
Abstract

We present several schemes for Obstacle Detection for
autonomous vehicles traveling at high speeds (above
5m/s). In particular, we discuss schemes that make a
globally“flat-world” assumption and ignore vehicle
pitch motion. Next, we examine methods that relax the
above assumptions. In each case we discuss the
strengths and weakness of the solutions proposed.
Experimental and simulation results are presented.

1. Introduction

We have previously proposed a paradigm for high speed
autonomous navigation calledposition based path
tracking[1,2]. In this paradigm, a vehicle tracks an
explicitly specified path by continuously making steer-
ing corrections using position feedback from accurate
inertial sensors. Vehicle speed is determined by choos-
ing the highest speed that meets all of several con-
straints like maximum lateral acceleration and distance
to nearby obstacles. To this end, we propose several
schemes for obstacle detection.

More formally, obstacle detection is the determination
of whether a given space is clear from obstructions for
safe travel by an autonomous vehicle. Specifically there
are three goals: to detect obstacles in time when they
exist, to identify the correct obstacles, and, to not be
fooled by objects that are not in the path of the vehicle.

Previous work in the area has been mostly confined to
robots moving at slow speeds because the task of per-
ception is usually to determine the cues necessary to
navigate in a cluttered world. There are two reasons for
this. Active range sensing is a commonly used modality
for obstacle detection because the sensors directly sup-
ply range from the robot to the world. Active range sen-
sors (laser scanners and sonar) are typically slow,
providing in some cases, only two frames (snap shots of

Obstacle Detection for High Speed Autonomous Navigation
Sanjiv Singh
 Paul Keller

Field Robotics Center
 Carnegie Mellon University

Pittsburgh PA 15213

the world) per second. Secondly, irrespective of
whether active sensing or passive sensing (reflectance
images) is used, an enormous amount of data must be
processed in real-time to discern obstacles in the world.
Hence, successes in this area have been limited to
speeds between 2-3m/s even though very sophisticated
laser ranging and systolic array processors have been
used for sensing and computation[3,4,5]. More
recently, some researchers have demonstrated obstacle
detection using passsive vision along with special pur-
pose hardware at speeds up to 14m/s on straight
stretches of flat highway[6]. Passive vision, however, is
limited in scope because it is prone to poor illunination
and low contrast conditions.

Our approach has been two fold. Firstly, we use accu-
rate position estimation to determine the location of the
autonomous vehicle on the path it is to follow. This
enables us to narrow our search for obstacles to that
part of the field of view of our sensor where we expect
the future path of the vehicle to lie. Instead of finding
obejcts in the world so that we can steer around them,
we “detect” obstacles when they exist in the path of the
vehicle and stop for them. Secondly, we propose the use
of laser scanners that produce sparser but more frequent
snap shots of the world than have been used by
researchers in the past. We have used Cyclone, a laser
scanner designed and fabricated inhouse for our initial
experiments. Cyclone provides a single scan line (1000
points in a 180 degree field of view) of range data at
upto 8 scanlines/sec in our initial experiments.

We chose to begin our experimentation with the
assumption that the vehicle travels in a 2-D world with
the further simplification that the vehicle does not pitch.
These asumptions were relaxed in order to consider a 3-
D world in which it is necessary to aim a laser sensor
towards the ground in front of the vehicle. We have
developed two different methods. One that considers
only a few scanlines from a range image, either because
the laser is only able to provide sparse data or if a dense
range image is available, for the sake of efficiency. The

other method explores the scenario where a dense
range map is available but must be processed very rap-
idly. To this end, we have designed schemes similar to
those proposed by Dunlay[3], but, are more efficient,
in the amount of computation required.

2. Obstacle Detection in a Flat
World

We chose to begin the investigation in a two-dimen-
sional world. Two techniques were designed with the
simplification that the vehicle travels in a 2-D world.
The first method is based on identifying obstacles by
matching range data obtained from a range scanner on
the moving vehicle, to a world model. The second
method checks a bounded region around the path to be
traversed for range data corresponding to objects. We
present a condensed version of these techniques. A
more complete description can be found in [9]. Figure
1 shows the range scanner mounted on the front of the
vehicle.

Figure 1: Scanner configuration in a flat world

2.1. Profile Matching.

Profile matching is based on the notion of matching a
hypothesized range profile using vehicle position and
a world model, with a range profile inferred from
range data obtained while in motion. This requires
explicit modeling of the world in which the autono-
mous vehicle travels. Although this scheme was fairly
successful in simulation, we noted the following:

• The real world is very hard to model. Building
and maintaining a consistent world model is
often a weak link in an actual implementation.

• Profile matching can only detect if something
has changed in the environment but cannot dis-
tinguish between unexpected objects that are on
the road ahead and those that are clear of the
vehicle path. A further level of processing is
necessary to determine if the unexpected obsta-
cle might interfere with the vehicle.

• Errors in position estimation result in errors in
the matching process, even with perfect range
data.

2.2. Clearance Checking

The above observations led us to focus our attention
on the path ahead rather than examining the entire
field of view. More precisely, we are interested in the
space which the vehicle could possibly sweep out in
its future travel. A simple method is to search a sec-
tion of the path immediately ahead of the vehicle for
obstacles. For a vehicle to travel unimpeded, no
objects should lie in this area. This method accrues the
following advantages:

• There is no need to model the world. There is
an implicit model: the road ahead should be
clear of obstacles.

• Any objects detected in the path of the vehicle
are immediately relevant.

• Errors in position estimation result in the vehi-
cle deviating from the reference path by the
amount of the error. However, since the track-
ing and obstacle detection schemes use the
same position feedback, the same deviated path
is searched for obstacles.

The space that the vehicle could possibly sweep out in
the near future (collision zone) is identified periodi-
cally and range data is checked to see if any of the cor-
responding reflecting points lie within the zone.
Figure 2 shows a scenario in which the clearance
checking scheme isolates range measurements due to
an object within the collision zone.

Figure 2: Obstacle detected inside the collision zone

Clearance Checking is given an explicit specification
of the path on which the vehicle is to travel in the form
of a sequential list of posture- a specification of posi-
tion, orientation and curvature that the vehicle is to
attain. In addition, vehicle position is available by que-
rying an inertial navigation system. The procedure is
initiated whenever a scanline of range data becomes

available. Then, the following steps are executed.

1. The current vehicle position is obtained and the
current scanner positionSp is computed. Pk,
the posture on the reference path closest toSp is
determined as the posture with the smallest lat-
eral distance toSp.

2. n future postures of the vehicle are transformed
into vehicle coordinates using a transformation
from global to local coordinates. Now, the list
of postures local to Sp is given bypj (pjx, pjy,pjθ) in the following manner:

pjx = (Pix - Sx)*cos(Sθ) + (Piy - Sy)*sin(Sθ) (1)
pjy = (Piy - Sy)*cos(Sθ) + (Sx - Pix)*sin(Sθ) (2)
pjθ

 = Sθ - Piθ
(3)

(i : k+1 .. n; j = i -k)

Figure 3: The path and edges in local coordinates

3. The locations of the left and right edges of the
collision zone are computed in local coordi-
nates usingW, the total width of the collision
zone, as shown in figure 3.W = Wv + 2 (Sε)
whereWv is the largest dimension of the vehi-
cle andSε is the maximum error in position
sensing. The coordinates of the left and the
right edges of the road (in local coordinates)
corresponding topj are given byrj and lj
respectively:

rjx = pjx + sin(pjθ) * W/2 (4)
rjy = pjy - cos(pjθ) * W/2 (5)
ljx = pjx - sin(pjθ) * W/2 (6)
ljy = pjy + cos(pjθ) * W/2 (7)

4. The length of the collision zone,Cl is deter-
mined by taking the minimum of a preset length
and the distance along the x axis to a point
ahead where the path is oriented more than 90
degrees relative toSp.

5. A distanceCl ahead of the vehicle is tessellated
into m intervals (0.5 m long) and the collision
zone boundaries are transformed into a hash
table indexed by fractions of this distance. For
each of them intervals, a left and right edge
point of the collision zone is found through

interpolation (l'h,r'h) as in figure 4.

Figure 4: The collision zone stored as a hash table

6. Every range point in the scanline of range data
is converted into cartesian coordinates (xr, yr)
with its reference frame located atSp. xr is
used to obtain the index into the hash table, kr.

7. A range point lies inside the collision zone if
l'kr > yr > r'kr. An obstacle is indicated if more
than a preset number of range points are found
within the collision zone.

Experiments with a target 0.5m wide mounted on a
cart moving at 6m/s towards a stationary scanner,
demonstrated the ability to detect and bring the cart to
a halt in sufficient time. Implementation on the Nav-
Lab was partly limited by the ability to decelerate the
vehicle; we were able to stop for similar targets at
speeds of up to 3m/s.

Some limitations were noted. Since the scan is hori-
zontal to the ground plane, obstacles that are lower
than the height of the beam are not detected. Pitch
motion of the vehicle as well as graded surfaces pose
problems because reflections from the ground are
interpreted as obstacles, or conversely the beam com-
pletely misses legitimate obstacles.

3. 3-D Obstacle Detection Schemes

As indicated above, range scans parallel to the ground
plane are not sufficient to detect obstacles for a vehicle
travelling at high speeds. Rather, we found it neces-
sary to angle the scanner down toward the ground in
front of the vehicle. This persepctive allows for con-
sideration of a 3D world as well as range scanners that
produce multiple lines of range data.

Conceptually, the extension to 3-D is a fusion of the
schemes discussed above. Here we have attempted to
model the road surface on which the vehicle is to
travel. In addition, the collision zone idea is used to

limit treatment of only the relevant part of the world -
the area that is swept out by the vehicle as it travels.
The selected data is compared to a road model. Obsta-
cles are indicated by deviations of range data from a
road model.

Two variations of the 3-D schemes were considered:
• Selected Scan Method - a few scanlines from a

complete range image comprised of multiple
adjacent scanlines are selected, and an elaborate
fit of the road profile (a cross section of the
road transverse to the direction of travel) is
developed. Roads are assumed to be graded or
designed roads, generally smooth and with
crowns and/or banks.

• Full Frame Analysis - the entire range image is
used and a simpler fit is performed on all the
range data corresponding to the road width
being verified. Roads are assumed to be graded
but neither banked nor crowned. This approach
is only tractable when multiple lines of range
data and sufficient real-time computing
resources are available.

3.1. Scanner Model

Figure 5 shows a side view and a top view of the scan-
ner model used.

Figure 5: A generalized Scanner model

A point in the world(x,y,z), with respect to the scanner
coordinate frame can be projected into an image plane
to obtain the azimuth and vertical angles (θ,φ) in the
following manner:

θ = atan2(y,x)(8)
φ = -atan((z - Sz/x)) + π/2(9)

(9)
whereSz is the height of the scanner from the ground
plane.

Given a discrete image plane, as in one that has a finite
field of view and resolution, row and column numbers
for the point corresponding to the angles (θ,φ) are given
by:

row = [(φ - Vst + Stilt)/(Vend - Vst)] * (nrows -1) (10)
col = [(θ - Hst)/(Hend- Hst)] * (ncols -1)(11)

whereStilt is the tilt of the scanner,Hst,Hendare the

starting and the ending angles in the azimuth axis,Vst,
Vendare the starting and the ending angles in the ver-
tical axis, and,nrows andncols denote the number of
pixels in the horizontal axis and the vertical axis,
respectively.

3.2. Using Selected Scanlines

This method selects to process only a few but relevant
lines, based on vehicle pitch and vehicle speed. The
motivation for this method is two fold. Firstly, search-
ing an area in front of the vehicle for obstacles usually
reduces to finding obstacles in a small subset of the
vertical field of view. Secondly, such a method allows
for a wide range of scanner configurations: from a sin-
gle line scanner to an arbitrary multiple line scanner.

A second order polynomial is fit to the height profile
of each useful scan line. That is, an estimate of aver-
age height, bank and crown is made for each processed
scanline. The algorithm is recursive so that a single
estimate is saved for bank and crown to represent all
past data. When a new height profile is considered, it
is matched against the road model that has been built
up from previous scanlines of range data. The amount
of weight to be placed on old data as opposed to new
data can be adjusted with a trade-off between noise
tolerance and sensitivity to terrain changes. That is, in
the case that old data is weighted more, the algorithm
is more tolerant to noise, but also becomes less "adap-
tive" and sharp changes in the terrain can be errone-
ously interpreted as obstacles.

3.2.1. Method

First, as in Clearance Checking, the road edges are
determined. However, the hash table constructed
before is not useful; we will process the data differ-
ently. When a new frame of range data is available the
following steps are taken:

Steps 1, 2, and 3 are the same as in the case of
Clearance Checking.

4. Based on the current speed and an assumed
deceleration of the vehicle, a stopping distance
Ds is computed.

5. The distance that the vehicle will travel in the
time that it takes to complete one full scan is
computed. This distance is divided by the num-
ber of scanlinesn to be examined during this
interval, yieldingn equally spaced road loca-
tions.

Figure 6: Scan Line Distribution

The magnitude of n is based on the maximum
speed of the vehicle, the size of the smallest
obstacle to be detected and the computing
resources available. The row numbers that cor-
respond to these road locations are then identi-
fied as in Eqn. 10 for extraction from the full
scan. This process is shown in figure 6.

6. A spline interpolation is performed to define the
left and right road edges (in global coordinates)
at any arbitrary distance in front of the vehicle.
For each of then lines chosen in step 5, the
points of intersection of the scanline with the
left and right edges of the road are determined
in global coordinates (rx, ry) & (lx, ly).

7. These edge points are projected onto the image
plane, giving the pixel column numbers corre-
sponding to the left and right edges of the road
(l,r) as given by Eqn 11.

Figure 7: Selected scan lines in the image plane with
delimited sections corresponding to the road surface

8. A delimited scanline is created by selecting
only those pixels which lie betweenl and r.
Figure 7 shows the view of the scanlines from
figure 6 in the image plane.

9. The stopping distance is set as the maximum
distance at which both edges of the road are vis-
ible within the bounds of the image plane.

10. Each delimited scanline of range values, ri is
converted into a height profileZi using a trans-
form from cylindrical to cartesian coordinates:

Zi-l = Sz+ ri-l * cos(θi-l) * cos(φi-l) (12)

(i = l... r)

11. This profile is processed to identify unknown
objects in two different ways. First, the height
profile Zi is convolved with a 7 point function
U (first derivative of a gaussian) to obtainYi in
the following manner:

Yi= Σ Zk-j * Uj (j = -3 .. 3) (13)
Uj = [-0.5, -1, -2, 0, 2, 1, 0.5] (14)

The resulting convolution Yk, is very sensitive
to rapid changes in the height profile and gives
a very high value in the neighborhood of
"edges" in the profile. Obstacles are found by
looking for values of the convolution greater
than a preset threshold (determined by comput-
ing the value of the convolution for the maxi-
mum expected noise).

The second method filters the height profile to
obtain a weighted second order fit to estimate
the shape of the profile. Average height is com-
puted from each profile, but bank and crown are
computed based on previous data. Sensitivity to
new data can be tuned by reducing the weights
corresponding to old data. The weighted road
profile is checked against the actual road profile
and deviations that exceed a preset threshold
are counted as belonging to an obstacle.

12. If an obstacle is found, the vehicle is brought to
a halt.

After each frame of range data has been processed, a
safe distance is sent to the vehicle controller. If this is
smaller than the minimum required safe distance, then
the vehicle is halted. This allows for the vehicle to
start moving as soon as the obstacles are removed.

3.2.2. Results

Figure 8 compares edge detection and thresholding in
simulation. Each frame of range data is 256 X256 but
only 10 lines of range data are selected for processing.
Lines at the bottom of the figure correspond to scan-
lines that are close to the scanner on the ground (i.e
they have the steepest elevation angles). In (a) each
height profile is compared to a weighted quadratic fit
that uses the recursively built up road model. The
bands around each height profile indicate limits of a
height threshold used. In (b), the same scanlines are
checked for edges. The obstacle is detected by both
methods, but the edge operator detects the obstacle
about 1m before the threshold is exceeded.

Each ofedge detection androad model matching has
strengths and weaknesses. While edge operators are
useful, edges are not very distinct in range images for
example in the case of a large object lying across the
entire road region. Model matching has its problems
in that the proper weighting between previous and cur-

rent data must be found through experimentation. One
danger of placing too much weight on new data is that
an obstacle itself influences the recursive fit making it
harder to detect in future height profiles.

Three separate scenarios were tested. The first sce-
nario was a figure-eight path on flat ground (total
length 280m, the larger loop with a minimum radius of
curvature of 40m, and the other loop with a minimum
radius of curvature of 25m). This is shown in figure 9.
In this case the vehicle is travelling at 3m/s and the
scanner provides 3 scan/s.

Figure 8: Comparison of (a) height threshold and (b)
edge detection

In figure 9, the first two objects are off the road while

Figure 9: Scanlines on a figure 8 path

the next 3 are on the road. In each case the correct
identification was made. The other two scenarios
involved straight but inclined paths with a varying
transition from 0% to 10% grade. In one case, the
transition occurred over a distance of 10 m, and in the
second case over that of 100 m.

If only a small number of scan lines are examined
from the entire frame, and especially if the extracted
scan lines are chosen so that there is no overlap
between the frames (as in figure 6), then a dangerous

obstacle may appear in a single scanline only. This
makes the algorithm sensitive to erroneous data, that
is, a single aberrant scanline could cause the vehicle to
come to a complete halt. We were able to detect the
obstacles, with faces of 0.5m x 0.5 m by allowing sep-
aration of scanlines on the ground to reach upto 1m.
Computationally, we could process 6 scans/sec but
due to NavLab’s limited acceleration, we were only
able to conduct successfull experiments betweeen 3 to
4 m/s.

3.3. Full Frame Analysis

In this approach to obstacle detection, an entire multi-
line range image is processed. Obstacles are indicated
by pixels in the image which lie on the road and devi-
ate significantly from the expected road height.
Groups of these pixels are gathered together into
"blobs" and are treated as a unit. This process is called
obstacle extraction since the final result is a blob of
pixels extracted from a two dimensional array of data.

Obstacle extraction proceeds by first projecting the
vehicle path into the image plane. Range data is trans-
formed into height data and a curve is fit to the height
at the center of the road. Finally the actual road height
is thresholded against the modeled height expectation
and obstacles are extracted by grouping points that fall
outside the threshold.

3.3.1. Method

In this case also, we start as in the previous two meth-
ods with steps 1, 2, 3 from Clearance Checking. The
subsequent steps are discussed in detail below:

In order to use all of the available data, the images
must be processed at the frame rate. For this reason,
most of the computations in the obstacle extraction
algorithm are done in the image plane. By projecting
the path onto the image, a large portion of the image
can be ignored, and many needless computations
avoided. Note that this is contrary to standard meth-
ods of using range data e.g., as in [4].

Assuming that the vehicle path is specified at regular
intervals, the current vehicle position can be used to
locate the path segment lying in front of the scanner.
This path is transformed from world coordinates into
image coordinates by projecting the points corre-
sponding to the road edges into the image plane. A
cubic spline is used to interpolate between the edge
points. Then, for each row in the image, pixels lying
between the road edges are transformed from range
data to road heights; outlying pixels are discarded and

not processed any further.

In the Martin Marietta system, the height of the road
was determined by the height of the road at the center-
line. This method fails when an obstacle lies in the
center of the road. In this case the normal road height
is assumed to be the obstacle height and the threshold-
ing method suggested by Dunlay would recover "pits"
(instead of obstacles) in the space between the obsta-
cle and the road edges. If an obstacle were to span the
entire road width, it would not be found at all. There-
fore, we suggest a model where the grade is smoothed
over a longitudinal section on the road. A third-order
least-squares fit is applied to the height data at the cen-
ter of each image row on the path. This has the effect
of modeling the general trend of the road (up and
down hills) as well as filtering out the effects of noise
and small objects lying in the center of the road.

Obstacles are located by applying a height threshold
on each pixel lying between the road edges. This
threshold operator is referenced against theexpected
height, as predicted by the third order fit of the road
centerline. In this manner, a hill is not considered an
obstacle since the height expectation and the measured
height should match very closely. A real obstacle
does not significantly affect expected road height, due
to the least squares fit and therefore is readily found by
thresholding. The result of thresholding is a binary
image suitable for blob extraction.

A standard blob coloring algorithm groups pixels of
similar height. By grouping pixels together into blobs,
the obstacles can be treated as whole units amenable to
further processing.

3.3.2. Results

For most cases, this algorithm is an effective means of
obstacle detection. Figure 10(a) shows the results
when an obstacle is present. Figure 10(b) highlights
the obstacle that was found in the middle of the road.

Figure 10(a): Fitted road profile in presence of obstacle

Figure 10(b): Obstacle detected in road region

There are a few cases where this algorithm fails. Road
crown and bank cause problems due to lateral changes
in the road height. Since the road height expectation is
determined by the center of the path, whenever the
heights of the edges differ significantly from that of
the center then either spurious obstacles are found or
valid obstacles missed. Another problem arises when
an obstacle lies in the center of the road either at the
start of the scanner data or near the horizon. In these
cases, the height model tends to follow the obstacle
closely since there are no surrounding points to "pull"
the fit back down. This results in the road model
reflecting the height of the obstacle rather than the
height of the road, as can be seen in Figure 11(a).

Figure 11(a): Fitted road profile in presence of an
obstacle and steep grade

Figure 11(b): Erroneous obstacle found

There are just enough data points collected on the
obstacle to prevent the fit from conforming to the steep
hill. The result is that the algorithm is fooled into
thinking that there is an obstacle at the far end of the
road as shown in figure 11(b) . Note that although a
bogus obstacle is found, the vehicle would still be
slowed down and further processing would show that
there is only one real obstacle.

4. Obstacle Detection: Conclusions

Our experiments using the flat world assumption
proved to be insufficient because obstacles in realistic
outdoor terrain could not be detected reliably. This is
mainly because undulating terrain and vehicle pitch
can cause either for obstacles to be missed or for false
obstacles to be detected. Extending our methods to
explicitly consider the road over which the vehicle is
to travel made our algorithms less sensitive to the real-
life problems mentioned above. Our final experiments
with the NavLab and the Cyclone scanner were timed
at 4m/s. We were able to detect obstacles in simulation
of a scanner mounted on a vehicle traveling at 11m/s,
given 256x256 range images.

Performance must be evaluated based on the fastest
speed the vehicle is to travel and the smallest object
that can be detected. Comparision of the methods pre-
sented above reveals that there is a tradeoff between
reliability and performance. Full frame analysis is
clearly the best technique; however, both the sensing
and computation necessary are prohibitvely expensive.

Some caveats should be mentioned. It is possible that
no obstacles are found in the collision zone due to
occlusions by objects that are outside the collision
zone. To guarantee a collision free path, a conservative
estimate of the length of the collision zone must be
made every time the path turns. Scanner frame rate
becomes a factor at high speeds. When traveling
around a bend, objects appear shifted in space so that
some objects which are not on the path may some-
times appear to be on the path and vice versa.

A few improvements are suggested. In the selected
scan approach, the grade of the road profile is calcu-
lated for each scan, and the grade on inclined roads is
not predicted well. A similar effect is caused by small
pitching motions of the vehicle. Both can result in a
large difference in the grade being computed in suc-
cessive scans. For thresholding to be effective, the
grade of the road ahead of the vehicle should be fitted
using several scan lines, and then each line that is pro-
filed should be checked against this fit.

Fitting a height to just the center of the road can lead
to difficulties in extreme circumstances. This could be

compensated for by using a weighted history, as in the
selected scanline approach. Another method would be
to fit a surface to the entire road. To reduce complex-
ity, separate curves could be fit to the left edge, right
edge and the center of the road. These lines could then
be averaged, filtered or fit laterally to find the height
for a given row in the image.

Bends in the path of the vehicle can cause parts of the
path to be obscured from the field of view of a scanner
if it rigidly mounted to the front of the vehicle. While
this condition is detected and the only result is to force
the vehicle to slow down, the scanner could be ser-
voed to point towards the road ahead. Also, obstacle
detection would be more robust if the scanner could be
mechanically stablized to negate the effects of vehicle
pitch. Finally, benchmarks have shown that there is a
bottleneck in the conversion from cylindrical range
data to height data. This could be improved signifi-
cantly by special hardware.

References

[1] S. Singh, D. H. Shin, “Position Based Path Track-
ing for Wheeled Mobile Robots, ” in Proceedings
IEEE/RSJ International Workshop on Intelligent
Robot Systems, September 1989, Tskuba, Japan.

[2] D. H. Shin, S. Singh, “Vehicle and Path Models
for Autonomous Navigation,” InVision and Navi-
gation: The Carnegie Mellon NavLab, Editor
Chuck Thorpe, Kluwer Press, 1990.

[3] R. T. Dunlay, “Obstacle Avoidance Perception
Processing for the Autonomous Land Vehicle,”
Proceedings IEEE ICRA, Philadelphia, 1988.

[4] M. J. Daily, J. G. Harris, K. Reiser, “Detecting Ob-
stacles in Range Imagery”, Proceedings DARPA
Image Understanding Workshop, February, 1987.

[5] M. Hebert, “Building and Navigating maps of
Road Scenes Using an Active Sensor,” Proceed-
ings IEEE ICRA, 1989.

[6] U. Regensburger, V. Graefe, “ Object Classifica-
tion for Obstacle Avoidance,” Proceedings SPIE
Symposium on Advances in Intelligent Systems,
1990.

[7] K. Dowling, R. Guzikowski, H. Pangels, S. Singh,
W. Whittaker, “NavLab: An Autonomous Vehi-
cle,” Technical Report, CMU-RI-TR-87-24, Ro-
botic Institute, Carnegie Mellon University, 1987.

[8] S. Singh, J. West, “Cyclone: A Laser Scanner for
Autonomous Vehicle Navigation,” Technical Re-
port to be published, Robotics Institute, Carnegie
Mellon University, 1991.

[9] S. Singh, D. Feng, P. Keller, G. Shafer, D. H. Shin,
W. Shi, J. West, B. Wu, “FastNav: A System for
Fast Navigation,” Technical Report to be pub-
lished, Robotics Institute, Carnegie Mellon Uni-
versity, 1991.

