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ABSTRACT

This paper presents a low cost strategy for real-time estimation of the position of ob-

stacles in an unknown environment for autonomous robots. The strategy was intended

for use in autonomous service robots, which navigate in unknown and dynamic indoor

environments. In addition to human interaction, these environments are characterized

by a design created for the human being, which is why our developments seek mor-

phological and functional similarity equivalent to the human model. We use a pair

of cameras on our robot to achieve a stereoscopic vision of the environment, and we

analyze this information to determine the distance to obstacles using an algorithm

that mimics bacterial behavior. The algorithm was evaluated on our robotic platform

demonstrating high performance in the location of obstacles and real-time operation.
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1. INTRODUCTION

Active robotic sensors have today become a high-performance tool with great acceptance at commer-

cial and military level [1, 2]. These are embedded systems equipped with sensors that provide specific primary

data, from which a real-time processor produces information relevant to the tasks of the robot [3]. This kind

of sensors has promoted research in information-driven strategies for the development of tasks with robots, as

well as the implementation of algorithms for digital signal processing and control schemes oriented to these

sensors [4].

When faced with the design of motion strategies for autonomous robotic systems, these sensors prove

to be very convenient, and even fundamental [5, 6]. When environments are dynamic (a typical problem

for service robots) it is necessary for the robot to be able to identify nearby obstacles in real time [7, 8].

Unstructured environments are more complex due to their dynamics and lack of knowledge of identifiable

characteristics. In addition, not all obstacles are the same, this means that the behavior of the robot in front of

each of them must be different and appropriate in each case.

Between the minimum capacities that a robot must have is its capacity to define its relative size

and dimensions in the environment. In other cases, it is also necessary to know its height to define interac-

tion strategies (pick up a bottle from a table, for example). Depending on the application it is possible to

use different kinds of sensors, but those capable of providing visual information are the ones that provide

more relevant information [9]. In this sense, systems with two cameras turn out to be more advantageous

than systems with a single camera [8], since they provide information on the depth and orientation of the

obstacle [4,10-12].
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Digital cameras as fundamental elements of optical sensors have been used extensively for the robotic

arm motion control solution. The camera provides the required feedback information in relation to the

position of the objects to be manipulated. This strategy is known as Visual Servoing or Vision-Based Robot

Control (VS) and is characterized by having as feedback information the image of a camera [13]. The aim is

to support the robot’s decision making with eyes that take optical information from its own perspective and

in parallel (separated by a certain distance) [11]. The distance between the robot and the obstacle can be

determined depending on the distance between the obstacle positions in both images, and the focal distance of

the cameras [14]. The field of vision can be increased considerably by adding a hyperboloid mirror or a conic

mirror in front of the camera lenses, which provides an omnidirectional view to the cameras [15].

The reconstruction of 3D models from 2D perspectives (stereoscopic vision) is a strategy inspired by

animal biology that allows the collection of three-dimensional information from the navigation environment.

However, the process of generating 3D models is computationally expensive [16], and requires good camera

calibration, making it very difficult to implement in real time on embedded systems [17]. In addition, the gener-

ation of 3D models is highly dependent on the quality of two-dimensional images, which are strongly affected

by lighting conditions [18]. The computation of the distance to the obstacle takes into account the angular

distance, the distance between cameras and the pixels of the images [7, 11]. However, in many applications, it

is not necessary to rebuild the entire environment, which considerably reduces the computational requirement

[19]. In fact, the human brain does something similar by processing information from the eyes, only focusing

on a portion of the entire image that the eye detects. This information can then be processed to find specific

shapes [20, 21].

There are two strategies for estimating the distance to the obstacle in stereoscopic vision: active

method and passive method [10, 22]. In the first case, the sensor system sends signals to the obstacle such

as visible light or laser signals, which are then detected and analyzed [11]. The ability of these sensors to

establish distances is superior to human vision, but they are also costly and complex to implement, and they

have unresolved problems. For example, the laser delivers the distance of a single point. In fact, these methods

do not determine the exact 3D positions of all points of the obstacle. Another negative aspect is their speed,

they are very slow for real-time operation [23]. On the other hand, the passive methods estimate the location of

the obstacle from the images of the environment captured by cameras [19]. They use digital processing on the

images to estimate the distance. This passive strategy has the additional advantage of working with different

setups (cameras, light conditions, and embedded hardware). It should be clarified, however, that there are two

problems that cannot be solved with this strategy: occlusions and overlapping of objects [24].

In order for the solutions to be real, it must be possible to massify them, and for this a low cost and

high performance is essential [18, 23]. In this sense, processing algorithms must have very low computa-

tional cost in order to reduce processing time and hardware cost, while demonstrating to solve the problem.

This paper attempts to address some of the critical problems of the strategy by maintaining a low computational

cost, in particular reducing the impact of lighting on image quality, and improving the coincidence between 2D

image points.

The main idea of our strategy is to identify points of obstacles by means of a movement in the images

based on bacterial interaction, these points are mapped in the planes of projection of the environment in order

to establish the distance to the obstacle, all this without the need to make modifications to the environment

[12]. The firmware used to control the hardware setup, as well as data acquisition and processing, is written

in Python. We detail the methods and algorithms used for image processing and estimation of the distance to

obstacles. The results presented are the product of real laboratory tests carried out on our robot. Our proposed

bio-inspired algorithm for three-dimensional obstacle reconstruction and the resulting motion control scheme

have a number of advantages over other methods that directly control the entire nonlinear system or rely on

dynamic programming for planning [25].

2. PROBLEM FORMULATION

We want an autonomous robot with low resource consumption to be able to identify obstacles in an

unknown environment. In this sense, we define our robot in a W workspace. Let W ⊂ R
3 be the clousure of

a contractible open set in space that has an open interior connected with obstacles that represent inaccessible

volumes. Let O be a set of obstacles finite in number in which each O ⊂ O is closed and pairwise-disjoint.

Let E ⊂ W be the free space in the environment, which is the open subset of W with the obstacles removed.
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The robot has two cameras that form an optical system of stereoscopic vision. This system is located in r (t) ∈
R

3 and has R (t) ∈ SO (3) orientation, where SO (3) denotes the special orthogonal group of dimension three

with respect to a global frame of reference for every instant t ≥ 0.

To determine the position of the obstacles with respect to the robot, we define a relative frame of

reference with respect to the axis of the two cameras as shown in Figure 1. We denote the two cameras by Left

camera (Lc) and Right camera (Rc). The Lc and Rc centers are located at (−0.14, 0, 0) and (0.14, 0, 0) in the

relative reference framework. The distance between the cameras is b = 0.14 + 0.14 = 0.28m.

Figure 1. Dimensions of the prototype with detailed location of the cameras, three-dimensional axes for the

location of bacteria, and their limited space in the navigation environment (top view)

The obstacles, indexed by i ∈ H = {1, 2, 3, · · · , n} have unknown position xi (t), and can be moved

in E over time. The position for the obstacle Oi with respect to the global frame of reference can be expressed

as (1):

xi (t) = R (t)pi (t) + r (t) (1)

where pi (t) corresponds to the position of the obstacle with respect to the frame of reference relative to the

cameras.

The cameras produce two parallel images at instant t with the location information pi (t). However,

obstacles are not points, they are volumes whose surface is made up of a large number of points. We do not

want to determine the position of all points of obstacles. Instead, we want to identify the position of a small

group of points that will ideally move to the surface of the obstacles.
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We define a population of m bacteria in the space in which the robot may encounter obstacles when

moving forward as shown in Figure 1. The initial position of each bacterium is random but known.

From the images of the two cameras, we can establish trigonometric relationships for the three-dimensional

position of each bacterium. If the bacteria are on the surface of the obstacle, then we can determine the dis-

tance to these points of the obstacle as depicted in Figure 2. We propose a search algorithm (obstacle search)

in which bacteria move three-dimensionally according to local information detected in their 2D projections.

In addition, the algorithm is accelerated according to the bacterial Quorum Sensing (QS), i.e. large populations

of bacteria in a space make the space more attractive to other bacteria.

Figure 2. Layout of elements in the test hardware and images resulting from the two cameras with details of

an obstacle and two bacteria (top view)

The m bacteria (or agents), all identical to each other, move in W searching for areas of great interest

to them (for example, in search of food). The value of a given position is determined from local readings (local

interaction with the medium) evaluated from its projection on 2D images. Each bacterium is defined by its

position in the environment (2):

V = (p) (2)

where p is a point in 3-dimensional space
(

p ∈ R
3
)

. The population density is evaluated using the distance

between bacteria (3):

dij = d (Vi, Vj) (3)

as the distance between bacteria Vi and Vj , which is calculated by an appropriate norm.

The function used to evaluate the value of the region where the bacterium is found in the left and right

projections considers the similarity of the neighboring pixels to the bacterium in the two projections is depicted

in Figure 2. The mathematical expression is (4):

F =
|∇ (ML)| · |∇ (MR)|

∑

colors

∑

(i,j)∈N

[

L(xL+i,yL+j) −R(xR+i,yR+j)

]2 + f (QS) (4)

where (xL, yL) and (xR, yR) are the coordinates of the left and right projections of the current

bacterium, L(xL+i,yL+j) is the grey value at the left image at pixel (xL + i, yL + j) (in a similar way for the

right image), N is the neighborhood around the projection of each bacterium, and |∇ (M)| is Sobel gradient

norm on left and right projections (to penalize uniform regions).
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Bacterial QS is activated if the population density within a space is greater than a threshold value T

called the quorum threshold. It is the parameter defining whether or not it has reached the quorum.

The behaviors of bacteria (search in the environment) are coordinated by the following rule:

- If the bacterium Vk ⊂ W is located near to the bacterium Vi ⊂ W , i.e. (5):

dik < h (5)

and the number of bacteria within the sphere with radius h
2 and origin in Vk is greater than T , then the

value of the region increases for Vi.

3. RESEARCH METHOD

We initialize the bacterial population randomly within the field of action of the robot (red dotted line

in the top view of Figure 1, 3 m along the x-axis, 2 m depth on the z-axis, and 2 m height above ground).

The coordinates of each bacterium are defined with respect to the frame of reference relative to the cameras.

The size of the population was taken as a performance variable parameter with values between 10 and 1000.

The cameras are located on the robot at a height of 0.5 m from the ground. The origin of the

frame of reference relative to these cameras is at this height, in the middle of the two cameras. The positive

x-axis corresponds to the right side of the robot, the positive z-axis corresponds to the direction of advance of

the robot, and the positive y-axis grows above the robot.

The images of Lc and Rc are scaled to 800 × 600 pixels. The projection of each bacterium i on

the images is determined with the following equations (the position (0,0) of the image is in the upper left side):

Left image :

{

xp = 400 + (xi+0.14)800
2zitan(35◦)

yp = 300− (yi)600
2zitan(30◦)

(6)

Right image :

{

xp = 400 + (xi−0.14)800
2zitan(35◦)

yp = 300− (yi)600
2zitan(30◦)

(7)

where (xi, yi, zi) is the three-dimensional coordinate of the bacterium i, and (xp, yp) is the two-dimensional

coordinate of the bacterium projected in the image.

The performance of the area adjacent to the bacteria at each projection is determined by (4).

The bacteria move in the limited space according to this function. If the bacterium is on the

obstacle surface, then it will have similar neighboring pixels in both projections as shown in Figure 2,

the illumination affects both cameras equally), and the function will assign a high value to the position of

the bacterium. The more the neighboring pixels differ, the less value the function assigns. The position of the

bacteria is updated with the gradient looking for the high values (movement of the bacteria). The QS forces the

bacteria that are slow to find the obstacle surface to move towards the large groups of bacteria. A bacterium

that does not appear in any of the projections obtains the lowest position value (it is outside the robot’s range

of vision).

4. RESULT AND ANALYSIS

We evaluate the performance of the strategy with different configurations varying the bacteria

population, the QS threshold and the correlation window used in the denominator of the evaluation function.

A larger number of bacteria allows for reconstructing larger portions of the obstacles without significantly

influencing the computational cost of the algorithm. The QS threshold reduces the convergence time when it

does not exceed the range of 100, above this value, does not have a significant effect. The most important effect

was observed in the size of the correlation window of the function, which greatly affects the bacteria’s ability

to locate the obstacle. Large values improve the behavior but considerably increase the computational cost.

Figures 3 and 4 show the result of one of the laboratory tests.
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Figure 3. Left and right images captured by parallel cameras, scaled to 800×600 and converted to grayscales

Figure 4. Image of the left camera converted to grayscale, scaled to 800×600 and with the bacteria overlapped

in its final position, most of them on the obstacle

We perform more than 50 laboratory tests with different obstacles and more or less constant lighting

conditions for a human indoor environment (the day with natural lighting and night with LED type

lighting). The distances from the objects to the robot were established in a straight line between 0.3 and 2 m.

The accuracy of the distance values determined by the optical sensor was established by comparison with

the actual value, measured in the setup with a tape measure. These results were related to the distance of

the obstacle. Figure 5 shows these percentages of accuracy with respect to the estimated distance.

Figure 5. Percentages of accuracy with respect to the estimated distance

Our intention is to use the strategy to identify obstacles in the environment, and with this informa-

tion coordinate the movement of the robot. The proposed motion planning strategy based on the detection

and stereoscopic identification of obstacles considers three elements: capture and pre-processing of images,

determination of obstacles and application of motion policies according to the information feedback as shown

in Figure 6.
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Figure 6. General scheme of the proposed motion planning strategy based on the stereoscopic detection of

obstacles

5. CONCLUSION

Considering the problem of motion planning of small autonomous robots in unknown environments,

particularly for service robots with direct and continuous interaction with the human being, we propose

a low-cost computational stereoscopic vision strategy that allows autonomous navigation in dynamic

environments. Service robots perform their tasks in indoor environments, unknown, with a high probability

of constant change in the location of obstacles and people. The stereoscopic vision systems allow to establish

with precision the three-dimensional location of obstacles and therefore provide complete information for the

design of navigation strategies. However, their computational cost is high, making it impossible to use them

in real-time on moderate performance platforms. Our strategy proposes a local reconstruction of a finite set of

points of obstacles in the environment, which guarantees a low cost and a high performance. We performed the

calculation of about 100 points corresponding to the surface of the obstacles. These points are identified using

an uninformed search algorithm inspired by bacterial interaction. The bacteria defined in the 2D projections of

the cameras move in the three-dimensional space looking for similar neighboring regions in their projections.

The algorithm converges with most bacteria on the obstacles. In the experiments carried out, it was possible to

verify percentages of accuracy to the obstacle distance higher than 95% and low computational consumption,

making it useful for embedded implementations. The future development of the scheme includes improvements

in the determination of obstacle surfaces using larger bacterial populations, and reduction in convergence times

through the use of the Quorum Sensing (QS) model.
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[21] S. Mehta, ”Vision-based localization of a wheeled mobile robot for greenhouse applications: A daisy-

chaining approach,” Computers and Electronics in Agriculture, vol. 63, no. 1, pp. 28–37, 2008.

[22] D. Patel, P. Bachani, and N. Shah, ”Distance measurement system using binocular stereo vision approach,”

Obstacle detection for autonomous systems using... (Fredy Martı́nez)



2172 ❒ ISSN: 2088-8708

International Journal of Engineering Research & Technology, vol. 2, no. 12, pp. 2461–2464,2013.

[23] Y. Si, G. Liu, and J. Feng, ”Location of apples in trees using stereoscopic vision,” Computers and Elec-

tronics in Agriculture, vol. 112, no. 1, pp. 68–74, 2015.

[24] M. Mehrabi, E. Peek, B. Wuensche, and C. Lutteroth, ”Making 3D Work: A Classification of Visual Depth

Cues, 3D Display Technologies and Their Applications,” in Proceedings of the Fourteenth Australasian

User Interface Conference (AUIC 13 ), vol. 139, 2013, pp. 91–100.

[25] R. Lins, S. Givigi, and P. Gardel, ”Vision-Based Measurement for Localization of Objects in 3-D for

Robotic Applications,” IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 11, pp.

2950–2958,2015.

BIOGRAPHIES OF AUTHORS

Fredy Martı́nez is a professor at the Facultad Tecnológica, Universidad Distrital Francisco José de
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