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Abstract—Obstacle detection is an essential element for the
development of intelligent transportation systems so that acci-
dents can be avoided. In this study, we propose a stereovision-
based method for detecting obstacles in urban environment. The
proposed method uses a deep stacked auto-encoders (DSA) model
that combines the greedy learning features with the dimension-
ality reduction capacity and employs an unsupervised k-nearest
neighbors algorithm (KNN) to accurately and reliably detect
the presence of obstacles. We consider obstacle detection as an
anomaly detection problem. We evaluated the proposed method
by using practical data from three publicly available datasets, the
Malaga stereovision urban dataset (MSVUD), the Daimler urban
segmentation dataset (DUSD), and Bahnhof dataset. Also, we
compared the efficiency of DSA-KNN approach to the deep belief
network (DBN)-based clustering schemes. Results show that the
DSA-KNN is suitable to visually monitor urban scenes.

Index Terms—Obstacle detection, autonomous vehicles, intelli-
gent transportation systems, deep learning, clustering algorithms.

I. INTRODUCTION

Management and monitoring of road traffic and congestion

are becoming important factors for economic growth of coun-

tries. Therefore, the development of intelligent transportation

systems (ITS) is more necessary than ever before. Obstacle

detection is an essential element for the development of

ITS so that accidents can be avoided [1]–[7]. In road envi-

ronment, road obstacles detection system provides important

information for driving safety and comfort. Moreover, obstacle

detection has been involved in many practical applications,

including smart wheelchairs, unmanned aerial vehicles and

agricultural applications [8], [9].

Advances made in the areas of autonomous vehicles and

intelligent transportation systems have made to ensure perma-

nent monitoring of the road environment and detect obstacles.

Detecting obstacles as soon as possible is therefore very im-

portant to avoid accidents and improve the driving safety and

comfort. Several advanced technologies have been developed

using sophisticated sensors, such as RADAR and LIDAR

systems, and 3D cameras [5], [10]. In [11], an approach based

on a special array of ultrasound sensors has been proposed to
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detect obstacles in extreme conditions (e.g., cloudy and foggy).

The obstacles detection method in [12] is introduced for rail-

way tracks environment based on vibration and accelerometer.

In [13], Diego et al. proposed an obstacles detection system

using signal processing for airborne transmission. In [14], an

intelligent fiber grating (FG)-based 3D vision sensory system

has been proposed for real-time obstacles detection, monitor-

ing, and tracking by using laser technology combined with

CCD camera for detection. In [15], using Microsoft Kinect,

Javier et al. introduced an outdoors technique for detection

of obstacle close to the ground. In [16], Yamaguchi et al.

proposed a vision-based approach to detect moving obstacles

on roads based on a vehicle-mounted monocular camera.

In [17], Appiah and Bandaru presented a stereo vision-based

methodology using 360 vertical cameras to detect obstacles

around an autonomous vehicle.

Vision-based people detection is the subject of more re-

cent works due to its large application such as in robotics

and human tracking. In [18], Benenson et al. introduced

an efficient algorithm based on boosting cascade classifiers

with histograms of oriented gradient (HOG) like features

to detect pedestrians in images and videos. This approach

is implemented using a single CPU+GPU desktop machine.

In [19], Pfeiffer and Franke proposed a compact way to encode

the free space and obstacles based on Stixel World, in which

3D-situation are represented by a set of rectangular sticks

named stixels. This approach uses the Semi-Global Matching

(SGM) running on FPGA board and a GPU to compute dense

optical ow for tracking purpose. Morales et al. also presented

an innovative object tracking method based on the Stixel

world [20]. These works use image processing for detection

and focus only on pedestrians and ignore other obstacles.

In [21], Wang et al. use the U-Disparity as key features for

the on-road objects detection and particle filtering for multiple

object tracking. However, the run-time of this algorithm is

about 3.4s per frame for on-road detection processing and

0.05s per frame for multiple obstacle tracking, which make it a

difficult task for real-time application. In these aforementioned

approaches, the detection and recognition tasks are performed

based on image processing. Once the regions of interest (ROI)

are built based on different methods such as Stixel, then

a classifier is applied to identify the potential object. This

paper is concerned with the problem of stereovision-based

obstacle detection for mobile robots in driving environments.

The main objective of our approach is detecting obstacles (e.g.,
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pedestrians, cars, and bikes) in the urban environment.

In obstacle detection, machine learning turn out to play an

important role [22]–[24]. Deep convolutional neural networks

(CNNs) [25] showed good performance in the field of object

recognition via supervised classification. In [26], a deep CNN

based approach was proposed to detect obstacles on a road.

However, some tasks are not possible via CNN including

dimensionality reduction, unsupervised learning, and require

huge training data [27]. To bypass these limitations, Stacked-

autoencoders, which are efficient and robust deep learning

architectures, can be used [28]. These deep-learning based

approaches are generally comprised of three main stages.

First, images are fully scanned, then the potential ROIs are

identified and surrounded, and finally, the recognition stage

can be started. Such process with high computational cost and

time-consuming is executed whenever the obstacles exist or

not. In fact, this issue represents the main drawback of such

an approach.

This study was motivated by the fact that the deep stacked

auto-encoders (DSA) model combines the greedy learning

features with the dimensionality reduction capacity. Therefore,

the primary objective of this study was to exploit the deep

DSA model to accurately and reliably detect the presence of

obstacles. Here, we treat the problem of obstacle detection

as an anomaly detection problem based on the V-Disparity

data distribution. In urban settings or on highways a V-

Disparity data distribution, which is the vertical coordinate

in the (u, v) disparity map coordinate system [29], [30], is

mostly stable with small variations due to measurement noise.

The V-Disparity can significantly change in the presence of

obstacles. In fact, we start with unsupervised greedy layer-wise

training of the deep encoder using the normalize V-Disparity

dataset. We address obstacle detection as an anomaly detection

problem based on the KNN as a classifier, which requires only

obstacle-free data in training. The choice of KNN scheme is

motivated by its flexibility to do not make assumptions on the

statistical distribution of data at all, and its capacity to deal

with the non-linearity in the data [31]. The data encoded by

the deep encoder model are the input to KNN for obstacle

detection. The role of KNN scheme is to distinguish free

scenes from busy scenes in the testing data. With three publicly

available datasets, the Malaga stereovision urban dataset, the

Daimler urban segmentation dataset, and Bahnhof dataset, we

evaluated the proposed method. Results show the capacity of

the proposed approach to reliably detect obstacles and superior

performance compared to DSA-based KMeans (KM), Mean

Shift (MS), Expectation maximization (EM), Birch, Spectral

clustering (SC), Agglomerative (AG), and Affinity Propagation

(AP). Furthermore,we provide comparisons of the proposed

approach with the deep belief network (DBN)-based clustering

schemes and showed that we achieve better results.

The remainder of this paper is organized as follows. Sec-

tion II provides a brief overview of machine learning algo-

rithms used in this study. Section III briefly presents stereovi-

sion. Section IV introduces the proposed method. Section V

presents and discusses the results, and Section VI lists the

conclusions of the study.

II. RESEARCH METHOD

This section primarily introduces a brief overview of data

clustering algorithms used in this study (see Table I) and

stacked autoencoders used to build deep learning models.

TABLE I: Clustering techniques.

Algorithm Clustering technique

K-nearest neighbor (KNN) Distance

Mean Shift (MS) Density

Affinity Propagation (AP) Similarity

Agglomerative Clustering (AG) Agglomerative

Birch Hierarchical

KMean (KM) Partition

Spectral clustering (SC) Graph

Expectation Maximization (EM) Probabilistic

A. K-nearest neighbor

The k-nearest neighbor (KNN) approach is considered as

non-parametric lazy learning approach, which means that no

prior assumptions on the underlying data structure are re-

quired [32]. This property is very useful in many practical situ-

ations where the collected data are non-Gaussian distributed or

cannot be linearly separable. Classification via KNN algorithm

is performed by evaluating distances between training samples

(e.g., the Euclidean, Manhattan, or Minkowski distance func-

tion). For a given a new data point x and a training dataset

D, the classification of x is achieved based on the k nearest

neighbors, which have the smallest distances. KNN compute

all distances di, defined by di = distance(x,Di) of the

training setD elements. KNN was applied successfully to large

datasets like handwritten digits or satellite image scenes which

prove its capacity to deal with high dimensionality problems.

Here, we have used ball-tree algorithm, which is hierarchical

data-structure that proved efficient in speed up the search of

neighborhood points in high dimensionality cases [33].

B. K-means clustering

The K-means is a partitioning clustering technique based

on minimization of the average squared distance between

points in the same cluster [34]. It is an iterative algorithm

that attempts to assign n observations to one cluster from the

k clusters prefixed a priori by centroids. Specifically, for a

given k the number of desired clusters, where each cluster

has its own centroid, data point are assigned to the closest

centroid. Each cluster update it centroid based on the new

assignments. This step is repeated until the centroids remain

unchanged. Given an integer k and a set of m data points in

Z ⊂ Rd, the goal is to choose k centers C so that the total

squared distance between each point and its closest center,

ϕ =
∑I

z∈Z min
c∈C

‖z − c‖2, is minimum.

C. Mean shift

The mean shift clustering is a recursive technique that

does not require a predefined number of clusters. It permits
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performing nonparametric clustering based on kernel density

estimation of the probability density function of the input data.

It is comprised of three main steps 1) after defining a window

around data points, 2) we compute the data point mean, and

then 3) we shift the center of the window to the mean. These

steps are repeated till convergence. In fact, Mean shift estimate

window density based on kernel function. Given n data points

z in Rd, the kernel density function gotten with kernel κ(x)
and window radius r is

f(z) =
1

nrd

n∑

i=1

κ(
z − zi
h

) (1)

In the case of radially symmetric kernels, the profile of kernel

k(x) can be defined as

κ(x) = ck,dk(‖x‖
2) (2)

where ck,d represents a normalization constant which guaran-

tee κ(x) integrates to 1. More details on Mean shift clustering

refer to [35]. The window size should carefully be selected.

D. Expectation maximization

Expectation maximization (EM) algorithm was proposed by

[36], to solve problems of maximizing likelihood estimation

for data in which some variables can not be observed (La-

tent variables), In others words EM algorithm attempts to

approximate the observed data distributions among Gaussian

Mixture distributions. For given observed data X we need to

determine the value of Φ (model parameters) that maximizes

the log likelihood, L(Φ) = log P (x|Φ) , by introducing

latent variables Z we can write L(Φ|X,Z) = log P (X|Φ, Z).
We assume that elements of the observed data X follow

C Gaussian distributions, characterized by the parameters

Φ = {m,σ} ,Here unobserved data or Latent variables are

Gaussian-selector random variable. Expectation Maximization

determine memberships to a cluster by computing probabilities

of based on Gaussian Mixture distributions. Then the proba-

bility that maximize the observed data likelihood is used to

choose the cluster, we can say that at the end each observation

is member of all clusters under certain probability.

E. Birch

BIRCH (balanced iterative reducing and clustering using

hierarchies) is a hierarchical clustering algorithm designed to

deal with large datasets [37]. This algorithm, which is based

on clustering feature tree (CF-Tree), incrementally changes

the quality of sub-clusters. BIRCH clustering algorithm is

easy to implement in few steps: (1) CF-Tree is built based

on a full dataset scan. (2) A new compressed version of CF-

Tree is created. (3) Perform a global clustering, and (4) refine

clustering.

F. Spectral clustering

Spectral clustering algorithm addresses clustering as a graph

partitioning problem [38]. In this procedure, data points are

presented as the vertices of a graph. Vertices are connected by

edges and each edge has a weight. Large weights indicate that

the adjacent vertices are very similar and vice versa. Spec-

tral clustering algorithm uses the spectrum of the similarity

matrix to cluster data points [38]. For details, refer to the

reference [38].

G. Affinity Propagation algorithm

Affinity Propagation is a machine learning algorithm that

identifies a set of exemplars that represents the dataset, and

used as input similarity/dissimilarity measures between pairs

of data points [39]. In this algorithm, the number of clus-

ters is not prefixed before running as the case of k-means

algorithm. The main advantage if this algorithm is its general

applicability, and ability to cluster a large number of clusters.

However, using this algorithm, it is difficult to know the value

of parameters to achieve optimal clustering solutions.

H. Agglomerative clustering

Hierarchical clustering algorithms provide a nested se-

quence of clusters organized as a hierarchical tree [40] Ag-

glomerative hierarchical procedures begin with data points as

separate clusters. In the Agglomerative hierarchical algorithm,

the number of clusters k is not specified as an input. At each

step of the algorithm, the most similar clusters are merged. The

procedure is repeated until the distance between two closest

clusters is above a certain threshold distance.

I. Autoencoders

An autoencoder is an artificial neural network [28] used

for unsupervised learning that is trained to reconstruct its

own inputs (i.e., predicting the value of output x̂ given

input x via hidden layer h, see Figure 1). Autoencoders

are widely used for dimensionality reduction and feature

learning. Autoencoders comprise two parts: the encoder and

the decoder. The encoder can be defined with encoder function

h = Encoder(x), which can be defined by a linear or

nonlinear function. If the encoder function is nonlinear, the

autoencoder will have the capacity to learn more features

than linear principal component analysis [28]. The purpose

of the decoder part is to reconstruct its own inputs via the

decoder function, x̂ = Decoder(h). The learning process of

an autoencoder is achieved by minimization of the negative

log-likelihood (loss function) of the reconstruction, given the

encoding Encoder(x) [28]:

Reconstructionerror = −log(P (x|Encoder(x)), (3)

where P is the probability assigned to the input vector x
by the model. Indeed, incorporating latent variable models

has caused autoencoders to behave like generative models.

Autoencoders can be stacked to build deep architectures get-

ting the so called stacked autoencoder. Stacked autoencoder

models (see Figure 2) have been widely applied in image

denoising [41], [42], content-based image retrieval, speech

enhancement, bilingual word representations [43]–[45], and

medical object recognition [46], especially organ detection.

III. STEREOVISION

Stereovision is a process that provides depth information

from two images of the same scene. It usually depends on
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Fig. 1: Schematic representation of an Autoencoder.

Fig. 2: A Stacked Autoencoder.

epipolar geometry for performing spatial perception and depth

estimation using a disparity map of two rectified images (left

and right) [1], [3]. A stereo images pair are captured by two

cameras, separated by a distance called baseline, looking to

the same scene. A rectification of the two collected images is

required to project them onto the same plane, thus having the

same y-axis. To do so, the object’s position in the left image

will be shifted in the right image by an amount (displacement)

inversely proportional to the distance between objects and the

stereo vision platform (device). We called this displacement

a ”Disparity”. A Disparity map is built by computing the

disparity for all pixel in the original image (usually in left

image). In stereo, computing the disparity is treated as a

problem of correspondence or block matching using cross-

correlation approach [1], [3], [30], [47]. Several metrics have

been developed to compute disparity mapsh [1], [3], [30],

[47],M, via different correlation metrics. The sum of absolute

differences (SAD) is one of the most used metric to compute

the disparity map (see Equation 4) because of its simplicity

(fast computation) which meet the real-time requirement [1],

[3], [30], [47].

M(i, j, d) =
w∑

u=−w

w∑

v=−w

|XL(i+u, j+v)−XR(i+u, j−d+v)|

(4)

where XL and XR are respectively the left and right image

pixel intensities, w is the window size and i, j are the

coordinates (rows, columns respectively) of the center pixel of

the SAD or any correlation measures. d denote the disparity

range [dmin, dmax].

Disparity maps, which are defined as the differences be-

tween all points in the rectified left and right, can be used as

change indicators. The disparity decrease when the distance

between the object and camera increases, and vice versa.

V-disparity and U-disparity are built respectively using the

numbers of pixels in rows and columns of the disparity

map [1], [3]. V-Disparity map provides the depth estimation

and serves to the estimation of a road’s profile using the Hough

transform. It gives information about obstacles height and

positions with respect to the ground [1], [3]. On the other hand,

a U-Disparity map provides depth estimation and obstacles

width [1], [3], [48]. Based on U-Disparity and V-Disparity

maps region of interest (ROI) surrounding obstacles can be

determined as shown in Figure 3.

Fig. 3: An example of using V and U disparity maps to identify

obstacles.

Figure 4(a-b) shows respectively a case of V-Disparity in

the absence of obstacles and another case in the presence

of an obstacle. From Figure 4(a), the V-Disparity of road

profile is presented by the inclined line (accumulation of pixel

intensities). The static environment is presented as vertical

thick points located on the lower disparity because it is away

from the vehicle. Generally, the road profile in the absence

of obstacles is clearly visible without significant deformation

(Figure 4(a)). Obstacles on a road are arising as a vertical

cloud of dots with high intensities on the road profile; thick

sus as bus, truck or close car and less thick in case of

pedestrians (Figure 4(b)). When the obstacle moves away from

the vehicle, the thickness will decrease. Figure 4(b) illustrate

walking pedestrians vertical lines on the road profile indicate

the presence of these obstacles (i.e., pedestrians).

IV. PROPOSED OBSTACLE DETECTION PROCEDURE

The proposed deep stacked autoencoder-based (DSA) ob-

stacle detection approach consists of four layers, where each

layer extract features and encode its input to an output to be

an input for the next layer. The normalized V-disparity map

is the visible input of the DSA model. The input to the KNN

classifier is the output of the last layer. The proposed deep

learning architecture is trained in an unsupervised way without

any labeling of the training data. The proposed procedure is
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Fig. 4: Samples of V-Disparity maps in the case: (a) free-scene,

and (b) busy scene.

implemented in two main steps. First, the system is based on

an innovative framework for feature extraction and encoding.

This is based on a stacked autoencoder model that play at

the same time the role of feature extractor and encoder for

dimensionality reduction. In fact, we start with unsupervised

greedy layer-wise training of the deep encoder using the V-

Disparity dataset. Two tasks are accomplished at the end of

each layer: 1) discover and extract new features; 2) generate

a new encoded output that will be used as input for the next

layer. Second, we address obstacle detection as an anomaly

detection problem based on the KNN as binary classifier.

The data encoded by the deep encoder model is used as the

input to KNN scheme for obstacle detection (Figure 5). The

central role of the KNN is to separate inliers from outliers

in the testing data by computing distances. The KNN rule

classifies a new sample, x, based on its similarity with k
nearest neighboring samples in the training set. Specifically,

the KNN algorithm computes all distances di, defined as

di = distance(x, Di ) of the training set D elements. The

distance between an abnormal sample (i.e., the presence of

obstacle) and its k nearest neighbor normal samples (training)

is larger than the distance between the normal sample (i.e.,

obstacle-free scene) and its k nearest neighbor normal samples

(training). In other words, a normal sample obtained from

free-scene is similar to those training samples obtained under

the free-scene situation, while an abnormal sample (i.e., the

presence of obstacles) significantly deviates from the normal

training samples. Hence, obstacle detection can be done by

checking the distance between a new sample and training

observations. If the distance exceeds a decision threshold, T ,

then an obstacle is detected (i.e., abnormal sample). Otherwise,

it is a free scene. To fix a threshold for obstacle detection based

on KNN approach, we applied 3-Sigma rule to the distances

obtained from the KNN algorithm [49].

T = µD + 3σD, (5)

where µD and σD are the mean and standard deviation of

KNN distances under obstacle-free cases. We get a signal of

an outlier (e.g., the presence of obstacle) at the i-th time point

if the KNN distance, di, exceeds the decision threshold, i.e.,

di > T. (6)

Fig. 5: A schematic diagram of the proposed DSA-based KNN

obstacle detection system.

In the proposed approach, obstacles detected by the KNN

algorithm are considered as potential obstacles only if they are

within the operating area (see Figure 6). This area, which is

the region in front of the vehicle must be kept free to avoid

collisions, is defined as disparity range (min-max).

Fig. 6: Operating area.

A. Deep architecture training

In this section, we describe the main steps to train the

proposed deep architecture. We build the deep encoder model

via unsupervised training. The main steps of the training

approach are summarized in Algorithm 1.

The dataset used to train the model contains rectified images

(left, right) mostly free scenes with a few obstacles. V-

disparity map computed from a pair of images (stereo-vision)

is used as the input in the proposed approach. The deep

encoder has the ability to learn a complex data distribution

and yielding low dimensional outputs. Indeed, training phase
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Algorithm 1: Training DSA-KNN approach

Input: Dataset of images (Left, Right): TrainingDataset

Output: Deep Stacked autoencoder Model: DSAModel,

and K-Nearest Neighbors threshold:

KNNThreshold

1 for Each tuple (Left, Right) in TrainingDataset do

2 DMap← BuildDisparityMap(Left,Right);
3 V Disparity ← BuildV Disparity(DMap);
4 X ← V Disparity;

5 for Each Layer L in DSA Layers do

6 outputL ← LearnAndEncode(X );
7 X ← outputL;

8 Add X to EncodedDataset;

9 DSAModel ← BuildDSAModel();
10 KNNDistances ←

ComputeKNNDistances(EncodedDataset);
11 KNNthreshold ← 3Sigma(KNNDistances);
12 return DSAModel, KNNThreshold

aims to minimize reconstruction error computed through cross-

entropy, L (see equation 7). Cross-entropy metric, L, is usually

used to validate the constructed deep learning model. Cross-

entropy, L, measures the divergence between two probability

distribution of input data and reconstructed data from the deep

learning model. Its value quantifies the dissimilarity between

the two distributions [42].

L(X, X̂)=−
n∑

i

m∑

j

(x̂ij log(xij) + (1− x̂ij) log(1− xij))

(7)

where X is the input (n ×m) normalized VDisparity matrix

and X̂ is the reconstructed VDisparity matrix via the built

model of size (n×m).

In this approach, an unsupervised KNN scheme is used to

classify the encoded V-Disparity map generated from the DSA

model. A free-scene training data set was used to determine

the KNN decision threshold via the three-sigma rule, which is

then applied to the new encoded data during the testing phase

to discriminate between free scenes and busy scenes.

V. RESULTS AND DISCUSSION

A. Data description

This section reports on the effectiveness of the proposed

deep encoder approach. Towards this end, we performed ex-

periments on three practical datasets: the Malaga stereovision

urban dataset (MSVUD) [50], the Daimler urban segmentation

dataset (DUSD) [51], [52] and Bannhof dataset [53]. The

MSVUD comprises 15 sub-datasets (extracts) of rich urban

scenarios of more than 20 km in length with a resolution of

800×600 pixels recorded under different situations (with and

without traffic), such as a straight path, turns, roundabouts,

avenue traffic, and highway. The DUSD contains images se-

quences recorded in urban traffic. It consists of rectified stereo

image pairs with a resolution of 1024×440 pixels [52]. In

Bannhof dataset, the resolution of images is (800×600) pixels.

After, we unified the image size of all images from the three

datasets to the same resolution 800×600), which is common

practice in vision-based deep learning approaches [54]. The

use of a fixed resolution for all images permits avoiding the

adjustment of the number of units in the visible layer of the

Deep Stacked Autoencoder.

Two sub-datasets of MSVUD are used in the training phase.

The first dataset, which is extract number 5 (avenue loop

closure 1.7 km), consists of 5000 pairs of images and the

second dataset is extracted number 8 (long loop closure, 4.5

km), which consists of 10,000 pairs of images. These two

extracts (5,8) are composed mainly of free scenes. In the

testing phase, we used two sub-datasets of MSVUD, extract

number 10 (multiple loop closures) which consists of 9000

pairs of images, and extract number 12 (a long avenue of

3.7km with traffic), which consists of 11,000 pairs of images.

In addition, the DUSD dataset is used for obstacle detection

with 500 pairs of images.

To do so, we used two MSVUD datasets for testing pur-

poses [50]. The first dataset termed FREE-DST contains im-

ages sequences of free roads. The second dataset called BUSY-

DST contains images sequences of true obstacles (vehicles,

motorbikes, and pedestrians). This distribution is motivated

by the fact that in normal urban driving scenarios, the car is

moving most of the time unless. The vehicle can be stuck in

traffic. Both datasets, FREE-DST (3563 pairs of images) and

BUSY-DST (1437 pairs of images), were generated randomly

from extracts 10 and 12 of MSVUD.

Here, we assess the effectiveness of the proposed DSA-

KNN detection approach by using real data. We also compare

the detection quality of DSA-KNN to that of DSA-based

KMeans (KM), Mean Shift (MS), Expectation maximization

(EM), Birch, Spectral clustering (SC), Agglomerative (AG),

and Affinity Propagation (AP) approaches. In this study, the

clustering algorithms are used as binary classifiers trained

in a similar way as KNN. The output of the last layer of

DSA from the training samples (obstacle-free data) is used as

input to train the clustering algorithms. Then, the DSA model

and clustering algorithms are used together for testing new

datasets. The experimental parameters of the machine learning

approaches and clustering algorithms studied in this paper are

presented in Table II. The used deep stacked auto-encoder

consists of four layers.

Layer 1: it is called visible layer or input later. This layer is

fed directly from the input which is the VDisparity

in our case. The number of neurons in this layer is

(600× 256) neurons.

Layer 2: it is the first hidden layer, which is used as the

first level of extracting features and reducing dimen-

sionality of the input to quarter ((600× 256)/4).

Layer 3: it is the second hidden layer, used as next level

to extract features and reduce dimensionality of the

output of previous hidden layer. This level contains

((600× 256)/64) neurons.

Layer 4: it is the last hidden layer also called output layer,

the final dimension 1024 neurons.

In the proposed approach, we fulfill the real-time require-

ments achieving 12 frames per second on ordinary desktop
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TABLE II: Values of parameters used in the studied schemes.

equipped with Intel i7 CPU and using Intel Streaming SIMD

Extensions Technology (SSE4).

Here, we quantify the performance of detection procedures

by the number of true positive (TP), false positive (FP), true

negative (TN), false negative (FN), the recall or sensitivity,

which is the true positive rate (TPR), false positive rate (FPR).

Also, the Area Under Curve (AUC) metric is used to evaluate

the performance of the studied algorithms [55].

B. Model trained with free scenes (FSM):

For obstacle detection, we construct a DSA model with V-

Disparities of free scenes. Samples of free scenes and their

corresponding V-Disparity maps are given in Figure 7. The

road profile is presented in the V-disparity map by an inclined

line (Figure 7). The static environment presented by a vertical

line is located in the low V-disparity. From Figure 7, we

conclude that there are no obstacles in these scenes and the

static environment is far from the vehicle.

Now, we investigate how the performance of the proposed

approach can be affected when varying the size of the train-

ing data. Table III summarize the accuracy of the proposed

DSA-KNN algorithm obtained using the training dataset with

different size of FREE-DST data. Table III shows that the

DSA-KNN algorithm has got very satisfactory accuracy with

5000 training samples.

Here, the performance of the designed model will be

evaluated using BUSY-DST. Samples of busy scenes are

presented in Figure 9. Figure 9 shows that the road profile

in the VDisparity map contains vertical cloud of points. This

means that obstacles are present in these scenes. Tables IV

provides results of the prediction performances of the proposed

Fig. 7: Samples of free scenes (Right) original image and

(Left) its corresponding V-Disparity map.

TABLE III: Performance of the proposed DSA-KNN using

FREE-DST dataset.

Dataset Inliers Outliers

(Samples) (TP) (FP)

500 85.62 14.38

1000 94.25 5.75

2000 96.52 3.48

5000 97.26 2.73

approach for different sizes of BUSY-DST data. This result

clearly demonstrates that the DSA-KNN approach performed

well in detecting obstacles, in particular when the number of

samples is large.

Figure 8 shows the convergence of the cross-entropy loss

versus the number of epochs. An Epoch represents a single

forward and backward pass of the entire training dataset

through the deep neural network layers. From Figure 8, it can

be seen that the cross-entropy values are quite close to zero in

cases when the number of epochs is around 120. This means
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TABLE IV: Performance of the proposed DSA-KNN based

on the BUSY-DST dataset.

Dataset Inliers Outliers

(Samples) (TN) (FN)

500 92.91 7.09

1000 98.89 1.11

2000 98.33 1.67

5000 98.61 1.39

that the reconstruction error decreases progressively to small

values close to zero. It can be concluded that the designed deep

learning model DSA has fit and learn the join distribution of

the input (VDisparity) and able to reconstruct it with small

error.

Fig. 8: The cross-entropy loss versus the number of epochs.

C. Obstacle detection-based one class classifiers:

In this subsection, we compare the proposed DSA-KNN

obstacle detection approach with DSA-based KM, MS, EM,

BIRCH, SC, AG, and AP schemes (see Table V). By com-

paring results shown in Tables V, we noted that the detection

efficiency greatly enhanced by using the proposed DSA-KNN

approach.

TABLE V: Detection performances of DSA-based clustering

schemes when applied to MSVUD and DUSD datasets.

MODEL TP FP TN FN TPR FPR AUC

KM 82.3 17.7 38.2 61.8 0.57 0.31 0.62
BIRCH 86.6 13.4 22.1 77.9 0.52 0.37 0.57
KNN 97.2 2.8 84.4 15.6 0.86 0.03 0.91
AG 63.6 36.4 87.9 12.1 0.84 0.29 0.77
SC 41.7 58.3 48.3 51.7 0.44 0.54 0.44
EM 76 24 57.5 42.5 0.64 0.29 0.67
AP 38.1 61.9 56.7 43.3 0.46 0.52 0.47
MS 22.3 77.7 58.7 41.3 0.35 0.56 0.39

This fact is due to the flexibility of DSA and sensitivity

of KNN algorithm to small variations in the features. KNN

is simple to use and implement. In addition KNN is non-

parametric approach and do not has assumptions about data

convexity (cluster shape) as in EM approach. Another advan-

tage of KNN is that the number of clusters is not specified as

input and it is not sensitive to the order of the data record like

Birch algorithm. Also, KNN does not require any data type

and do not need the notion of center (centroid). Furthermore,

KNN can handle large dataset with high dimensional and is

robust to noise which is not the case of some algorithms, such

as Agglomerative and KMeans.

Fig. 9: Samples of busy scenes with their corresponding V-

Disparity and U-Disparity maps.

Also, we have compared the performance of the proposed

approach based on deep stacked autoencoder with deep belief
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network (DBN)-based clustering schemes (Figure 10) while

keeping the same parameters setup of the clustering schemes

of the previous scenario (see Table VI). For more details about

DBN refer to [27]. Results testify the powerful of the proposed

DSA-KNN approach in detecting obstacles compared to DBN-

based clusterin approaches, DBN-KM, DBN-MS, DBN-EM,

DBN-BIRCH, DBN-SC, DBN-AG, and DBN-AP, (see Figure

11). The results show that DSA-KNN method performed better

than the other models.

Fig. 10: DBN clustering obstacle detector

TABLE VI: Detection performances of DBN-based clustering

schemes when applied to MSVUD and DUSD datasets.

Model TP FP TN FN TPR FPR AUC

KNN 97.26 2.73 81.4 6 18.53 0.83 0.11 0.86
EM 60.64 39.35 84.94 15.05 0.80 0.61 0.59
Birch 83.68 16.31 76.39 23.60 0.77 0.50 0.63
AG 72.63 27.36 91.94 8.057 0.90 0.46 0.72
MS 74.65 25.34 80.01 19.98 0.78 0.56 0.61
AP 81.95 18.04 61.64 38.35 0.71 0.63 0.54
KMeans 81.60 18.39 77.51 22.48 0.78 0.52 0.63
SC 39.01 60.98 90.53 9.46 0.80 0.67 0.56

Fig. 11: AUC of the proposed DSA-KNN method compared

to other methods.

We also performed experiment based on Bahnhof datasets

[53], which is focused on pedestrians’s tracking-by-detection

in busy inner-city scenes. The Bahnhof consists of 800 stereo

image pairs, we identify about 280 busy scenes and 520 free

scenes. Tables VII and VIII present respectively a comparison

between the DSA-KNN method with other studied classifiers,

and DBN-based clustering approaches when they applied to

the Bahnhof dataset. Furthermore, Figure 12 shows the AUC

comparison between DSA and DBN-based clustering schemes.

The combined DSA-KNN detection scheme also surpassed the

other algorithms used in this study.

TABLE VII: Detection performances of DBN-based clustering

schemes when applied to Bahnhof dataset.

Model TP FP TN FN TPR FPR AUC

KNN 0.85 0.15 0.8 0.2 0.80 0.15 0.82
Kmeans 0.51 0.49 0.54 0.46 0.52 0.47 0.52
BIRCH 0.52 0.48 0.38 0.62 0.45 0.55 0.44
AG 0.81 0.19 0.57 0.43 0.65 0.25 0.70
SC 0.51 0.49 0.45 0.55 0.48 0.52 0.47
EM 0.74 0.26 0.51 0.49 0.60 0.33 0.63
AP 0.47 0.53 0.41 0.59 0.44 0.56 0.43
MS 0.45 0.55 0.39 0.61 0.42 0.58 0.41

TABLE VIII: Detection performances of DSA-based cluster-

ing schemes when applied to Bahnhof dataset.

Model TP FP TN FN TPR FPR AUC

KNN 0.98 0.02 0.91 0.09 0.91 0.02 0.94
Kmeans 0.82 0.18 0.32 0.68 0.54 0.36 0.59
BIRCH 0.82 0.18 0.2 0.8 0.50 0.47 0.51
AG 0.81 0.19 0.59 0.41 0.66 0.24 0.71
SC 0.57 0.43 0.505 0.495 0.53 0.45 0.53
EM 0.73 0.27 0.51 0.49 0.59 0.34 0.62
AP 0.52 0.48 0.49 0.51 0.50 0.49 0.50
MS 0.52 0.48 0.47 0.53 0.49 0.50 0.49

Fig. 12: Bahnhof dataset experiment results

VI. CONCLUSION

Obstacle detection is an essential element in the devel-

opment of automatic driver assistance tool for enhancing

safety on the roads. In this paper, we proposed a novel

stereo vision method capable of detecting obstacles in a road

environment. The proposed obstacle detection system merges

the flexibility and accuracy of a new deep encoder and the

extended capacity of KNN in anomaly detection. We evalu-

ated the proposed approach using practical data from three

databases, the Malaga stereovision urban dataset (MSVUD),

the Daimler urban segmentation dataset (DUSD) and Bahnhof

dataset. We provided comparisons of the proposed DSA-KNN

method with DSA-based KMeans (KM), Mean Shift (MS),

Expectation maximization (EM), Birch, Spectral clustering

(SC), Agglomerative (AG), and Affinity Propagation (AP),
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and showed that we achieve better results. Also, the proposed

method showed superior performance compared to the deep

belief network (DBN)-based clustering schemes.
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