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Abstract

Motion has been examined in biology to be a
critical component for obstacle avoidance and
navigation. In particular, optical flow is a pow-
erful motion cue that has been exploited in
many biological systems for survival. In this
paper, we investigate an obstacle detection sys-
tem that uses optical flow to obtain range in-
formation to objects. Our experimental results
demonstrate that optical flow is capable of pro-
viding good obstacle information but has obvi-
ous failure modes. We acknowledge that our
optical flow system has certain disadvantages
and cannot be solely used for navigation. In-
stead, we believe that optical flow is a critical
visual subsystem used when moving at reason-
able speeds. When combined with other visual
subsystems, considerable synergy can result.

1 Introduction

Navigation and obstacle avoidance are just two of bi-
ology’s main instincts for survival in unknown environ-
ments. Mobile robots too must have these basic instincts
integrated into their system before attempting to per-
form any higher-level tasks. Currently sonar and laser
methods are used for obstacle detection but researchers
are now looking towards an important sensory system
that many biological creatures use everyday—vision.
Vision is a very powerful sensor providing numerous
types of information that can be explored in many con-
texts for obstacle detection. Colour and texture recogni-
tion have been used to segment out the ground plane in
images thus identifying free space in the forward area
[Cheng and Zelinsky, 1998]. Edge obstacle detection
methods have been implemented in corridor type en-
vironments due to the many straight line components
and static lighting conditions [Ohya et al., 1997]. More-
over edges in an image have been considered obstacles
using the edge free ground plane assumption [Lorigo et

al., 1997] [Chao et al., 1999]. All these techniques use
different image aspects that have been shown to work
successfully in their test environments. It is only when
they are conducted in more general environments that
failure occurs due to the various assumptions made. For
example, texture recognition assumes the ground tex-
ture remains constant, colour recognition assumes that
objects are not the same colour as the ground, and the
edge detection method used in corridors requires strict
model memory components plus a good simultaneous lo-
calisation and mapping (SLAM) system. In biology, it
has been shown that these spatial visual systems cannot
and do not function alone. Instead it suggests that these
systems operate in conjunction with another important
system, the visual motion system.

Visual sensors are able to sample the amalgamation of
environmental motion and self-motion information of a
scene through two or more successive snapshots. These
snapshots encode motion at a fundamental feature level
used to estimate optical flow. Optical flow can be defined
by a set of vectors with each vector describing the motion
of individual features in the image space. These simple
vectors can provide a 2D representation of the robot’s
motion and the environment’s 3D structure and motion
under the correct conditions. As such, optical flow has
been used in a many different ways for navigation and
obstacle avoidance. The common ground plane segmen-
tation using optical flow templates has been shown to
be successful in identifying flat traversable surfaces [Illic
and Masciangelo, 1992]. Furthermore, the use of diver-
gence maps from optical flow fields have shown promis-
ing results with robots been seen to navigate between
obstacles successfully using divergence plots [Camus et
al., 1999] [Nelson and Aloimonos, 1989]. Divergence and
time to contact calculations for a central area have also
been implemented as a frontal collision detection sub-
system [Coombs et al., 1995].

Evidence in biology also outlines the importance of
motion with monkeys shown to contain two pathways
known as Magnocellular (M) and Parvocellular (P) path-



ways [Miles and Wallman, 1993], otherwise described as
being the motion and colour/texture processing path-
ways respectively. Insects such as bees have been shown
to exploit optical flow by balancing right and left flow
fields in corridor type environments [Srinivasan, 1992,
and has also been proven to have great success on mobile
robots [Coombs et al., 1995]. No doubt visual motion is
an important cue for obstacle avoidance and navigational
tasks in biology. Much work has already been done on
techniques for the colour/texture pathway but less so for
the motion pathway.

Whilst many interesting techniques have been formed
using optical flow, almost no research has been done on
using optical flow to construct a simple but robust range
map of the environment. Optical flow under certain con-
ditions can provide a 3D reconstruction of the surround-
ing environment similar to that of stereo vision but only
using one camera.

In this paper, we aim to take advantage of this 3D
environmental information encoded within optical flow
to extract and produce a range map. We compare this
visual range map with the traditional sonar and laser
sensor information and outline any improvements and
shortcomings. Our approach will be slightly different to
that from the known Structure from Motion (SFM) area.
Instead of using the basic motion equations, we use the
time to contact calculations formulated by Lee [Lee and
Young, 1985] for each optical flow component. This ap-
proach was taken as the time values are hypothesised to
be a key aspect in controlling mobile robots. Numerous
experiments conducted by Lee [Lee, 1980] show that our
actions and movements are not governed by the true time
to contact but rather by the time to contact if the speed
of the object were to remain constant, otherwise known
as the tau-margin. We hypothesise that motion infor-
mation is a key aspect for many functions, in particular
obstacle detection, control and navigation.

1.1 Outline

In Section 2, we provide background motion informa-
tion including the optical flow estimation methods and
the time to contact calculations used to find the range
measurements to the optical flow points. Section 3 will
describe an angular Obstacle Map that is used to repre-
sent the results in addition to Cartesian space. Section 4
presents the system architecture including sensor hard-
ware of the robot. In Section 5, errors that were encoun-
tered in optical flow will be outlined and the methods
chosen to solve them presented. Section 6 describes the
environmental setup, robot paths and sensors used in
the experiments. Following this, Section 7 presents the
results of the experiments to which Section 8 will dis-
cuss. Lastly the conclusion of this paper will be shown
in Section 9.

2 Motion Framework

The motion field can be described as the projection of
the 3D velocity field in a scene onto a 2D image plane
and is analogous to optical flow many situations. If we
let P =[X,Y,Z]" be a 3D point in the camera reference
frame, Z the optical axis and f the focal length, then the
image of a scene point, P can be mapped to the image
point p through the following equation:

P
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From this we obtain the important basic equations of
motion by differentiating both sides of Equation 1 to
obtain:
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where v is the velocity vector in image space, T is the
translational velocity vector in camera space, f is focal
length, Z the depth to the motion point in camera space
and w is the rotational velocity vector in camera space.

From Equation 2, it can be seen that the rotational
or translation components are linearly separable and
that depth information Z for a point only exists if
there is translational motion in 3D space, T. It is from
these equations that the structure from motion field is
built. They give an understanding and mathematical
background of the information optical flow can contain.
The main difference between an optical flow field and
the motion field is that optical flow only describes the
apparent motion of features in an image, which may or
may not correspond to the motion field.

2.1 Optical Flow Estimation

In order to extract information from an optical flow field,
it must first be estimated from our images taken within
a scene. There are many optical flow estimation tech-
niques but the majority can be classified into two cate-
gories, differential or feature-based. Differential methods
work using the temporal and spatial variations of all pix-
els in a image window and is based upon the brightness
consistency equation [Trucco and Verri, 1998]:

(VE) v+ E;, =0. (3)

where E = E(z,y,t) is the image brightness, v the
motion field and the subscript ¢ denoting partial dif-
ferentiation with respect to time. This equation as-
sumes that the apparent brightness of moving objects



remains constant and thus the change in image bright-
ness AE(x(t),y(t),t) in a scene must equal zero. It is
commonly solved using the least squares solution over a
small patch @, thus producing the optical flow v at the
centre of the patch Q.

Feature based methods on the other hand use distinct
features in image and a matching technique to find the
optical flow vectors. As a consequence, the optical flow
field is generally more sparse and uses less processing
time than differential methods. It is for this processing
time concern that a feature-based matching system was
employed. Although recent studies have shown promis-
ing performances for differential techniques in closed-
loop control situations [McCarthy and Barnes, 2004].
Some other advantages of using a feature-based method
includes the ability to eliminate the common aperture
problem as well as the ability to cope with more sporadic
movements. To obtain both these advantages, corners
(otherwise described as an area of large spatial changes
in brightness in two different directions) are the features
chosen to be tracked and matched.

Corner Detection

Corner detection is an important process for obtaining
good optical flow images. There exist several corner de-
tection methods from which the commonly known Har-
ris corner detection method [Harris and Stephens, 1988]
was chosen. It produced superior time and corner re-
sults compared to other common methods when applied
to local image tests. The Harris corner detector works
by using the matrix:

sl B

where the sums of image brightness E are taken over
the neighbourhood @ of point p. Corners are found by
extracting the two eigenvalues of the matrix that encode
the edge strengths thus producing a new matrix C:

A0

¢= [ 0 Ao } (5)
Thus when A\; > Ao and Ay is over a given threshold
value, it corresponds to two strong edges in the same
image window thus specifying a corner. This corner
detection method was implemented using the OpenCV
function cvGoodFeaturesToTrack as it is analogous to
the Harris corner detector differing only in the thresh-
old equation used ( OpenCV uses a simple constant
multiplied by the maximum eigenvalue). The OpenCV
function provides adjustable variables such as the max-
imum corner amount to detect, threshold constant and
the minimum spacing between corners found. This helps
scale the number of corners found and improves spatial

uniformity of the optical flow.

Matching

Matching is performed via the normalised cross correla-
tion coefficient for a window surrounding the corners of
interest found. This was implemented with the help of
OpenCV’s function cvMatchTemplate as it can be easily
modified to perform other standard matching functions
such as the sum of squared differences and cross corre-
lation. With the chosen matching function, corner pairs
can be eliminated using a simple threshold value rang-
ing from 0 to 1 (1 being a perfect match). Matches are
further limited with the assumption of relatively smooth
movements thus should only occur in a specified search
area around the position of the first corner. Once match-
ing has been completed, the optical flow vectors can then
be used to extract range information through time to
contact equations.

2.2 Time To Contact

The theory of time to contact (TTC) was first intro-
duced by Lee [Lee and Young, 1985]. Lee conducted
many studies upon humans and birds showing evidence
that TTC is a critical component used in the timing of
motion and actions. As we fundamentally wish to de-
velop the robot for obstacle avoidance and control, we
chose to use the TTC information and believe it will help
the task of obstacle avoidance at later stages. One can
also simply convert these time measurements to range
estimates by multiplying it by the speed of the robot for
easy comparison.
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Figure 1: Time To Contact Figures: Left - Robot on a
straight collision course with object, Right - Robot not
on a collision course with object.

The definition of time to contact is quite simple. Given
a point object travelling on a collision course with the
robot, distance r from the robot and at a constant speed
v (as shown in Figure 1(a)), the TTC is given by:

TTC =r/v. (6)

Another way to express the TTC is to use the direc-
tion of the velocity vector v and the direction to a point



on the object [Lee and Young, 1985]. If we label the
angle between these two vectors ¢, the TTC can be al-
ternatively calculated using:

TTC = 250X SO (7)

The benefit of the latter equation is that it only re-
quires information that can be obtained purely from op-
tical quantities. As such, this equation produces time
values to each corner tracked within an image from
known image-based and camera information. ¢ repre-
sents the angle between a vector r and the optical axis
of the camera. It is assumed that the robot only moves
in the forward camera direction and does not move per-
pendicular to the camera direction thus allowing simple
angular calculations. This is a reasonable assumption
given that the robot is of a wheelchair design and will
be mainly operating in flat environments. Once each of
the time to passing or contact values are found, they
can be converted to range information by extracting the
speed of the robot from the wheel encoders. These range
vectors are then transformed into Cartesian coordinates
by using the assumption of a pinhole camera model and
similar triangles:

x=2z
v, ®)
=1z

3 The Obstacle Map

Optical flow information was also used to form an Ob-
stacle Map (OM) in order to provide a different repre-
sentation of obstacle information. The Obstacle Map is
a angular map with the range threshold function:

prom; = f(r;) = 2. )
i
where r; is the range in metres to the point of inter-
est i, K, the threshold constant and proz; represent-
ing range information converted to a 0 - 1 proximity
scale (1 representing the closest obstacles). As the main
concern is about detecting and actuating around threat-
ening obstacles, this type of angular range map could
be much more useful for control purposes. In particu-
lar, the biological-plausible reactive navigation system
developed by Browning [Browning, 2000] uses this OM
combined with a Goal Direction (GD) map to produce
a Motor Heading Map (MHM) that controls the direc-
tion of the robot. The method is based on the RanaC
model biologically found in frogs [Arbib, 1987] and has
been shown to perform well in multi-object environments
[Ball, 2001].

This Obstacle Map could also be formed using time
to contact information as a relative proximity measure
instead of strict range information r;. The benefit is that
navigation would be purely based on optical quantities.
This was to be initially implemented but to allow a fair
future comparisons of the optical flow obstacle detection
against traditional techniques, the strict range obstacle
map format was used.

Thus through Equation 9, the OM was constructed us-
ing the Cartesian range information obtained from opti-
cal flow. As optical flow points are quite sparse and sepa-
rated in feature-based estimation, an error margin of +2°
was implemented. This helps create a more smoother
and continuous Obstacle Map.

4 System Architecture

The platform used to conduct the experiment was a
Pioneer robot, which is developed and sold as a self-
contained unit. It is a wheelchair designed robot with
an inbuilt Pentium computer running a compact ver-
sion of Windows XP. The Pioneer robot sensors include
a sonar ring, encoders, a monocular active camera, an
industry standard SICK laser and an inertial measure-
ment unit (EiMU). The laser is located in the front area
of the robot with eight (8) sonar sensors arranged be-
neath. The camera is mounted on top of the laser and
positioned in the middle of the turning axis of the robot.
An embedded motor board is used control motors and
communicate encoder information back to the computer.
Figure 2 shows a photo of the Pioneer mobile robot and
Table 1 presents some brief information on the robot’s
sensors.

Figure 2: The Pioneer Robot with a SICK Laser, Sonar
Ring, Active Camera and the EiMU sensor.



Sensor Information Description
Type

Sonar  Cone  projected Consists of 8 sonar’s
range, 30° cone, surrounding the for-
max. range is 2m. ward area.

Laser Range, max. Scans up to 180° with
range is 150m. 1° angular resolution

and a 10mm range
resolution.

Vision  392x288 @ 25fps, Provides a maximum
50° angular range, resolution of 768x576
non interlaced im- PAL, supports out-
age. puts in YUV, RGB

and Grayscale.

EiMU  Heading 0 — 360°, Consists of a single

heading rate. axis gyroscope and
three magnetometers.
Contains inbuilt soft-
ware filtering and cal-
culates heading direc-
tion with respect to
magnetic north.

Table 1: Pioneer Sensor Information

5 Improving Optical Flow

There are three main problems associated with using
optical flow images to obtain 3D environmental informa-
tion and self-motion. Firstly, to fulfil the assumption of
smooth movements, the robot has to move quite slowly
and as a result produces poor and coarse optical flow
data. This causes large errors in range calculations es-
pecially when sub-pixel corner finding algorithms are not
employed.

The second problem is a well-known issue in computer
vision, whereby any rotation or rotational disturbances
will add a constant optical flow vector to each point of
interest. As examined in Equation 2, rotations encode
no range information thus must be removed in order to
obtain the correct range information from translational
movements.

Lastly, the problem of lens distortion also has an affect
on the optical flow. Optical flow information is quite sen-
sitive thus even lens distortion can alter the optical flow
vectors enough to produce an incorrect observation of
the motion field. It complicates the situation by chang-
ing optical flow vectors depending on the position in the
image.

5.1 Tracking Corners

To help solve the problem of coarse optical flow data, we
employed tracking over a number of successive images.
Tracking was conducted in all directions as it produced
satisfactory results with each match chosen to be tracked

from either 1 to 5 images. The tracking is interleaved be-
tween images thus removing many outliers and produces
a finer optical flow field suitable for range data extrac-
tion. Tracking over five successive images slows down
the process of obtaining range information but the rea-
son it is performed over five images is due to the robot
moving at a slow speed. If the robot were to move at a
fast pace, the number of tracking images can be reduced.
This would produce the same resolution of optical flow
at a faster rate (needed at higher speeds for control) but
with the sacrifice of outlier reduction. Although tracking
helps improve optical flow, the problem of coarse optical
flow data at very slow speeds still exists. Thus we chose
to ignore any information obtained from vision motion
below a certain forward speed.

5.2 Rotation Removal

The area of ego-motion recovery is vast thus there exists
many different algorithms to estimate rotational motion
components. The problem is many of these techniques
require numerous assumptions, are computationally ex-
pensive and still produce results containing errors [Gi-
achetti et al., 1998] [Gebert et al., 2003]. The Pioneer
robot was equipped with an EiMU! thus we took advan-
tage of the in-built gyroscope to help remove rotations
from the optical flow images. As the camera is aligned
with the robots turning axis, rotation removal becomes
the simple task of finding the heading difference in image
space and subtracting it from the optical flow.

Initial tests on the EiMU presented huge errors due to
the heading being fused with a reference point provided
from the magnotometers. For indoor environments, large
electromagnetic disturbances from computers, electrical
equipment as well as from the Pioneers power and motor
units affected the magnotometers greatly. Thus the mag-
notometers were retired and the gyroscopes rate infor-
mation fused with the Pioneer wheel odometry instead.
The original sensor fusion method (a complementary fil-
ter with an additional integral gain) was kept as it is sim-
ple, real-time and can easily be tweaked to combine the
benefits of both datasets. Figure 3 shows a brief block
diagram of the complementary filter (CF) where k, and
k; are the specified proportional and integral gains.

To calibrate the CF, 360° rotation tests were con-
ducted and gains tuned for a turning speed of 15°/s.
The filter results are presented in Figure 4 from which
we can see the combination of the gyroscope’s fine reso-
lution and the odometry’s values helping to remove gy-
roscopic drift.

!An inertial measurement unit provided by fellow re-
searchers at the CSIRO ICT Centre.



Gyro Rate

=)

Y

/ » Heading

Odometry

Figure 3: Complementary Filter Block Diagram for Fus-
ing EiMU Data with Wheel Odometry.
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Figure 4: Complementary Filter Test Results: Comple-
mentary Filter Heading - Red/Triangle Line, EIMU Rate
Integrated Heading - Blue/Plus Line, Odometry Head-
ing - Green/Asterisk Line.

5.3 Rotation Effectiveness

In order to test the effectiveness of the rotation esti-
mations from our CF fusion, a simple experiment that
rotated the robot on the spot was conducted. If the CF
rotation estimates, camera position and lens distortion
model are perfect, we should obtain an optical flow image
of only dots representing corners. Figure 5(a) and Figure
5(b) shows a sample of optical flow images produced be-
fore and after the rotation removal process respectively.
It can be seen that a significant part of rotation com-
ponents are removed with a calculated average error of
7.07% over the smooth rotation segments. This error
may produce a slight shortening or lengthening effects
in the range estimates but as we are concerned with ob-
stacle detection and not precise mapping, this error level
is satisfactory.

(b) After Rotation Removal

Figure 5: Optical Flow Images of the Rotation Removal
Process using the EIMU and Odometry.

5.4 Lens Distortion Removal

To remove lens distortion, camera calibration was per-
formed via the Matlab camera calibration toolbox and
distortion removed using the iterative normalisation
function also provided by the toolbox. As removing dis-
tortion blurs the images slightly, we chose to normalise
the points after the corners were tracked and matched
up. This not only improves corner detection and match-
ing quality levels but also speeds up the overall process;
undistorting only the matching corner points instead of
the whole image.

6 Experimental Setup

Two (2) experiments were conducted in order to test our
the optical flow system.

1. Straight Only - The robot was driven forward only
between two artificial obstacle targets against a very
corner free background.



2. Slow Curve - The robot took a slow rightward
curving path toward real obstacles and turns into
corridor space.

The speed of the robot in the experiments ranged from
0 - 250mm/s in an area of about 5 by 3m. To gain sig-
nificantly better optical flow information, speeds below
180mm/s were ignored. For comparison purposes the
laser and the sonar sensor information were recorded.
All tests were conducted within an office environment
which was found to have a very consistent carpet colour
thus producing a very corner free ground plane. It was
also assumed that all corners found in an image are asso-
ciated with an obstacle and considered a threat. This is a
reasonable assumption since obstacles close to the robot
are the main concern and due to the cameras viewing an-
gle, any corners produced from large heights (such as the
ceiling) should be classified as being relatively far away
thus not affecting the closer obstacle data. Although
this may not be the case in other environments such as
outdoor environments, optical flow data can provide 3D
information thus allowing the option of filtering values
to those within the robot’s height space.

7 Experimental Results

Straight line results are presented in Figure 6 and Fig-
ure 7 showing one of the better to one of the poorer
frames respectively. The top-most image displays the
corrected optical flow overlaying the camera image. The
middle left and right images plot the optical flow and
laser ranges in the same scale Cartesian space respec-
tively. Darker dots in the left plot symbolise an obstacle
of closer proximity to the robot. Note that the field of
view (FOV) of the camera is limited compared to that
of the laser and sonar thus only the points seen in the
cameras view (top-most graph) are mapped to the Op-
tical Flow Cartesian map. The approximate FOV lim-
its of the camera are signified by a dotted-dashed line
in each of the plots. The bottom left image shows the
sonar range readings in Cartesian coordinates and the
bottom right image contains the Obstacle Map created
from optical flow range information (discussed in Section
3). The Obstacle Map uses an angular measure of de-
grees on the x-axis with the optical axis of the camera
located at 180°. The FOV limits of the Obstacle Map are
approximately +28°. We chose an OM threshold value
of 1.5 metres and a value of 0.5 for unknown range infor-
mation. All measurements are sampled relative to the
robot space with flow information obtained and tracked
over a sequence of five images.

Figures 8, 9 and 10 present the curve path experiment
results for frames 345, 180 and 120 respectively. These
frames were chosen to give a view of the best, average
and worst case scenarios respectively. The layout is iden-
tical to the straight line results except the depth axis

Optical Flow Overlayed with Camera Image

Optical Flow Cartesian Map Laser Map
41 / 4 7
\ / \ /
\ / \ /
3 \ / 3 \ /
\ : / \ /
£ 2 N / £ Wil v o TR
N \ / N \ /
\ / \ o /
Y B/ \ O/
1 \ ’ 1 ° o CRE- )
\ / i \ / @
i/ i/
0 0 4
2 1 0 -1 -2 2 1 0 -1 -2
X(m) X(m)
Sonar Map Obstacle Map from Optical Flow

Threshgld Ranoge(o—g

o

4 / 1 i i
\ /
\ / .8 ! !
3 N ; | |
\ / | |
_ o O .6
E, N 7 | |
N SN / | |
\ / 4 i i
1 b b
\ / .2 ! !
| |
| |
40 160 20

0 220

0
2 1 0 -1 -2 1 180
X(m) Angle(Deg)

Figure 6: Experiment Results - Straight: Frame 115.

Z(m) was changed from 4 to 8 metres to accommodate
the long corridor measurements.

8 Discussion

Experiment 1 produced some promising results with the
majority of images producing smooth flow thus providing
quite accurate and consistent range information. From
Figure 6, the Optical Flow Cartesian Map shows solid
evidence of two obstacles with a visually inspected error
of 0.2m with respect to the laser readings. This error is
more than acceptable for obstacle detection as seen by
the Obstacle Map which easily identifies two threaten-
ing obstacles at either side of the robot with free space
between them. Comparing the vision-based method to
sonar, it is seen that the optical flow information out-
performs sonar with its much higher resolution map, the
ability to detect the left side obstacle correctly as well
providing quite accurate range information.
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Figure 7: Experiment Results - Straight: Frame 55.

The poorer results in Figure 7 show optical flow in-
formation skewing slightly and increasing the range of
the right side obstacle. Even so, optical flow range in-
formation still able to provide evidence of the right side
obstacle’s existence as well as the back wall.

In experiment 2, the optical flow system produced
good and informative results for the majority of frames
but also produced some incorrect obstacle information
throughout frames 110 to 160. The better optical flow
frames from the curve run (Figure 8) shows that optical
flow information is able to map out the corridor wall as
well as the intruding door and bin. The Obstacle Map
clearly indicates the free space to the right, examined to
be the corridor, and an object to the left relating to the
bin and door in the overlayed image. Note that the laser
map is able to pick up the other side of the door but just
misses being picked up in the optical flow Cartesian map
and Obstacle Map due to the camera’s FOV. Compar-
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Figure 8: Experiment Results - Curve: Frame 345.

ing with sonar again, it can be seen that the detection
range of optical flow is much better and although not
as good as laser, is more suitable for obstacle avoidance
considering the robot’s maximum speed.

Figure 9 displays one of the more average optical flow
results from experiment 2, with some errors produced
from the doors out of focus corners as seen in the over-
layed image. Regardless, the rest of the information
clearly indicates the chair, some of the door and rub-
bish bin seen in the overlayed image.

Figure 10 shows one of the failed frames with the op-
tical flow ranges indicating an object on a direct col-
lision course less than 1 metre away from the robot.
Further investigation revealed that the incorrect range
readings were due to the sensitivity of the TTC calcula-
tions near the principle point of the image. As the angle
between the pixels and principle point becomes smaller,
the TTC equations become much more sensitive to any
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Figure 9: Experiment Results - Curve: Frame 180.

optical flow thus even small errors affect the range read-
ing greatly. This error is further amplified as the vision
system works using pixel resolution thus the coarse na-
ture of pixel movement in the central regions only allows
very discrete range readings.

This TTC sensitivity problem can be approached in
numerous ways with the simplest method ignoring the
central portion of the image. Another method would be
to use sub-pixel interpolation or a differential optical flow
technique in the central region to create finer optical flow
vectors thus reducing quantisation errors. In biology, it
has been investigated that monkeys and humans only
focus on a central region of the image, and thus hypoth-
esised that stereo is used to obtain depth in the central
regions whereas optical flow is mainly on the outer pe-
ripheral regions of the eye. In accordance, we could also
try combine this optical flow system with stereo and even
colour segmentation and/or texture recognition to form
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Figure 10: Experiment Results - Curve: Frame 120.

a complete visual obstacle-avoidance system.

Aside from the bad frames seen in Figure 10, the op-
tical flow obstacle detection system was relatively suc-
cessful with the ability to identify and estimate ranges
to obstacles given good smooth optical flow information.
It was inspected in the straight line experiment and in
the curve line experiment (ignoring the frames below the
speed threshold) that 100% and 81% of the optical flow
frames were capable of providing and locating threaten-
ing obstacle information respectively. With this percent-
age of consistancy seen, this technique should be able to
benefit greatly from temporal filtering or path integra-
tion techniques.

9 Conclusion

In this paper, we have introduced an optical flow ob-
stacle detection system capable of estimating obstacle
positions. The CF rotation removal process and TTC



calculations employed were proven to be effective in prac-
tical situations. In many frames, the optical flow system
produced range information that was on par or superior
to sonar information and in some of the better frames,
on par with laser information. There are some failure
modes in our system; this technique was not developed
to be a standalone method but a subsystem of a com-
plete vision obstacle detection system. In summary, our
results have shown that optical flow information is capa-
ble of providing useful obstacle information that can add
to the strengths of other visual methods such as colour,
texture and edges recognition. Motion is a critical com-
ponent in biology for navigation, to which our obstacle
detection system highlights the usefulness of optical flow
and its promising abilities to fill the visual motion gap
for mobile robots.
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