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Abstract

In this paper we present an artificial vision algorithm for

real-time obstacle detection in unstructured environments.

The images have been taken using a stereoscopical vision

system. The system uses a new approach, of low compu-

tational load, to calculate a V-disparity image between left

and right corresponding images, in order to estimate the

cameras pitch oscillation caused by the vehicle movement.

Then, the obstacles are localized by stereo matching and

mapped in real world coordinates. Experimental results on

sequences taken from a moving vehicle (which partecipated

to the DARPA Grand Challenge 2004) in different unstruc-

tured scenarios are then presented, to demonstrate the va-

lidity of the approach.

1. Introduction

The research that made possible the realization of our al-

gorithm is related to the project that led to our participation

in the DARPA Grand Challenge competition which took

place in the Mojave desert (USA) on March 13, 2004. When

DARPA (Defense Advanced Research Projects Agency)

promoted the Grand Challenge, its goal was to test the

state of the art and incentivate research in completely au-

tonomous vehicles design. The Grand Challenge 2004 was

concerned with the construction and the equipping of ve-

hicles of any kind to travel autonomously the 142 miles

that separate Barstow (California) from Primm (Nevada)

in a maximum time of 10 hours: the prize for the win-

ners amounted to one million US dollars. The exact path,

which consisted of 1000 waypoints, would have been di-

vulged only 2 hours before the race began. Our group de-

veloped the vision system of Team Terramax. The vehicle

was equipped also with other sensors, like differential GPS,

ladars, sonars...

Although laser sensors provide refined and easy-to-use

information about the surrounding area, they also present

some intrinsic limitations to their functioning. In fact, scan-

ning the real world with only one degree of freedom in-

volves that thin obstacles, like poles or fencing, if too far

away, cannot be localized because they occupy a scanning

angle lower than the laser sensor resolution. Plus, in cor-

respondence to ground slope variation and sensible vehicle

pitch it often happens that the scansion intersecates with the

terrain surface, misclassifying it as an obstacle.

On the other hand, a vision system provides a large

amount of data, but extracting refined information some-

times may be complex. Furthermore, other difficulties arise

from the integration of data coming from many different

sensors. These facts resulted in the majority of the partic-

ipants at the competition that had invested resources in the

development of a vision system not being able to totally

exploit this functionality. Therefore, in such a practical ap-

plication it is necessary to know what the vision module is

supposed to do and what it is not, in order to simplify the

problem.

The aim of our vision module is to compute a real world

representation that allows the path-planner to find a safe

path. The computation must be in real-time; a long dis-

tance (50m) obstacle detection range is needed in order to

anticipate decisions. Furthermore, the vision module should

overcome other sensor lacks, for example detecting thin

obstacles. On the other side, no obstacle classification is

needed, and small obstacle width estimation errors have no

consequences. Besides, when we drive, we do not need to

know the environment with millimetric precision.

The outline of this paper is as follows. Section 2 de-

scribes related work in pitch and obstacle detection. Our

pitch and obstacles detection system is discussed in detail

in section 3. Section 4 presents the experiments performed

to demonstrate the feasibility and effectiveness of the ap-

proach. Section 5 gives the conclusions and future direction

of this work.
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2. First considerations and related works

To obtain a real world representation from an image pair,

it is necessary to know the cameras placement (see fig. 1) at

the time of acquisition.
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Figure 1. Real world frame of reference. The

cameras are mounted on a rigid bar, and

share the same pitch, yaw and roll angle.

In specific conditions, like on almost still vehicle or on

highways, the static calibration angles are preserved at the

time of acquisition. This is not true for a vehicle moving

in extreme environments because of the bumps caused by

the ground unevenness. In particular, the pitch oscillation

causes a vertical discrepancy of the acquired images respect

to the expected (on the basis of the static calibration) results.

Different approaches are possible to estimate the cam-

eras angles at the time of acquisiton. For example, in [1] a

yaw, roll and pitch estimation is made, referring to known

characteristics of the environment (as lane width). Of

course, this approach is not suitable for unstructured en-

vironments. Many works use a time correlation approach,

tracking images recognized features and obtaining a visual

odometry. In this field, [6] presents one of the most re-

cent studies: it consists in a mono-camera method applied

to both stereo images. On the contrary, we use a method

known that uses a V-disparity representation, introduced by

R. Labayrade and D. Aubert [4,5]: this method allows to ob-

tain the cameras pitch angle at the time of acquisition from

a single pair of stereo images.

A wide baseline is necessary to accomplish the goal of

detecting far away obstacles. Therefore, most of the pub-

lished studies about planetary exploration [2,8] are not suit-

able for our applications. The usual approach in extremely

unstructured terrain is to build a digital elevation map of

the real world [11]. This method, due to its computational

load, fails to fulfill the real-time requirements. Thus, we

chose to compute a fast DSI using an area-correlation stereo

method. We are not concerned by the “foreground fatten-

ing” effect [7], since it only cause the obstacles to appear

slightly bigger.

3. Basic principles and implementation of the

algorithm

In this section we discuss the process that starting from

images acquisition (that includes the removal of the distor-

sion due to optical lenses1) leads to populate the real world

map through the following elaboration steps:

1. V-disparity image computation;

2. pitch estimation;

3. disparity space image computation (DSI);

4. obstacles localization;

5. real world coordinates mapping.

3.1. V-disparity image computation in unstructured
environment

The first step that leads to estimate cameras pitch is

based on an approach similar to the one introduced by

Labayrade [5], and consists in calculating the values of sim-

ilarity (by a correlation measure), for different offset values

(disparities), for each pair (left and right) of rows of the

stereo images2 at the same height (v coordinate). This op-

eration enables us to produce a 3D graphic structured as it

can be seen in fig. 2: the abscissa axis (d) plots the offset

for which the correlation has been computed; the ordinates

axis (v) plots the image row number; the intensity value

is used as a third dimension, and settled proportional to the

measured correlation, obtaining an image called V-disparity

image (or correlation image).
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Figure 2. Images and V-disparity image frame

of reference

Each planar surface in the field of view is mapped in a

segment in the V-disparity image [5]. Vertical surfaces in

1Such feature is provided, together with the acquisition software and

the real-world to image coordinates transformations, by the framework we

used to develop the algorithm.
2Apart from a slight vergence, the cameras are in standard form [3], so

the rows correspond to the epipolar lines.



the 3D world are mapped into vertical segments, while or-

izontal surfaces in the 3D world are mapped into slanted

segments. E.g., the vertical segment in the center of the

V-disparity image of fig. 2 is caused by the visible surface

of the closest pedestrian. This surface is almost completely

at the same distance from the cameras, so the correspond-

ing segment has constant disparity. On the other hand,

the slanted segment in the V-disparity image is caused by

the linearly changing maximum correlation disparity among

ground components. This segment, called “ground correla-

tion line” in this study, contains the information about the

cameras pitch angle at the time of acquisition (mixed with

the terrain slope information). The first goal is then to ob-

tain a V-disparity Image that allows to extract the ground

correlation line.

First of all it is necessary to devise a feature in the images

that allows to compute the correlation. Vertical edges allow

to cope with the bias difference between the cameras and

permit to extract the texture of the ground. For example, in

the case shown in fig. 3, the Sobel filtered images (fig. 4)

highlight two edges derived from the line on the right hand

side; they are labeled with a and b.

Left image Right image

Figure 3. Stereo images of an asphalt road
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Figure 4. Edges images and their correlation

image

In the correlation image, besides the ground correlation

line, (coming from the contribute of the correlation between

line a and a′ and between line b and b′) two other lines ap-

pear (ab′ and a′b). They are generated by the high correla-

tion between a and b′ and between a′ and b; of course this

effect is undesirable because it has been originated by the

matching of two objects that are not the same object.

To overcome this ambiguity, in this work we propose

to consider, besides the absolute value of edges, also their

phase: as can be seen in fig. 5, now a lines cannot match

with b lines because of their different phases, and the corre-

lation image is sensibly improved.

Figure 5. Correlation image computed from

edges images taking into consideration the

phase. Red represents negative phase of

edges, green positive, black no edges.

Additional benefits can be obtained considering that in

this step of the algorithm (ground correlation line highlight-

ing) the information given by obstacles in the correlation

image is considered as noise (see fig. 6b).

By ignoring the absolute value of edges and considering

only their phase, the quantity of information carried by ob-

stacles (tipically obstacles present very strong edges) is at-

tenuated, while the weak edges produced by ground texture,

that takes up the largest part of the image, yield to the great-

est contribute in the V-disparity image. Theoretically every

pixel, if having concordant phase with the pixel which it is

compared to, will contribute with a positive vote, indepen-

dently of the edge absolute value; otherwise, for discordant

phase, a negative vote is produced. The sum of accumulated

votes is normalized, producing the correlation value corre-

sponding to a considered offset, following this formula:

corr(d) =
(Nmatch(d))

2

NL · NR

(1)

where:

• d is the disparity value used to compare the two rows;

• Nmatch(d) is the number of phase matching between

the left and right rows compared at disparity d;

• NL and NR are the number of non-black pixel re-

spectevely in left and right rows.

A side effect of this operation is to lower the correla-

tion computational cost (it is almost halved). In this study,

this type of correlation is called “ternarized”, since it comes

from images mapped into a ternary domain (-1,0,+1). A fur-

ther important remark is that this kind of correlation does

not need any threshold.



Left images Right images (a) (b) (c)

Figure 6. Correlation images in presence of obstacles: (a) directly from edges image, (b) taking the

phase into consideration, (c) ternarized.

3.2. Pitch estimation

Using static calibration data, it is possible to compute

the ground correlation line expected to appear in the corre-

lation image when the vehicle is standing on a flat surface.

It is also possible to compute the ground correlation line

expected in case of different pitch angles, creating a set of

candidate lines (see fig. 7). A constant ground slope approx-

imation is made.

The behavior of the ground correlation line during a

pitch variation is to oscillate, parallel to itself. Experimen-

tally, we found out that the cameras height variation due

to oscillation has neglectable effects. Accumulating the V-

disparity image values along each of the candidate lines, it

is possible to estimate the ground correlation line (choosing

the line that accumulated the greatest value), and then the

pitch of the cameras at the time of acquisition.

Furthermore, this method allows to compute the correla-

tion image values only in correspondence to pixels belong-

ing to the candidate lines, reducing the computational load.

The whole correlation image, as seen in fig. 8, is computed

only for debugging and displaying reasons.

The dynamic pitch information is used to determine a

region of the images where to perform the search for ob-

stacles: in fact the specific choice of the stereo baseline

(wide enough to detect far away obstacles) does not allow

to search in the immediate surroundings of the vehicle. We

named this part of the images “region of interest”. We as-

sume that close obstacles will already have been localized

then they were far away, or be seen by other sensors.

3.3. Disparity space image

The considered scenarios included obstacles like poles,

underpass columns, bushes, trees, walls, artificial barriers,

traffic signs, people, and other vehicles. The only feature

they have in common is to come out from the ground plane

and to have a vertical visible surface.

Labayrade [4,5] deals with obstacle detection by localiz-

ing vertical segments in the correlation image (for example,

the correlation images of fig. 6b). For these disparity val-

ues, his algorithm studies in depth the images correlation,

identifying the corresponding obstacle.

The problem of this approach is that it examines a lim-

ited number of disparities: it does not take into considera-

tion that medium and small sized obstacles, occupying lo-

cal image regions, may be not sufficiently visible in the V-

disparity image, since it is built using global information.

In fact, in unstructured environments the correlation image

is suited to correctly detect only the ground plane, that oc-

cupies the largest portion of the image, but not to find ob-

stacles, that are often only local features.

It is then necessary to think to a local approach, consist-

ing of the search, for each point in the right image (chosen

as reference image and restricted to the interest region), of

its corresponding point in the left image. This leads to the

creation of a disparity space image (DSI), where a disparity

value is assigned to each region of the image depending on

the most similar region that is found on the same row of the

other image.

The disparity search range is bounded by using the (static



Figure 7. Lines generated by two different

stereo baselines. The yellow slanted line cor-

responds to the ground correlation line ob-

tained using the static calibration data, while

the orange slanted lines are the ones ex-

pected varying the pitch value. The red verti-

cal line indicates the 0 disparity value, the yel-

low vertical line indicates the disparity value

of points at infinite distance; they do not over-

lap due to a slight convergence of cameras

optical axes.

and dynamic) calibration data, making it dependent on the

image v coordinate, in order to reduce the risk of wrong

matches and lower the computational cost.

Assuming that small regions of each image have a simi-

lar homogeneus disparity, and considering that a similarity

measure on a single pixel (which is just a value between

-128 and 127) would lead to many false matches, we de-

cided to split the region of interest of the images in small

windows. We chose 3x3 squares in order to still be able

to locate thin obstacles like poles. The similarity measure

between windows is performed by the correlation formula

shown in the following lines3:

Prod =
n∑

i=1

m∑

j=1

LSquare[i, j] · RSquare[i, j](2)

LQuad =

n∑

i=1

m∑

j=1

(LSquare[i, j])
2

(3)

RQuad =

n∑

i=1

m∑

j=1

(RSquare[i, j])
2

(4)

corr =
Prod

max(LQuad, RQuad)
(5)

where:

3For a complete discussion of matching methods and correlation mea-

surements, see [3, 7].

Figure 8. Examples of ground correlation

lines individuation. The green lines bound

the candidate lines set.

• LSquare[i, j] and RSquare[i, j] are the pixels at row

i and column j of the examined windows in the left

and right image respectively;

• n and m indicate height (number of rows) and width

(number of columns) of the window in use (in this case

n = m = 3).

3.4. Obstacle localization

The obstacles localization phase is performed by means

of an aggregation step on the DSI: sufficiently wide regions

at similar disparity are marked as obstacles. During this

stage, a fine tuning of a threshold can provide good results.

Anyway, no quantitative performance measurement in term

of false positives and negatives has been computed yet, be-

cause of the difficulty of getting good ground truth test sets

in unstructured environments.

The aggregation step is designed to ease pole localiza-

tion, giving importance to the predominant disparity value

of each image column. Fig. 9 shows an example of DSI

computation and disparity aggregation that lead to obsta-

cle localization. Fig. 10 shows successful localizations of

obstacles in different scenarios. Different colors represent

different distances, following the color coding in fig. 9.

3.5. Real world coordinates mapping

Finally, using the dynamic calibration obtained by the

pitch estimation and the static calibration, it is possible to

map the obstacles found in the images in a real world co-

ordinates map. The correctness of this step is tightly de-

pendent on the precision of static calibration data: in fact,

during the other stages, even a weak calibration [12] per-

mits anyway the algorithm to work: it is just essential that

the candidate lines are generated parallel to the right static

ground correlation line. On the contrary, during the final



Original right image Disparity space image Obstacle image Color coding

Figure 9. Example of DSI and obstacle localization. Different colors indicate different disparity values

and, therefore, different distances from the cameras. In the color coding, the distances are expressed

in millimeters. Note as the pole is characterized by a constant disparity in the DSI, and therefore is

marked as an obstacle.

Original right images Obstacle images

Figure 10. Examples of obstacles (trees and

people) localization

real world mapping step, an accurate metric calibration [12]

is mandatory: for example, a wrong relative (among cam-

eras) yaw measurement can lead to sensible distance esti-

mation error.

4. Results

The developed algorithm proved to produce good results

in the conditions in which other sensors - such as lasers -

failed: it was able to detect generic obstacles like isolated

posts, thin fencing poles, trees and people. Some examples

are shown in fig. 11 and in the submitted videos.

On a medium-hand processing system (a laptop with a

P4-M 2,2 Ghz processor and 512 Mb of RAM) we obtained

a total computational time of 64ms on 320x240 pixels im-

ages. This allows a real time application of the algorithm

and, furthermore, permits to devise some enhancements to

improve the results, for example introducing a better aggre-

gation module to be used during obstacle localization.

In case of a textureless obstacle, our algorithm can de-

tect only its edges. This problem has not been addressed

yet because of the computational weight of an image pre-

segmentation [9] and because wide obstacles are seen easily

by laser sensors.

5. Conclusions and Future Developments

The developed algorithm allows to extract in a robust

way the cameras pitch angle at the time of acquisition from

a pair of stereoscopic images acquired in unstructured envi-

ronments. A straight line road profile assumption is made,

but in the near future we aim to remove it and to extract

the lateral road profile, as seen in [5]. In fact, as shown in

fig. 12, in presence of a slope variation the ground correla-

tion line is not a straight line, and contains the information

about the road profile. Once the road profile is known, it

will also be possible to better estimate the obstacles height

in order to judge about their traversability.

Furthermore, studying the ground correlation line dis-

continuities it may be possible to detect evident negative

obstacles like cliffs in front of the vehicle (fig. 13).

Further improvements will be tested, in order to

strengthen the algorithm against false positives and nega-

tives, for example computing the DSI on each of the color

channels separetely and comparing the results. By using the

road profile information it will also be possible to obtain an

accurate warped image [12] in order to perform a reliable

road detection.



Original right images Obstacle images Bird’s eye view maps

Figure 11. Mapping in world coordinates of fence posts and of an underpass. The right most images

represent the maps of the 50m x 50m square region in front of the vehicle. Red indicates areas seen

by the cameras, blue unknown areas (unseen or behind an obstacle), white detected obstacles.

Left image Right image V-disparity image

Figure 12. Slope changing effect in a V-disparity image

Left image Right image V-disparity image

Figure 13. V-disparity image in presence of a cliff



References

[1] P. Coulombeau and C. Laurgeau. Vehicle yaw, pitch, roll

and 3D lane shape recovery by vision. In IEEE Intelligent

Vehicles Symposium, Versailles, pages 646–651, June 2002.

[2] S. B. Goldberg, M. W. Maimone, and L. Matthies. Stereo

vision and rover navigation software for planetary explo-

ration. In IEEE Aerospace Conference, Big Sky, Montana,

USA, volume 5, pages 2025–2036, Mar. 2002.

[3] K. Konolige. Small vision systems: Hardware and imple-

mentation. In Eighth Intl. Symposium on Robotics Research,

(Hayama, Japan), pages 111–116, Oct. 1997.

[4] R. Labayrade and D. Aubert. A single framework for ve-

hicle roll, pitch, yaw estimation and obstacles detection by

stereovision. In Intelligent Vehicles Symposium Proceed-

ings, Columbus, June 2003.

[5] R. Labayrade, D. Aubert, and J.-P. Tarel. Real time obsta-

cle detection on non flat road geometry through V-disparity

representation. In IEEE Intelligent Vehicles Symposium, Ver-

sailles, pages 646–651, June 2002.

[6] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry.

In Computer Vision and Pattern Recognition (CVPR) 2004,

volume 1, pages 652–659, June 2004.

[7] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and

evaluation of dense two-frame stereo correspondence algo-

rithms. In IEEE Workshop on Stereo and Multi-Baseline

Vision, Kauai, HI, Dec. 2001.

[8] S. Singh, R. Simmons, T. Smith, A. Stentz, V. Verma,

A. Yahja, and K. Schwehr. Recent progress in local and

global traversability for planetary rovers. In IEEE Interna-

tional Conference on Robotics and Automation, San Fran-

cisco, USA, Apr. 2000.

[9] J. Steele, C. Debrunner, and M. Whitehorn. Stereo im-

ages for object detection in surface mine safety applications.

Technical Report TR20030109, Western Mining Resource

Center, Colorado School of Mines, Nov. 2003.

[10] R. Y. Tsai. A versatile camera calibration technique for high-

accuracy 3D machine vision metrology using off-the-shelf

TV cameras and lenses. IEEE Journal of Robotics and Au-

tomation, pages 323–334, Aug. 1987.

[11] W. van den Mark, F. Groen, and J.-C. van den Heuvel. Stereo

based navigation in unstructured environments. In IEEE

Instrumentation and Measurement Technology Conference

Budapest, Hungary, 2001.

[12] T. A. Williamson. A High-Performance Stereo Vision Sys-

tem for Obstacle Detection. PhD thesis, Carnegie Mellon

University, Sept. 1998.


	Select a link below
	Return to Main Menu
	Return to Previous View


