicating whether a given obstacle hypothesis is
believed to be moving purely based on sensor information. The
movement observation will be one of the scenarios given here.

1) Movement confirmation, which means that, from the sen-
sor’s point of view, the associated obstacle hypothesis is
currently moving;

2) No movement confirmation, which means that it is cur-
rently not moving. The information is accompanied by
a no movement vector, which points to the direction in
which the sensor detected no movement;

3) No information available, which indicates that this sensor
cannot provide any information regarding the motion of
the feature.

A Sensor Layer instance can also provide advice as to which
tracking model should be used for a given feature. These are
provided to the Fusion Layer as a proposal set, i.e., a set
(ordered by quality) of new object hypotheses that can explain
the extracted feature. If features are associated to an existing
obstacle hypothesis, a proposal can be used to suggest an
alternative to the current tracking model (point or box). A
sensor-independent voting algorithm (see Section IV-E) is used
to determine the best model. For features that are not associated
to an existing hypothesis, the proposals are used to initialize a
new dynamic object hypothesis. When the according proposals
are located on a road, the road structure is used to bias the
selection of the best proposal from the set. In parking zones,
the proposal ranked with the highest quality is selected. Finally,
if no model switch took place, the observations are used to
update the state estimate, and the movement properties of each
hypothesis are evaluated (see Section IV-F).

The core of the tracking system run on a 2.16-GHz Intel
processor. Only the feature extraction algorithms were distrib-
uted over other processors or directly performed in sensor-
specific electronic control units. The latency of the system is
dependent on the number of features that enter the fusion.
The typical latency was on the order of 150 ms from the
measurement time to the output of an object hypothesis list. The
maximum latency was fixed to 300 ms. The data of the sensors
were dropped if the latency could not be achieved.

The architecture is robust to sensor failures. If the sensor
goes into a fail silent mode in such cases, the fusion system
will seamlessly continue to work without its information. The
output will, of course, be of reduced quality, depending on
which sensor is no longer available.

C. Sensor Layer: Planar Laser Scanner

As with all sensor modules, processing begins with feature
extraction. For a planar laser scanner, edge target features are
extracted from the laser scanner raw data as in [35]. An edge
target consists of either a single edge or two edges joined by a
nearly 90◦ angle, which are assumed to represent either a single
side or a corner of a vehicle, respectively. Fig. 5 shows sample
edge targets, with artifacts visible due to ground detections and
noise in the sensor data. There are no sensor-specific properties

Fig. 5. (Top) Possible box model interpretations of edge targets.
(Bottom) Snapshot of a vehicle (bird’s-eye view). (Edge target) Laser
scanner features. (Diamond) Radar features. (White arrow) Artifacts. (a) and
(c) Ground detections. (b) Cluster misinterpretation. (d) Dust. Both laser
scanners detected different edges on the vehicle.

that may be exploited for validation; therefore, only the sensor-
independent facility provided by the Fusion Layer is used to
validate edge targets.

For data association, a set of possible edge targets is gen-
erated from the predicted dynamic obstacle hypotheses, i.e.,
four for each box model and one for each point model. The
extracted edges are first compared with the predicted edges
for compatibility using a heuristic based on the angle between
them. Edges that pass the first heuristic are then associated
using a nearest-neighbor approach that minimizes the distance
of the corner points.

If an extracted edge target is associated to a predicted point
model, then a corresponding observation is set up, and a heuris-
tic is used to decide whether a box model could be used to better
explain the extracted feature. If this is the case, then a proposal
set is generated, including all possible interpretations of the
edge target as the box model, as shown in Fig. 5. The proposed
box models are generated according to a heuristic that accounts
for the field of view, the sensor’s resolution, and the viewing
angle, and they are ordered according to a quality measure that
reflects the relative confidence in each interpretation.

If an extracted edge target is associated to a predicted box
model, all possible interpretations of the edge target as the box
model are generated in the same manner. The interpretation that
best fits the prediction is chosen to generate the observation. If,
however, none of the interpretations is close enough, the edge
target is treated as an artifact, and no observation is generated.
If there is an interpretation that explains the edge target with
high quality and this is not the interpretation chosen to generate
the observation, a new proposal is generated based on this
interpretation. Finally, the edge target is checked for whether
the point model makes more sense, such as when the distance
from the sensor to the target is large, and the data can no longer
be used to effectively estimate the yaw angle. In this case, a
point model proposal is generated and added to the alternate
proposal set for the predicted obstacle hypothesis.

Finally, if an extracted edge target is not associated, a heuris-
tic checks if it could be an artifact caused by an already existing
object hypothesis. A typical example is an edge target that is
located inside a vehicle, such as an edge target on a windshield,
instead of on the outer body. For each extracted edge target that
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cannot be explained as an artifact of an existing hypothesis, a
proposal set is analogously generated similar to the process of
alternate proposal selection that was previously described. Edge
targets do not include a direct measurement of velocity, and
therefore, all movement observations that are associated with
the hypotheses or proposals are of the form “no data available.”

D. Sensor Layer: Radar Sensor

The features extracted from raw radar data are called point
targets. They represent the center of the reflected radar energy
and include the relative velocity of the target, as measured
by the Doppler shift in the signal. The extraction algorithm
is optimized to extract reflections from vehicles but is also
susceptible to spurious returns from features, such as manhole
covers and metallic road signs.

Fig. 5 includes sample point targets, where, in this case, the
highlighted artifacts originate from dust. Any feature with a
substantially nonzero absolute velocity that was measured by
adding the Doppler measurement to Boss’s velocity is imme-
diately validated, as it can be assumed that it originated from
a moving object. All features that are not validated by their
velocity are checked in the same way as the edge targets via
the generic validation interface provided by the Fusion Layer.

For the association step, a set of possible point targets is
generated from the predicted dynamic obstacle hypotheses.
For a point model, a single-point target is generated. For a
box model, a point target is generated for each corner and
for the center of each edge. The measured point targets are
then associated to the predicted point targets using a nearest-
neighbor approach. In contrast to the data association done for
scanning laser sensors, multiple extracted point targets may be
associated with a single predicted hypothesis. Note, however,
that each extracted point target is still associated with, at most,
one predicted target, and vice versa.

For each associated pair of targets, a heuristic checks whether
the predicted velocity and the measured velocity are com-
patible. If this is the case, an observation is generated. If
not, a new point model proposal for the associated obstacle
hypothesis is set up. If the associated obstacle hypothesis is a
box model, then a point model proposal is set up, regardless of
the compatibility, as the sensor cannot support the box model.
The remaining unassociated point targets are used to generate
new point model proposals. Similar to the laser scanner Sensor
Layer, a heuristic checks beforehand if the unassociated target
could be an artifact caused by an existing object. Movement
observations are generated according to the magnitude of and
the confidence in the Doppler velocity measurement.

E. Best Model Selection

Based on the proposals and observations provided by the
Sensor Layer, the Fusion Layer selects the best tracking model
(see [3]) for each moving obstacle hypothesis. As with all
algorithms in the Fusion Layer, the algorithm is formulated to
be sensor independent.

A sensor supports a model if the model is observable with
observations from that particular sensor only. The laser scan-
ners (planar and 3-D) support both the box and point models,

whereas the radar and fixed-beam laser sensors only support
the point model. A model counts as currently supported by a
sensor if it is either the current model and the sensor provides a
consistent observation, or it is a model proposed by a sensor as
an alternative to the current model. In the case of the proposed
models, a minimum number of consecutive cycles with identi-
cal proposals are required before a proposal is considered in the
model-selection process. This increases the system’s robustness
to spurious misinterpretations.

The best model is selected from the currently supported
models according to preference and confidence; the box model
is generally preferred over the point model, and confidence is
determined by a voting scheme, as will be discussed next. (Only
sensors that are currently detecting the object are considered.)

First, the relative support for each possible model is deter-
mined as the ratio of the number of sensors that are currently
supporting the model to the total number of sensors that are
supporting the model in principle. A model switch is consid-
ered only when the relative support for at least one model is
above a configurable minimum support threshold; otherwise,
the current model is retained from the previous cycle. Higher
threshold values ensure that a switch to a model with higher
accuracy will be performed only if there are enough sensors
that are currently supporting it. In the Tartan Racing system,
the number of sensors supporting the box model increases as
the vehicle gets closer to the robot. For example, at a range
that is closer than 30 m, up to four sensors can support the box
model, but at longer ranges, primarily radar sensors, which only
support the point model, detect objects.

The best candidate model for the cycle is the most preferred
model with relative support above the minimum threshold. If
it differs from the current model, the model is immediately
switched and initialized with values from the supporting pro-
posal. If, on the other hand, it coincides with the current model,
the current model is still evaluated to handle the case of a
valid model with grossly invalid state variables. For example,
consider the box model whose heading is orthogonal to the
direction of travel. In this case, the ratio of sensors that are
proposing alternate models to those that are providing obser-
vation of the current model is evaluated, and the model is
reinitialized if this ratio exceeds a configurable threshold.

F. Movement Classification

The Fusion Layer combines the movement observations from
all sensors with statistical tests of the motion of the hypothesis
to compute these properties.

1) Moving Versus Not Moving: The determination of
whether an obstacle hypothesis is moving begins with an ac-
cumulating count of the number of times that the hypothesis
has been reported by any sensor to be confirmed moving.
Each individual movement observation increments this count,
and when it exceeds a configurable threshold thmoving, the
hypothesis is considered to be potentially moving.

If the dynamic obstacle hypothesis is not classified as poten-
tially moving based on the movement observations, a statistical
test on the estimated velocity attempts to reject hypothesis
H0: “The absolute velocity is smaller than vmin.” If this is the
case, then the obstacle is classified as potentially moving.
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Fig. 6. Example of an occupancy polygon. Dynamic obstacle hypotheses A and B cause the polygon to be considered as occupied and unoccupied, respectively
(see [2]).

This statistical test is entirely based on the state variables
of the dynamic obstacle hypothesis; therefore, it may be per-
formed independent of the sensors that detect the hypothesis.
This test is necessary in situations where none of the detecting
sensors can provide a direct movement confirmation, such as
when the hypothesis is exclusively detected by laser scanners.

The significance level α for rejecting hypothesis H0 and vmin

can be tuned, with a higher vmin and a lower α making more
conservative estimates. Lowering α leads to longer times until
enough data are available to reject H0, delaying the identifica-
tion of a moving obstacle hypothesis. Similarly, increasing vmin

leads to less false positives at low speeds, trading off the ability
to properly classify slow-moving objects. In terms of hardware,
the test can be influenced by the increase in the number of
sensors or the increased accuracy of a single sensor.

If a dynamic obstacle hypothesis is classified as potentially
moving, the system performs a cross check against the no-
movement vectors provided by the Sensor Layers. The dot
product between the normalized current velocity (unit vector)
estimate and the no-movement vectors (unit vectors) is checked
against a configurable threshold. If this check indicates a strong
inconsistency between the estimated velocity vector and any
no-movement vector, the obstacle is classified as not moving,
providing the opportunity for a sensor with information about
confinement in a particular direction, such as a RADAR sensor,
to veto the potentially moving state. Otherwise, all remaining
potentially moving hypotheses are marked as moving.

2) Observed Moving Versus Not Observed Moving: The
determination of whether a dynamic obstacle hypothesis has
been observed moving begins with an evaluation of the distance
that it has traveled since it was first classified as not observed
moving. If this distance is above a configurable threshold and
the hypothesis would be classified as moving solely based on
the movement observations from the Sensor Layer, then the
obstacle is classified as observed moving. If it is not directly
supported by movement observations, then the obstacle hypoth-
esis must be continuously classified as moving for a time period
tobm
min,1 to be classified as observed moving.

The check against the distance traveled increases the robust-
ness against short-term artifacts, particularly during the initial-
ization phase of the filters. It is possible to skip this check for
objects that are confirmed to be moving by the sensors alone;
however, this did not significantly increase the performance,
and therefore, the team favored the more conservative approach.

The observed moving property is immediately cleared if the
object is not classified as moving during the time period leading
up to a second threshold tobm

min,2 > tobm
min,1. Once this second

threshold is reached, the observed moving property is retained
for a time period tobm

max after the object is no longer moving. This
accounts for traffic that briefly stops, such as when queueing on
approach to an intersection, at the potential cost of retaining an
invalid observed moving classification for up to tobm

max.

V. SITUATIONAL REASONING

In this section, we describe two different scenarios that were
commonly encountered during the Urban Challenge (see also
[2]). First, we discuss intersection handling, where Boss must
determine whether to enter an intersection or to wait for other
vehicles to proceed first. Then, we discuss distance keeping,
where Boss tracks a vehicle in front of it to match its speed
and maintain a minimum safety distance. Both demonstrate
the application of situation-specific reasoning to the situation-
independent dynamic obstacle hypotheses.

A. Intersection Handling

As the robot approaches and waits at an intersection, the
precedence order among vehicles at that intersection must
be determined to identify the point in time when the robot
may proceed. Other vehicles may be static on arrival or for
long periods of time after arrival, and therefore, all dynamic
obstacle hypotheses are used to determine the precedence order,
regardless of their movement flags. This requires a situational
treatment of false positives, such as a parked vehicle or other
obstacles close to the intersection, and false negatives caused
by measurement dropout or transient occlusion. These possible
errors prevent the assignment of precedence to specific vehi-
cles, and therefore, the robot instead uses an intersection-centric
precedence estimation algorithm.

For each lane entering the upcoming intersection, an oc-
cupancy polygon is generated based on the road structure,
encompassing the entry point and the area backward along that
lane for some configurable distance, as shown in Fig. 6. A given
polygon is considered “occupied” when the estimated front
bumper of either Boss or any dynamic obstacle hypothesis is in-
side. For polygons in the “occupied” state, the system maintains
two pieces of temporal data, i.e., the time of the first occupancy
and the time of the most recent occupancy. The former is used
in the determination of the precedence order, which is a simple
matter of sorting the occupied polygons in ascending order by
first occupancy. The latter is used to implement a temporal
delay on when a polygon becomes “unoccupied,” such that it
must persistently be empty over some span of time to transition
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Fig. 7. Different interpretations of the dynamic obstacle hypotheses, depend-
ing on the position in a lane. All dynamic obstacle hypotheses would be
taken into consideration for distance keeping if they have the observed moving
property. If not, A and B would still be considered, but C would not (see [2]).

to the “unoccupied” state. This delay maintains the estimated
precedence ordering when dynamic obstacle hypotheses briefly
disappear or drift outside the polygon, providing robustness
to transient tracking errors, such as measurement dropout or
short-time occlusions caused by vehicles traveling through the
intersection.

Beyond strict adherence to precedence at an intersection,
the Urban Challenge rules also specified explicit treatment of
stalled vehicles and misperceived precedence ordering, requir-
ing the robot to proceed after 10 s of inactivity. The robust
implementation of this special case also provides coverage of
the potential false positives previously described. If an occu-
pied polygon consecutively retains precedence for 10 s, it is
subsequently ignored for the purpose of precedence estima-
tion. This simultaneously implements the required treatment
of stalled vehicles and discards any false-positive dynamic
obstacle hypotheses at the cost of a 10-s delay. If the robot
proceeds through an intersection under this premise, its speed
and acceleration are reduced in an attempt to guarantee the
safety of the maneuver. Testing showed that the probability of
an obstacle close to an intersection triggering a false positive is
comparatively low, and the difference in behavior, i.e., a 10-s
delay, followed by movement at reduced speed, is acceptable
from an outside perspective, basically reflecting cautious action
by the robot.

B. Distance Keeping

The Distance Keeping behavior is active while driving along
a road behind a slower vehicle. It aims to preserve a minimum
safety gap to the lead vehicle, eventually matching speed to
maintain that gap in the steady state. The set of dynamic
obstacle hypotheses is filtered according to the situation to
limit the occurrence of spurious braking due to false positives,
and the lead vehicle is selected as the closest of those that
remain. First, all hypotheses overlapping the lane of travel with
the observed moving property are included, reflecting a high
confidence that each will be an active participant in local traffic.
Hypotheses that do not have the observed moving property are
only included if they are close enough to the center of the lane
according to a threshold that depends on the local width off the
road (see Fig. 7). The goal is to reject parked vehicles and other
curbside obstacles while still considering vehicles stopped at
the middle of the road in this situation.

Even with this filtering, it is still possible to interpret an
invalid dynamic obstacle hypothesis as relevant for distance
keeping. For example, a traffic cone or barricade at the center
of the lane may generate a dynamic obstacle hypothesis that
will be treated as a stopped vehicle. Similar to the requirement
of overriding the precedence order at the intersection, the Urban

Challenge rules required the robot to handle a stalled vehicle on
the road by coming to a safe stop behind it, waiting to determine
that it has stalled, and then safely circumventing the vehicle
through an adjacent lane.

To provide robustness to sensor noise and measurement
dropouts, the absolute position and velocity of the closest
relevant obstacle hypothesis are retained over an adaptive
span of time, which is similar to the time delay discussed in
Section V-A. The obstacle’s distance and velocity relative to
the robot is considered in the computation of the time delay as
an estimated time to collision. A dynamic obstacle hypothesis
close to the robot with a small estimated time to collision is
retained for a comparatively long span of time, reflecting an
increased risk associated with transient measurement dropouts.
Farther hypotheses with longer expected collision times repre-
sent lower risks to the robot and are retained for accordingly
shorter durations.

In the case of hypotheses farther from the robot, the per-
ception system heavily relies on long-range RADAR sensors
as they are more effective at detecting distant objects than
the LIDAR sensors that contribute to the static obstacle map,
which is used to validate the data. However, RADARs are also
sensitive to metal objects on the ground, such as a manhole
cover, which can safely be driven over by the robot. If such an
object is detected with the RADAR sensors at long range, the
robot slightly slows down until the object enters the validation
area of the instantaneous obstacle map. Then, the RADAR
feature will be invalidated, and the associated dynamic obstacle
hypothesis will be removed from the list (see also [4]). Since
the object is still far away from the robot, the associated risk
of collision is low, the time span for retaining it as the relevant
obstacle is small, and the robot is allowed to accelerate again
after a comparatively short delay.

From an outside perspective, this is again perceived as
acceptably cautious behavior, and adjusting parameters for
the retention delay allows for selection between cautious and
aggressive driving. Longer delays cause the robot to very
conservatively react to false positives at long ranges, and high-
speed autonomous driving is often not possible. With shorter
delays, the robot more readily discards long-range readings but
can often be forced to perform abrupt braking maneuvers when
approaching real vehicles.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented the obstacle detection and
tracking system of the autonomous robot “Boss,” which is the
Team Tartan Racing’s winning entry into the 2007 DARPA
Urban Challenge. This system was successfully used in a
number of different situations; intersections, distance keeping,
and parking lots were successfully handled. We have provided
illustrative examples in this paper of a few of these situations to
describe the process by which the objects were tracked.

One issue that had to be addressed by the tracking sub-
system was the need to distinguish between moving and
nonmoving obstacles. A sensor-independent algorithm that
combines sensor-specific movement observations and a sensor-
independent hypothesis test into a robust classification of the
movement state of an object has been presented.
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Another issue was that no one sensor could provide all of
the information necessary to track the vehicles around Boss.
Intelligent mechanisms for fusing the data from RADAR and
LIDAR were critical for the successful operation of the whole
system. In the fusion process, we proposed an adaptive model
switching approach where the tracking model for an object is
selected based on the available sensor information.

The vehicle-tracking system takes the raw data returned
from the sensors and interprets them at multiple layers. The
final interpretation is left to the robot’s higher level decision
processes, which use the situational context to understand the
scene and form a situation hypothesis. We found that this
greatly improved the performance of the overall system since
the tracking system stays independent of the situational context
and the decision algorithms of the robot can be adapted to the
quality of the perception data and the specific situation.

The general tracking architecture that separates the Sensor
Layer from the Fusion Layer allowed individual new sensors
to be folded into an entire system as they were brought online
while minimizing the need to modify the other components of
the subsystem. Additionally, new scenarios can easily be added
to the system without requiring additional code.

In future work, we see that the most beneficial work can be
accomplished by focusing on improving the low-level sensor
details. For instance, more intelligent feature-extraction algo-
rithms for LIDARs could help to more robustly reject spurious
returns caused, e.g., by bushes near the roads. In addition,
sensors with a wide vertical field of view could be employed
to better identify the location of the ground plane.
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