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ABSTRACT Obstacle distance measurement is one of the key technologies for autonomous navigation of

high-voltage transmission line inspection robots. To address the robustness of obstacle distancemeasurement

under varying illumination conditions, this article develops a research method that fuses image enhancement

with robot monocular vision so that the robot can adapt to various levels of illumination running along the

transmission line. During the inspection of high-voltage transmission lines in such an overexposed (exces-

sively bright) environment, a specular highlight suppression method is proposed to suppress the specular

reflections in an image; when scene illumination is insufficient, a robust low-light image enhancement

method based on a tone mapping algorithm with weighted guided filtering is presented. Based on the

monocular vision measurement principle, the error generation mechanism is analyzed through experiments,

and we introduce the parameter modification mechanism. The two proposed image enhancement methods

outperform other state-of-the-art enhancement algorithms in qualitative and quantitative analyses. The

experimental results show that the measurement error is less than 3% for static distance measurements

and less than 5% for dynamic distance measurements within 6 m. The proposed method can meet the

requirements of high-accuracy positioning, real-time performance and strong robustness. This method

greatly contributes to the sustainable development of inspection robots in the power industry.

INDEX TERMS Transmission lines, inspection robot, highlight suppression, image enhancement, monoc-

ular vision, parameter modification.

I. INTRODUCTION

Power infrastructure is an important foundation for people’s

livelihood and industrial development. The inspection of

high-voltage transmission lines is necessary and routine work

for the safe operation of power systems [1]. As the transmis-

sion network grows, transmission lines inevitably cross more

complex terrains and covermore areas [2]. Transmission lines

exposed to harsh natural conditions (hail, strong wind and

rainstorms) over a long period will lead to strand breakage,

counterweight slippage, line fitting damage and changes in

the safe distance. Therefore, there is an urgent demand for

inspecting transmission lines regularly to ensure their stable

operation [3]. Currently, the inspection of high-voltage trans-

mission lines is mainly divided into three categories: manual

inspection [4], unmanned aerial vehicle (UAV) inspection [5]
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and robot inspection [6]. Manual inspection is laborious, time

intensive and inefficient. Some power line segments near

rugged mountains and rivers cannot be inspected, as they are

difficult for inspectors to access. The UAV inspection load is

limited, and its endurance time is short. UAVs lose control

when encountering strong wind. Robot inspection features

high safety, low cost, and strong load capacity and can adapt

to bad weather. On this basis, research on robots for high-

voltage transmission line inspection is of great significance

to the sustainable development of the power industry and the

protection of people’s lives and safety.

During the inspection of power transmission lines, the

counterweights, suspension clamps and insulator strings hin-

der the robot from running efficiently and stably on the

ground wire. Obstacle recognition and localization have

become an important development direction of inspection

robots. After the robot completes the identification and clas-

sification of obstacles, the pan-tilt-zoom (PTZ) camera of the
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robot is used to locate the obstacles and measure the corre-

sponding distance to implement the corresponding obstacle

crossing action. A series of factors that affect the detection of

obstacles is highlighted as follows: 1) In a strong-light envi-

ronment, the image features of the obstacles are damaged to

varying degrees. 2) In a weak-light environment, insufficient

light leads to the situation in which the target features cannot

be recognized. The existing research methods do not fully

consider these factors, so it is difficult to ensure the accuracy

of obstacle positioning when a robot is running in the field.

Methods based on monocular vision positioning have been

widely used in inspection robots. In reference [7], a method

based on a homography matrix and structure constraint was

proposed to detect obstacles, and the calculation speed was

fast. However, most experiments are carried out in ideal

environments, and strong illumination factors do not interfere

with the images. In long-term field environment inspection,

the robot is vulnerable to strong-light and weak-light inter-

ference. Especially at noon and in the evening, strong light

and weak light, respectively, have a great influence on the

image, which leads to a low recognition rate of the robot and

a reduction in the obstacle positioning accuracy. Therefore,

it is of great significance to eliminate the light interference for

the location of obstacles. In recent decades, numerous high-

light removal methods have been presented. These methods

are roughly divided into four categories: multiple-image-

based methods, single-image-based methods, learning-based

methods and polarization filter methods. For multiple-image-

based methods, Shah et al. presented a specular highlight

removal method from video frames by detecting correspon-

dences [8]. Guo et al. proposed a robust method to employ

three prior structures of decomposed layers [9]. Although

multiple-image-based methods can better remove specular

highlights, their practicability is low since the source image

is often unavailable [10]. For polarization filter methods,

Nayar et al. used a polarization filter to determine the dif-

fuse reflection component. This method can address surface

highlights with rich texture and different material proper-

ties [11]. Umeyama and Godin obtained images of constant

diffuse reflection components and specular reflection compo-

nents with different intensities by the polarization filter [12].

However, the polarization filter is not suitable for many

practical applications [13]. Among learning-based methods,

Chen et al. proposed a method for removing highlights from

face images, which is its only application [14]. Funke et al.

used a residual convolution neural network (CNN) to remove

highlights from the image. However, this method requires

considerable training data to improve the robustness and gen-

eralizability of the algorithm [15]. For single-image-based

methods, Tan and Ikeuchi [16] also introduced the concept

of specular-free images, which use a single image to remove

the highlights of texture surfaces. However, this method is

very time consuming and does not meet the requirements

of real-time applications [16]. Shen and Zheng calculated

the chromaticity distance between unclassified pixels and

the center points of all classes, but it is necessary to set

a threshold to control the classification of pixels, which

results in different classification results depending on the

threshold. In recent years, many weak-light enhancement

algorithms have been proposed. These methods are mainly

divided into three categories: enhancement methods based on

the histogram equalization algorithm [17], [18], enhancement

methods based on retinex theory [19]–[21] and enhancement

methods based on deep learning [22]. It is difficult to adjust

the intensity of image enhancement based on the histogram

equalization algorithm, which will produce an over-enhanced

result [23]. Because the retinex algorithm usually uses a

Gaussian low-pass filter to estimate the illumination com-

ponent, the overall contrast of the image is not high and

still suffers from halo artifacts [24]. Chen established low-

light image datasets and developed a network to learn the

enhancement function, but the method performed well on

only the constructed datasets [25].

Robot distance measurement methods mainly include lidar

ranging [26] and optical ranging [27], [28]. Lidar sensors

are expensive and heavy [29]. Optical detection comprises

monocular ranging and binocular ranging. Binocular ranging

requires accurate matching, and the matching process is time

consuming, so the real-time performance impact on visual

navigation systems cannot be ignored. Compared with binoc-

ular ranging, monocular ranging has the advantages of simple

principles, good real-time performance and low cost [30].

Therefore, monocular ranging is more practical than binoc-

ular ranging. Li Cheng et al. studied a monocular ranging

algorithm for visual navigation of line inspection robots and

ultimately achieved effective obstacle crossing; however, this

method did not consider the influence of outdoor illumination

on the ranging effect [7]. In view of the abovementioned

light interference factors on the visual system, this paper

studies the characteristics of light and proposes the solution

of division and rules. The reflection component separation

algorithm is applied to suppress strong light, and an effec-

tive pixel clustering method and method of estimating the

intensity ratio of each cluster are proposed to suppress the

strong light in the image. The tone mapping algorithm based

onweighted guided filtering enhances weak illumination, and

global tone mapping is used to preprocess the image; then,

the weighted guided filter is used to replace the Gaussian

filter of the single-scale retinex algorithm; finally, the log-

arithmic domain is converted to the real domain to obtain

the enhanced image. This paper is based on the monocular

vision ranging model of the inspection robot, combined with

the characteristics of ground line imaging and introduces

a parameter modification model to improve the accuracy

and robustness of obstacle positioning. It also improves the

adaptability of the robot to the external environment.

In summary, by analyzing transmission line corridors and

inspection robot detection methods, a method based on

monocular vision is proposed under the condition of light

variations. The main innovations are as follows.

(1) Highlight suppression: According to the two-color

model, we propose a real-time highlight separation algorithm
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FIGURE 1. CIR.

for a single image. First, the chromaticity map of the orig-

inal modified specular-free (MSF) image is calculated, and

then the chromaticity values in the chromaticity map are

sorted. The data points of 1/3 and 2/3 of the whole dataset

are selected as the initial centers, and the color clustering

is split or terminated adaptively according to the sum of

squared errors. Finally, an optimization algorithm is applied

to estimate the single intensity ratio of each cluster, which is

used to separate the diffuse reflection components from the

specular pixels.

(2) Low-light image enhancement: To increase the con-

trast in the image, the image is preprocessed by S-equation

transformation. In local mapping processing, to solve the

problems of high computational complexity and fuzzy image

details of the Gaussian filter, a weighted guided filter (i.e., a

filter combining the variance in the local window to adjust

the regularization factor adaptively) is used to replace the

Gaussian filter. The filter has a good effect on image edge

processing, effectively removing the halo phenomenon, and

has a fast processing speed.

(3) Monocular vision: Combined with the characteristics

of camera models and ground line imaging, a monocular

distance estimation algorithm for inspection robots is pro-

posed. The ranging error mechanism is analyzed by static

experiments. According to the error generation mechanism,

a parameter modification scheme is proposed.

This article is organized as follows. In the ‘‘CIR Vision

System’’ section, we describe the mechanical structure of

the proposed CIR. In the ‘‘Method’’ section, the reflection

component separation algorithm, tone mapping algorithm

based on weighted guided filtering, and obstacle distance

measurement based on monocular vision are proposed in

detail. The ‘‘Experiments’’ section describes several exper-

iments conducted to verify the performance of the proposed

method. The ‘‘Conclusions’’ section concludes this article.

II. CIR VISION SYSTEM

As shown in Figure 1, the structure of the inspection robot is

an antisymmetric suspension type with two arms [31]. The

vision system of the inspection robot is composed of two

network PTZ cameras on both sides of robot box I. The lens of

one network PTZ camera can be rotated by any angle to detect

the damage of transmission lines, broken strands of ground

wires, loose strands, fitting damage, tower deformation, etc.

Another lens of network PTZ camera II is fixed at an upward

angle so that its field of view shows the length of the wire used

for positioning by measuring the distance between obstacles

on the ground line and the robot.

When the robot moves on the linear rail, the servo drive

mode is adopted in the whole process of the walking wheel

motor; that is, the walking wheel motor controls the rotation

of the walking wheel through the driver in the whole process

of inspection to ensure the controllable speed of the robot.

In order to achieve the goal of motion control, the robot must

control the multi-joint motion mechanism to perform the cor-

responding action. By using a PC104 industrial computer, the

movement of multiple motors can be effectively controlled at

the same time, such as the start, stop and rotation direction

of the lifting joint motor and the inward and outward rotation

of the swing arm joint. Because the lens angle of camera II

is fixed, the angle and intensity of direct illumination also

cause damage to the strong-light area of the image features.

When the robot inspects in the evening, the lack of light

affects the recognition of image features. Therefore, to facili-

tate subsequent image recognition, it is necessary to enhance

strong and weak illumination, improve the image contrast,

and enhance the image details. Monocular ranging must be

used to obtain the known parameters according to the actual

application scenarios. In themonocular vision rangingmodel,

the known parameters include the focal length, the vertical

distance between the camera optical center and the ground

wire, and the distance between the lens of the camera and the

nearest imageable position on the ground wire.

III. METHOD

A. MONOCULAR VISION SYSTEM FLOW

The designed monocular vision system consists of five

modules dedicated to different tasks: image acquisition,

image classification, highlight suppression, low-light image

enhancement, and obstacle distance measurement. This sys-

tem can be described by the flow diagram shown in Figure 2.

When the average brightness range of the image is within

[0, 85], it is defined as a low-light image. When the average

brightness of the image is within [85, 170], it is defined as

a medium image. When the average brightness range of the

image is within [170, 255], it is defined as a highlight image.

B. REFLECTION COMPONENT SEPARATION ALGORITHM

We summarize the procedure of the specular highlight sup-

pression algorithm as follows.

1) INTENSITY RATIO ESTIMATION

First, the MSF image is calculated, and then the minimum

and maximum diffuse reflectance of all pixels are calculated

according to theMSF image. The classification of the relevant

pixels in the highlight area is performed in the maximum

and minimum chroma space. The intensity ratio is estimated

to be a separate diffuse component and specular reflection

component according to the classification results.
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FIGURE 2. System flowchart.

According to the dichromatic reflection model [32], each

highlight pixel is a linear superposition of diffuse and specu-

lar components. The expression is as follows:

I (x) = md (x)3+ ms(x)Ŵ (1)

where I (x) is the intensity value of the image pixel; X =

(x, y) is the pixel coordinates of the image; md is the diffuse

reflection weighting coefficient; ms is the specular weighting

coefficient; 3 = [3r, 3g, 3b]
T is the diffuse chromatic-

ity; and Ŵ = [Ŵr, Ŵg, Ŵb]
T is the specular chromaticity.

We assume that the light source has been corrected to white

and normalized for the input image Ŵ = [Ŵ, Ŵ, Ŵ]T with

Ŵ = 1/3.

Surfaces of nonuniform materials with the same color can

be divided into pixels with only diffuse reflection components

and pixels with both diffuse and specular components. On this

basis, Shen et al. proposed the concept of the intensity ratio,

which used the ratio of the maximum intensity values to the

intensity range values (the maximum intensity value minus

the minimum intensity value) of the diffuse pixel to suppress

the specular highlight in the image [13]. For a nonuniform

surface, the pixels are clustered in the minimum and maxi-

mum chromaticity space according to the intensity ratio to
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suppress the highlight in the image. We use the concept

of the intensity ratio to separate the diffuse and specular

components. We obtain the minimum intensity per pixel by

taking itsminimum andmaximumvalue of the single-channel

images:

Imin(x) = min
{

Ir (x), Ig(x), Ib(x)
}

= md (x)3min + ms(x)Ŵ

(2)

Imax(x) = max
{

Ir (x), Ig(x), Ib(x)
}

= md (x)3max + ms(x)Ŵ (3)

where 3min = min{3r, 3g, 3b} and 3max = max{3r,

3g, 3b}. For a pixel with pure diffuse reflection, Imin(x) =

md(x)3min and Imax(x)=md(x)3max. Based on equations (2)

and (3), the range intensity is

Irange(x) = Imax(x)− Imin(x)

= md (x)(3max −3min) (4)

The intensity ratio is

Iratio(x) =
Imax(x)

Irange(x)
=

md (x)3max

md (x)(3max −3min)

=
3max

3max −3min
(5)

For a pixel with diffuse and specular reflections, the inten-

sity ratio is

Iratio(x) =
md (x)3max + ms(x)Ŵ

md (x)(3max −3min)

=
3max

3max −3min
+

ms(x)Ŵ

md (x)(3max −3min)
(6)

After clustering pixels with almost the same diffuse chro-

maticity, we must select the intensity ratio for each cluster.

Shen et al. arranged the luminance ratio of all pixels in the

region in ascending order and then selected the luminance

ratio at the appropriate position as the luminance ratio of the

diffuse reflection pixels in the region. The brightness ratio

of the diffuse reflection pixels in this algorithm must sort

the whole image and keep the original position of each pixel

after sorting. This operation needs extra calculation time.

Therefore, we propose an alternative method to estimate the

luminance ratio of diffuse reflection pixels without sorting

each cluster. The pseudocode of our algorithm is given in

Algorithm 1.

2) PIXEL CLUSTERING FOR COLOR IMAGE SEGMENTATION

For color images, we use color clustering to divide the image

into different color regions and then separate the highlight

components in each color region according to the algorithm

proposed in the previous section. Because the existence of

highlights seriously affects the real color of the image, it is

necessary to eliminate the influence of highlights in the

image color before clustering the highlight image. Shen pro-

posed the concept of MSF images based on specular-free

images [33]. The calculation process of the MSF image is

simpler and more robust in the case of noise. Therefore,

Algorithm 1 Intensity Ratio Estimation

Input: Iratio−origin: an image with unselected

intensity ratios;

n: maximum number of iterations;

t: a ratio threshold;

for each cluster c of an image do

p← average Iratio(x) for pixels in c;

s← number of pixels in c;

while iteration times < n do

d← number of pixels whose Iratio(x) ≤ p in c;

g← s − d;

if (d/s) > t then

p← p – [(e−2)/(2π )1/2] ∗ p;

else if (g/s) > t then

p← p + [(e−2)/(2π )1/2] ∗ p;

else break;

end // end if

end // end while

if random pixel x is in c then

Iratio−selected(x)← p;

end // end if

end // end for

Output: Iratio−selected(x)

the MSF chromaticity map is used to cluster the original

image.

For a color image, the expression of the MSF image is as

follows:

IMSF (x) = I (x)− Imin(x)+ Imin (7)

Īmin are described as follows:

Imin =

∑

N

Imin(x)

N
(8)

where N is the number of pixels in the image, and the

chromaticity map of the original image is

3MSF (x) =
IMSF (x)

IMSF−r (x)+ IMSF−g(x)+ IMSF−b(x)
(9)

where 3MSF(x) = [3MSF−r, 3MSF−g, 3MSF−b]
T, and the

MSF chromaticity map retains the original color features of

the object, so it can be used to cluster the image color.

The K-means clustering algorithm is one of the most com-

monly used clustering algorithms. However, the K-means

clustering algorithm also has some defects: (1) the selec-

tion of the initial clustering center directly affects the final

clustering result, which may lead to the formation of a local

optimal solution and cluster failure; (2) the number of clusters

cannot be determined and can only be roughly estimated

according to previous experience, which generally cannot

form the best clustering effect. In view of the shortcomings

of the K-means clustering algorithm, we propose a new pixel

clustering method. By sorting the chromaticity values in the

dataset, the data points whose chroma values are 1/3 and
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2/3 of the whole dataset are selected as the initial centers, and

the cluster is split adaptively. The selection of the initial center

is not random, which can effectively avoid selecting outliers

as the initial center and can effectively reduce the number

of iterations in the clustering process. The clustering method

used in this paper can dynamically determine the number of

clusters in the process of clustering and decide whether to

split or end a cluster according to the sum of squared errors.

The procedure of our algorithm is given in Algorithm 2.

C. TONE MAPPING ALGORITHMOR BASED ON WEIGHTED

GUIDED FILTERING

We summarize the procedure of enhancing the low-light algo-

rithm in Figure 4.

According to the definition of retinex theory proposed by

Land [34], the image observed by the human eye can be

expressed as the product of the reflection component and the

illuminance component, and the only thing that can represent

the true attributes of the object is the reflection component,

which has nothing to do with the illuminance component.

Jobson et al. proposed single-scale retinex (SSR) [19] and

multiscale retinex (MSR) [20] based on the center/surround

retina theory. The definition of SSR is:

log [Ri(x, y)] = log [Ii(x, y)]− log [Ii(x, y) ∗ G(x, y)] (10)

where i ∈ r, g, b, representing the R, G, and B color channels;

Ri(x, y) is the pixel value of the reflection image in the ith

color channel; Ii(x, y) is the pixel value of the original image

I at the ith color channel (x, y); ∗ represents the Gaussian

convolution operation; and G(x, y) is the Gaussian surround

function, whose formula is:

G(x, y) = K · exp(−
x2 + y2

2σ 2
) (11)

whereK is the normalization constant,K = 1
∫∫

exp(−
x2+y2

2σ2
)dxdy

,

and σ represents the scale parameter of G(x, y). The value

of σ can significantly affect the image enhancement results.

When the SSR algorithm enhances the image, it cannot

achieve a good balance between the local detail information

and the color fidelity of the image, and the dynamic range

compression of the image cannot achieve good results. In later

research, Jobson et al. developed the MSR algorithm. MSR

is defined as:


































Ri(x, y) =

N
∑

n=1

wn[log(Ii(x, y))

− log(Ii(x, y) ∗ Gn(x, y))]
N

∑

n=1

wn = 1

(12)

where i ∈ r, g, b, representing the R, G, and B color channels.

Ri(x, y) is the pixel value of the reflection image R at the

ith color channel (x, y); N is the number of scales; wn is

the weight of the nth scale; Ii(x, y) is the pixel value of the

Algorithm 2 Pixel Clustering

Input: A dataset: S = {x1, x2, · · · , xn};

Number of initial cluster centers: K0 = 2;

Error threshold: ϑ ;

1) The chroma values in the dataset are sorted from

smallest to largest, and then two data points x1 and

x2 are selected as the initial cluster centers c1 and

c2. x1 = Ssort (
⌊

n
3

⌋

), x2 = Ssort (
⌊

2n
3

⌋

), where Ssort

is the result of all pixels’ chroma values arranged in

ascending order, ⌊·⌋ represents rounding down, and n

is the number of data points in the dataset.

2) Calculate the distance between two cluster centers

d(c1, c2) = ‖x1 − x2‖. For each sample point xi(i =

1, 2, · · · , n), calculate its distance to each cluster cen-

ter, find the minimum distance and the correspond-

ing cluster category, and divide the sample points

into the corresponding cluster category. If we find

2d(x, c1) ≤ d(c1, c2), we can obtain d(x, c1) ≤

d(x, c2). We do not need to calculate d(x, c2).

3) Calculate the sum of squares of distances (SSE
(t)
ci =

∑

x∈Si

(d(ci, x))
2) between each data point and its clus-

ter center in each cluster of data set S, and calcu-

late the total sum of squares of distances (SSE (t) =
k
∑

i=1

SSEci ) is (k is the maximum number of clusters

at this time). If

∣

∣

∣

SSE (t−1)−SSE (t)

SSE (t)

∣

∣

∣
< ϑ , the clustering

ends; otherwise, continue.

4) Choose Smax =
SSE

(t)
ci

∣

∣Sci

∣

∣

as the largest cluster, where
∣

∣Sci
∣

∣ is the number of data points in the dataset

with a cluster center of ci; Smax is the largest

subset in the dataset S, and its cluster center is

cmax. Find two points xp, xq in subset Smax. xp =

Smax−sort (

⌊

∣

∣Sci

∣

∣

3

⌋

), xq = Smax−sort (
⌊

2
3

∣

∣Sci
∣

∣

⌋

).

5) Remove the cluster center cmax of the Smax subset,

and merge xp and xq into the total cluster center; that

is, let cnew = ck-{cmax}, cnew = cnew∪ {xp, xq}. ck
is the cluster center set of this round of clustering.

6) Take the cluster center in cnew as the initial center of

a new round of clustering. The K-means clustering

algorithm is used to divide the dataset S to obtain the

new cluster center set c′new, turning to 3).

7) The current clustering result is the final clustering

result.

original image I at the ith color channel (x, y); Gn(x,y) is

the Gaussian surround function under the nth scale. Mul-

tiscale retinex is much better than SSR at color retention

and detail highlighting, but it is much more computationally

complex in time and prone to halo effects. The guided fil-

ter has advantages in image detail enhancement, which can

effectively reduce artifacts. However, since all windows used

by the guided filter are fixed regularization factors and the
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FIGURE 3. Specular highlight suppression method flowchart.

FIGURE 4. Low-light image enhancement method flowchart.

differences between the pixels in the edge area and the flat

area in different windows are not considered, artifacts may

appear in the areas where the gray value of the image changes

greatly. To reduce the halo effect, we use a new method to

solve the problem of low gray values. First, we use global tone

mapping to preprocess the original image; second, we use a

weighted guided filter instead of a Gaussian filter to improve

the local contrast of the image and maintain the details of the

image.

The global mapping algorithm uses the same mapping

function to map all pixels in the image. The algorithm is

simple and fast and has low computational complexity. The

compression curve can be set in advance or according to the

image content. We use the hue mapping algorithm based on

the S-equation [35], and the formula is as follows:


























Lout =
1

log10(Lwa_max + 1.0)

·
log5(Lwa + 1.0)

1.0+ exp(− log5(Lwa))

Lavg = exp(
1

N

∑

log(δ + Lw))

(13)

where Lout is the brightness image after compression;

Lwa_max = Lwmax/Lavg; Lwmax is the maximum brightness

value of the original image; Lwa = Lw/Lavg; and Lw is the

brightness value of the original image.

Converting the RGB color space of Lout to the HSV color

model yields


























































Lout−V (x, y) = max











Lout−R(x, y)/255,

Lout−G(x, y)/255,

Lout−B(x, y)/255











P(x, y) = V (x, y)/T (x, y)

V (x, y) = (IV (x, y)× Lout−V (x, y)

+̟ × IV (x, y)× Lout−V (x, y))

T (x, y) = (Lout−V (x, y)× Lout−V (x, y)

+̟ × IV (x, y)× IV (x, y))

(14)
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where Lout−R(x, y) is the gray value of image Lout at the R

color channel (x, y); Lout−G(x, y) is the gray value of image

Lout at the G color channel (x, y); Lout−B(x, y) is the gray

value of image Lout at the B color channel (x, y); Lout−V (x, y)

is the gray value of image Lout at the V color channel (x, y);

IV (x, y) is the gray value of guidance image IV at the V color

channel (x, y); ̟ is a regular parameter; and P(x, y) is the

value of the input image of the guided filter at (x, y).

After preprocessing by the global tone mapping algorithm,

the dynamic range of the image is compressed, and then

local tone mapping based on the retinex algorithm is used to

maintain high local contrast and detail information. To elim-

inate the halo phenomenon, this paper adopts the local edge-

preserving filter and uses the weighted guided filter to replace

the Gaussian filter of the retinex algorithm. Li et al. added

edge weights to guided filtering to form weighted guided fil-

tering; that is, the regularization factor is adaptively adjusted

in combination with the variance in the local window [36].

The edge weight is expressed as:

8I (i) =
1

M

M
∑

j=1

σ 2
I ,1(i)+ χ

σ 2
I ,1(j)+ χ

(15)

where M is the total number of pixels in guided image I;

σ 2
I ,1(i) and σ 2

I ,1(j) are the variances of I in the 3 × 3 neigh-

borhood centered on pixel i and pixel j, respectively; and

χ is a small constant. To preserve the details of the image

and minimize the difference between the input image and the

output image, it is transformed into an optimization problem;

that is, the following formula is minimized:

E(ak , bk ) =
∑

i∈wk

[

(ak Ii + bk − Pi)
2 +

ε

ŴI (i)
a2k

]

(16)

where Ii is the guided image of pixel i; ak and bk are the

coefficients of the linear function when the window center is

k; Pi is the input image of pixel i; and ε is the regularization

factor.

q′i =
1

m

∑

i∈wk

(ak I i + bk ) (17)

wherem is the number of pixels in windowwk ; q
′
i is the output

image of pixel i processed by weighted guided filtering; and

I i is the weighted guided image.

The weighted guided filter has the characteristics of fast

image processing and retaining image edge information. The

local adaptation equation can be expressed as follows:

LR(x, y) = log[P(x, y)]− log[P(x, y)∗q′i(x, y)] (18)

where LR(x, y) is the locally adaptive output, and q′i(x, y) is

the weighted guided filter. Finally, the enhanced image is

obtained by converting the logarithmic domain to the real

domain.

FIGURE 5. Schematic diagram of monocular ranging.

D. OBSTACLE DISTANCE MEASUREMENT BASED ON

MONOCULAR VISION

A network PTZ camera is installed on both sides of the

control box. When the robot is walking on the wire, it must

identify obstacles before ranging. In the algorithm, the visual

method is used to identify obstacles on the line. Because

of space constraints, the process of image recognition is

not discussed in this article. In previous work, our research

team recognized the images, and many years of long-term

research and field experiments provided an effective guaran-

tee for obstacle recognition. After the obstacle is identified,

the distance along the wire between it and the robot can be

determined. The monocular ranging model of the robot is

shown in Figure 5.

As shown in Figure 5, endpoint C of a counterweight is

closest to the PTZ camera, and the projection point on the

imaging plane is C’. The optical center of the PTZ camera is

O0, the vertical distance between the optical center and the

transmission line is |O0A| = L0, and the optical center axis

is OO0, which is perpendicular to the image plane. The focal

length is f= |OO0|. The distance between the lens of the cam-

era and the nearest imageable position on the ground wire is

the length of |O0B| in Figure 5. Nearer points on the wire are

not in the vision field. Position B is considered a near-critical

point. The final measured distance is the distance between the

obstacle at C and A in Figure 5; that is, |AC| = S: the distance

between the obstacle and the PTZ camera lens along the

transmission line. Under ideal conditions, the transformation

relationship between image coordinate system o-xy and pixel

coordinate system o-uv is as follows:





u

v

1



 =











1

dx
0 u0

0
1

dy
v0

0 0 1















x

y

1



 (19)

where u0, v0, dx, dy and f are all internal parameters of the

PTZ camera, which can be obtained by calibration. (u0, v0)

represents the pixel coordinates of the image center; dx and

dy represent the physical dimensions of each pixel in the

x-axis and y-axis directions, respectively. From equation (19),

we can obtain
{

x = (u− u0)dx

y = (v− v0)dy
(20)
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As shown in Figure 5, we have










∣

∣OC ′
∣

∣ =
√

(uC − u0)2 + (vC − v0)2
∣

∣OB′
∣

∣ =
√

(uB − u0)2 + (vB − v0)2
∣

∣B′C ′
∣

∣ =
√

(uC − uB)2 + (vC − vB)2

(21)

According to the geometric model of the camera imaging,

from equation (21), the following transformation relationship

can be known:














































∣

∣O0C
′
∣

∣ =

√

f 2 + |OC ′|2

=

√

f 2 + (uC − u0)2 + (vC − v0)2

∣

∣O0B
′
∣

∣ =

√

f 2 + |OB′|2

=

√

f 2 + (uB − u0)2 + (vB − v0)2

6 C ′O0B
′ = arccos

∣

∣O0C
′
∣

∣

2
+

∣

∣O0B
′
∣

∣

2
−

∣

∣B′C ′
∣

∣

2

2 |O0C ′| |O0B′|

(22)

According to the imaging geometric model of cameras

based on monocular vision, we obtain the following:






















6 C ′O0B
′ = 6 CO0B

6 BCO0 =
π

2
− 6 CO0B− arccos

|O0A|

|O0B|

|BC| = |O0B|
sin 6 CO0B

sin 6 BCO0

(23)

The calculation formula of the distance between the obsta-

cle and the robot can be obtained.






|AB| =

√

|O0B|
2 − |O0A|

2 =

√

L21 − L
2
0

|AC| = S = |AB| + |BC|
(24)

where

|AC| = S = |AB| + |BC|

=

√

L21 − L
2
0 +

|O0B|

sin 6 BCO0
sin

× (arccos

∣

∣O0C
′
∣

∣

2
+

∣

∣O0B
′
∣

∣

2
−

∣

∣B′C ′
∣

∣

2

2 |O0C ′| |O0B′|
) (25)

IV. EXPERIMENT

To verify the effectiveness of the image enhancement and

monocular matching algorithm, the image of the simulated

experimental site on the top of a college building was selected

as the test data for experimental verification. The image

quality evaluation method usually considers subjective and

objective image evaluation. Subjective evaluation uses per-

sonal intuition to evaluate the quality of the image. Subjective

evaluation is simple and fast, but the results of evaluation vary

greatly. When the image results after image enhancement

are not much different, it is difficult to find these subtle

differences with subjective evaluation. The subjective evalu-

ation must be integrated with the objective evaluation to fully

analyze the quality of the enhanced image processing results.

Objective evaluation uses mathematical modeling based on

the human visual system to evaluate the quality of the image

through evaluation indicators. Common evaluation indicators

include the information entropy (IE), peak signal-to-noise

ratio (PSNR), mean value (MV), standard deviation (SD)

and average gradient (AG). The calculation formulas are as

follows.

(1) The MV (µ): The MV refers to the brightness of the

image in the overall range. The larger the MV, the greater

the overall brightness of the image, and vice versa. The

expression is as follows:

µ =
1

M × N
·

M
∑

i=1

N
∑

j=1

I (i, j) (26)

where M × N represents the size of the image, and I (i, j)

represents the pixel gray value of the ith row and jth column.

(2) The SD (σ ): The SD of the image represents the size of

the change in the gray value—that is, the change in the edge

texture of the image. The edge texture can mainly express

the detailed information of the image. The higher the SD,

the richer the texture details in the image. The greater the

contrast of the image, the more conducive it is to human

observation; in contrast, the smaller the SD, the less obvious

the details of the image. The expression for the SD is as

follows:

σ =

√

√

√

√

√

1

M × N
·

M
∑

i=1

N
∑

j=1

(I (i, j)− µ)2 (27)

where M × N represents the size of the image; I (i, j) repre-

sents the pixel gray value of the ith row and jth column; and

τ represents the average value.

(3) The IE (E): The IE reflects the richness of information

available in the image. The larger the IE value, the richer

the information contained in the image; the expression is as

follows:

H =

255
∑

i=0

Pe × log2 Pe (28)

where Pe represents the proportion of pixels with gray value

e in the image.

(4) AG: The AG reflects the clarity of the image and the

clarity of the texture and edges of the tiny details in the image.

The expression is as follows:

G =
1

M × N

M
∑

i=1

N
∑

j=1

√

(
∂f
∂x
)2 + (

∂f
∂y
)2

2
(29)

where M × N represents the size of the image, ∂f /∂x rep-

resents the gradient in the horizontal direction, and ∂f /∂y

represents the gradient in the vertical direction.

(5) Spatial frequency (SF): The SF reflects the overall

activity of the spatial domain of an image. The formula is

SF =
√

RF2 + CF2 (30)

where RF is the spatial row frequency, and CF is the spatial

column frequency. The expressions of RF and CF are as
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follows:

RF =

√

√

√

√

√

1

M × N

M−1
∑

i=0

N−1
∑

j=1

[F(i, j)− F(i, j− 1)]2

CF =

√

√

√

√

√

1

M × N

M−1
∑

j=1

N−1
∑

i=1

[F(i, j)− F(i− 1, j)]2 (31)

where F(i, j) represents the pixel gray value of the ith row and

jth column of the image.

(6) PSNR: The PSNR is the most important objective eval-

uation index for images. The larger the PSNR is, the better the

anti-noise performance of the image enhancement algorithm.

MSE =
1

M × N

M
∑

i=1

N
∑

j=1

(X (i, j)− Y (i, j))2

PSNR = 10 log10(
(2n − 1)2

MSE
) (32)

Here,MSE represents themean squared error of the current

image X and the reference image Y;M×N represents the size

of the image; n is the number of bits per pixel, generally taken

as 8; and the number of pixel gray levels is 256. The unit of

the PSNR is dB, and the larger the value is, the smaller the

noise in the image.

A. PARAMETERS FOR THE SPECULAR HIGHLIGHT

SUPPRESSION METHOD

In the experiment, the highlight images of three analog cir-

cuits are collected. There are two key parameters in the

highlight suppression method: the proportional threshold t

and the error threshold ϑ . From the above analysis, the setting

of these two parameters has a certain impact on the results,

so we focus on the analysis of the proportion threshold and

error threshold to select the best algorithm parameters. In the

experiment, we tested the images under different thresh-

olds. Figure 6 shows the distribution of the PSNR in three

images under different proportional thresholds t and error

thresholds ϑ .

The results in Figure 6 show that, to obtain the best high-

light separation results, the threshold parameters required for

different images should be different. However, in practice,

it is not realistic to set different parameters for each image

to obtain the optimal result. We find a set of robust threshold

parameters, which are t = 0.55 and ϑ = 0.3. To prove

the superiority of the highlight elimination method in this

paper, it is compared with other algorithms. The experimental

results were evaluated from both subjective and objective

aspects. Compared with other typical algorithms and the

latest specular highlight suppression algorithm, the results are

shown in Figure 7.

As shown in Figure 7 and Table 1, the counterweight is in

a strong-light environment, and the upper part of the coun-

terweight has strong sunlight. The MSR algorithm increases

the average gray value of the image by 32.16%, making the

FIGURE 6. Distributions of the global PSNR values with respect to the
proportional threshold t and error threshold ϑ for the images.

FIGURE 7. A visual comparison between our approach (proposed) and
five other methods (HE-AK) for the counterweight image.

strong-light image brighter. From the perspective of visual

effects, the HE and AK [40] algorithms do not separate

the sun highlights in the image. The illumination of the

image processed by the proposed method is uniform, and

the specular reflection component of the image is effectively

separated.

As shown in Figure 8 and Table 1, the tower head and

obstacle group are in a strong backlit environment, and the

sunlight in the lower part is very strong and occupies a part

of the image area. After HE algorithm processing, the strong-

light-occupied part of the image becomes larger. After

MSR treatment, they became white and over-enhanced. The

Shen et al. and Yang et al. algorithms are less effective

on the obstacle images. There is no obvious change in the

image after AK algorithm processing. After processing by

the proposed method, the specular highlight component is

separated, and the image becomes clear.

Figure 9 shows the highlight image of a double-loop

simulated experimental circuit. The SD of the HE method

55964 VOLUME 9, 2021



L. Huang et al.: Obstacle Distance Measurement Under Varying Illumination Conditions

TABLE 1. Quantitative comparison between the proposed method and five other methods on specular highlight images.

FIGURE 8. A visual comparison between our approach (proposed) and
five other methods (HE-AK) for the tower head and obstacle group image.

is 37.69% higher than that of the original image, and the

contrast of the image is stretched. However, it can be seen

from the image that HE mainly stretches the contrast of

white clouds in the background, while the foreground of

the dark area becomes darker, and the contrast decreases.

The MSR algorithm improves the brightness of the highlight

image by 22.58%. The SD of the Shen and Zheng [13] and

Yang et al. [37] algorithms are 22.72% and 19.7% higher

than that of the original image, respectively. The SD of the

proposed algorithm is 25.38% and higher than that of the

original image. The contrast of the whole image is greatly

improved.

FIGURE 9. A visual comparison between our approach (proposed) and
five other methods (HE-AK) for the double-loop simulated experimental
circuit image.

The above comparison is put forward at the level of subjec-

tive perception, and the evaluation results are easily affected

by the external environment and psychological factors. For

the same image, different people will come to different con-

clusions, so it is difficult to develop a unified standard for

subjective evaluation, which is unstable and difficult to apply

on a large scale. Due to the shortcomings of subjective evalua-

tion in practical applications, the objective evaluation method

relies on only the image itself to establish a mathematical

model. Objectively, the image quality can be compared with

specific values. The objective evaluation of images mainly
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FIGURE 10. Quantitative comparison results for Figure 7 from Table 1.

FIGURE 11. Quantitative comparison results for Figure 8 from Table 1.

includes the IE, average brightness, SD, AG, SF and PSNR.

The objective evaluation method has the advantages of sim-

ple calculation, fast operation speed and objective stability.

Therefore, it is often used as the gold standard to evaluate

image quality. Table 1 lists the objective evaluation standards

of images and gives the five evaluation indexes of each image.

According to the test data in Table 1, data analysis is carried

out; the results are shown in Figures 10-12.

The data in Table 1 show that the HE, AK and proposed

algorithms suppress the brightness of the highlight image, and

theMSR algorithm excessively increases the brightness of the

image.

The SD value of the HE algorithm is the largest because the

histogram after HE enhancement is not flat, and the gray level

is reduced. The SD value of the proposed method is second

only to that of the HE algorithm, and the experimental results

show that the method enhances the image contrast and edge

texture changes.

The proposed algorithm reaches the maximum IE value,

indicating that the enhanced image information and high

FIGURE 12. Quantitative comparison results for Figure 9 from Table 1.

definition are rich in this method. The AK algorithm also

reaches a higher IE value because it is a good estimate of

image diffuse reflection.

The AG value obtained by the HE algorithm is the highest

because the image processed by the HE algorithm increases

the contrast of the background interference information,

so the HE algorithm is not considered. The proposed algo-

rithm achieves the second highest AG value, which proves

that the image processed by this method has richer levels.

For the image SF, the HE algorithm achieves the highest

SF value because it excessively enhances the local contrast.

The SF value of the proposed method is second only to that

of the HE algorithm, which proves that the image enhanced

by this method has better clarity.

For the image PSNR, the value of the proposed method

is the highest, and the method has the best image noise

suppression effect. The PSNR of the AK algorithm ranks

after the proposedmethod, with a strong denoising ability and

good robustness. The Shen et al. and Yang et al. algorithms

increase the definition of the image while reducing the sense

of hierarchy.

B. PARAMETERS FOR THE WEAK-LIGHT

ENHANCEMENT METHOD

Lambda is a key parameter in the weak-light enhancement

algorithm. From the above analysis, we can see that the

setting of this parameter has a certain impact on the results

of exposure enhancement, so we focus on analyzing lambda

to select the best algorithm parameters. We tested differ-

ent thresholds in the experiment. The results of the image

exposure enhancement under different lambdas are shown

in Figure 13.

The results in Figure 13 show that when lambda = 0.2,

0.3, 0.5, 0.8, 1.0 and 1.2, the weak-light-enhancement degree

is not as good as when lambda = 0.1. When lambda =

0.08 and 0.1, the weak-light-enhancement effect is very

good, and the change is not obvious; we set lambda = 0.1.
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TABLE 2. Quantitative comparison between the proposed method and five other methods on low-light images.

FIGURE 13. Image enhancement scaling under different lambdas.

To prove the superiority of the weak-light-enhancement algo-

rithm, we compare it with other algorithms. The experimental

results were evaluated from both subjective and objective

aspects. The results of the selected images are displayed in

Figure 14.

As shown in Figure 14, Figure 15 and Table 2, the MSR,

AFBE [38], BIMEF [39], and LIME [41] algorithms improve

the overall brightness of weak-light images to the level of the

strong-light images. The PSNR of the HE algorithm is the

lowest among the six enhancement algorithms, and it is easy

to introduce new noise. The PSNR and IE of the proposed

method are the highest, which indicates that the effects of

noise reduction and clarity enhancement are good.

As shown in Figure 16 and Table 2, although the values of

AG and SF of the HE algorithm are the highest, the experi-

mental image distortion is too high, and the image details are

seriously lost. Obviously, the HEmethod is not desirable. The

FIGURE 14. A visual comparison between our approach (proposed) and
five other methods (HE-LIME) for the simulated experimental circuit
image.

FIGURE 15. A visual comparison between our approach (proposed) and
five other methods (HE-LIME) for the C-type hanging plate image.

LIME algorithm can improve the edge details of weak-light

images, but it causes color distortion. The proposed algorithm
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FIGURE 16. A visual comparison between our approach (proposed) and
five other methods (HE-LIME) for a double suspension clamp.

can achieve high definition, prominent local information and

good color fidelity at the same time.

The µ, σ , E, AG, SF and PSNR are used as evaluation

indexes to objectively evaluate the image enhancement algo-

rithms.

The data in Table 2 show that the brightness of the

weak-light image is greatly improved by the six algorithms.

The MSR and AFBE algorithms over-enhance these three

images, and the enhanced images become high-brightness

images.

The HE method achieves the maximum SD value com-

paredwith the other five algorithms because theHE algorithm

has a good ability to improve the degree of image gray value

change. The proposed method achieves the next largest SD,

which shows that the method can effectively enhance the

details of the image.

The enhanced image reaches themaximum IE value, which

shows that the weak-light-enhancement factor selected by the

proposed method is also the best. The proposed method also

achieves a higher IE value because it estimates the illumina-

tion of each pixel of the image well. The MSR, AFBE, and

BIMEF algorithms achieve poor IE results.

For theAGof the image, the value obtained by theHE algo-

rithm is the highest because the local contrast of the image

processed by the HE algorithm is not naturally enhanced,

so the HE algorithm is not included. The second highest AG

is obtained by the proposed algorithm, which proves that this

method can enhance the definition of the fine details of the

texture and edge of the image.

For the SF value of the image, the HE algorithm obtains

the highest value because the gray level of the transformed

image is reduced and is not flat. The SF value of the proposed

method is second only to that of the HE algorithm, which

proves that the proposed method has a good ability to high-

light image details.

The PSNR of the proposed method is the highest, and the

effect of suppressing image noise is the best. The PSNR of

the HP algorithm ranks very high, which effectively denoises

TABLE 3. Parameter acquisition method and parameter values.

while maintaining the image edge clarity. The HE and MSR

algorithms easily cause color distortion and introduce new

noise in the color image enhancement results.

C. OBSTACLE DISTANCE MEASUREMENT

PARAMETER ANALYSIS

For the estimated distance, from equation (25), the factor that

affects the distance measurement result is the focal length f.

From the image, we obtain |OB’|, |OC’| and |B’C’|. |O0A|

and |O0B| must be obtained through actual measurement.

During the ranging process, the focal length and rotation

angle of the navigation camera must be fixed to keep the val-

ues of |O0B’|, 6 O0BC and 6 O0B
′C ′ unchanged. Therefore,

the estimated distance is related only to the position of the

target on the transmission line, which is determined by the

sizes of |O0B| and 6 B
′O0C

′. Among them, 6 B′O0C
′ can be

directly obtained by image processing, and it is related to the

focal length f. From equations (22) and (23), it can be seen

that


































∣

∣O0C
′
∣

∣ =

√

|OC ′|2 + f 2 =

∣

∣B′C ′
∣

∣ sin 6 O0B
′C ′

sin 6 C ′O0B′

=

∣

∣B′C ′
∣

∣ sin 6 O0B
′C ′

sin(6 CO0A− 6 BO0A)
√

|OC ′|2 + f 2 =

∣

∣B′C ′
∣

∣ sin 6 O0B
′C ′

sin(arctan S
L0
− arccos L0

L1
)

(33)

The values of u0 and v0 can be obtained from the acquired

images. The resolution of the captured image is 1280∗720;

therefore, u0 = 640 and v0 = 360. The parameters of the

monocular ranging experiment are listed in Table 3.

The focal length f is the result of calibration, and there are

errors in the calibration parameters. We set f = 947 pixels as

the initial value.

D. OBSTACLE DISTANCE MEASUREMENT

PARAMETER MODIFICATION

Traditional parameter modification methods include function

fitting and neural networks. The neural network parameter

modification method can be attempted in the case of deter-

mining the causality and when the conventional fitting effect

is not good; the neural network needs a long learning phase,

which does not meet the requirements of the robot ranging

for instantaneous efficiency, so it is not a wise choice. The

first type of traditional parameter modification function is to
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FIGURE 17. Quantitative comparison results for Figure 14 from Table 2.

FIGURE 18. Quantitative comparison results for Figure 15 from Table 2.

add a variable behind the model to modify the parameter, but

this method invisibly increases the complexity of the model.

Another traditional parameter modification function is to fit

andmodify the parameters of the model itself. It changes only

the variables in the original model and keeps the complexity

of the original model unchanged.

From equation (33), it can be found that the cause of error is

related to the size of the focal length f. Before establishing the

parameter modification, first, the laser rangefinder is used to

measure the obstacles and place the obstacles on the ground

wire at fixed intervals (0.1 m); then, the ground wire is

marked, as shown in Figure 20.

The expression between the focal length and the actual

distance is as follows:

fi =

√

√

√

√

[

|B′C ′|i sin 6 O0B′C ′

sin(arctan Si
L0
− arccos L0

L1
)

]2

− |OC ′|2i

(i = 1, 2, · · · , 52) (34)

FIGURE 19. Quantitative comparison results for Figure 16 in Table 2.

FIGURE 20. Marking the ground wire.

where (34), (i = 1, 2, · · · , 52) represents the mark number of

the distance from the obstacle to the robot from 0.8 m to 6 m

(with an interval of 0.1).
∣

∣B′C ′
∣

∣

i
represents the value of

∣

∣B′C ′
∣

∣

when the obstacle is at the ith position on the transmission

lines.
∣

∣OC ′
∣

∣

i
is the value of

∣

∣OC ′
∣

∣ when the obstacle is at the

ith position on the transmission lines. Si is the actual distance

of S (measured by a laser rangefinder) when the obstacle is at

the ith position on the transmission line. If the actual distances

Si,
∣

∣B′C ′
∣

∣

i
,
∣

∣OC ′
∣

∣

i
, 6 O0B

′C ′, L0 and L1 are known during

data preparation, then there is only one unknown quantity fi in

the model. After calculation, fi is obtained. This paper intends

to use the fitting method to fit the calculated fi. Equation (34)

shows a change occurs with the change in
∣

∣B′C ′
∣

∣

i
. As shown

in Figure 21, fi can be simulated according to
∣

∣B′C ′
∣

∣

i
.

When the results of fitting parameter fi are obtained, the

relationship between fi and
∣

∣B′C ′
∣

∣

i
is as follows.

fnewi = 1050.81− 0.11∗
∣

∣B′C ′
∣

∣

i
− 5.84∗10−6∗

∣

∣B′C ′
∣

∣

2

i

(i = 1, 2, · · · , 52) (35)

According to equations (25) and (35), the final distance

between the obstacle and the robot along the transmission

lines is as follows (36), as shown at the bottom of the next

page.
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FIGURE 21. Fitting parameter fi according to
∣

∣B′C ′
∣

∣

i
.

TABLE 4. Counterweight range information.

E. MONOCULAR VISION STATIC RANGING EXPERIMENT

Multiple targets with different distances were selected for

the distance measurement experiment. When the obstacle

distance measurement parameters are L0 = 0.8 m, L1 =

0.93 m, 6 AO0B = 30.66◦, 6 O0B
′C ′ = 50.08◦ and O0B

′ =

1268 pixels, we take the counterweight distancemeasurement

as an example. Table 4 shows the experimental data. Fifty

measurements weremade, and then themeasured values were

averaged.

Because the focal length f is directly calculated from the

actual distance, the distance calculated by monocular vision

is basically equal to the actual distance in static experiments.

According to Table 4, the monocular vision parameter mod-

ification greatly reduces the error rate, and the error rate

TABLE 5. Counterweight range comparison before and after applying the
proposed algorithm.

is basically kept below 3%. This finding shows that the

introduction of monocular vision parameter modification has

achieved good results, and the ranging accuracy has fully

met the static error level of 5% of the inspection robot.

When the obstacle image is in a strong-light environment, the

effects of the obstacle distance measurement before and after

applying the highlight suppression algorithm in this paper are

compared in Table 5.

In Table 5, the SHB is the distance value of the obstacles

measured through a visual method before applying the specu-

lar highlight suppression algorithm. The SHA is the distance

value of the obstacles measured through a visual method after

applying the specular highlight suppression algorithm. The

SHBE is the error rate of the obstacles measured through

a visual method before applying the specular highlight sup-

pression algorithm. The SHAE is the error rate of obstacles

measured through a visual method after applying the specular

highlight suppression algorithm. Table 5 shows that when

the specular highlight suppression algorithm is introduced,

the ranging accuracy is significantly improved. When the

obstacle image is in a low-light environment, the effects of

the obstacle distance measurement before and after applying

the weak-light-enhancement algorithm in this paper are com-

pared in Table 6.

The LLB is the distance value of the obstacles measured

through a visual method before applying the low-light image

enhancement algorithm. The LLA is the distance value of the

obstacles measured through a visual method after applying

the low-light image enhancement algorithm. The LLBE is the

error rate of the obstacles measured through a visual method

before applying the low-light image enhancement algorithm.

The LLAE is the error rate of the obstacles measured through

a visual method after applying the low-light image enhance-

ment algorithm. Table 6 shows that when the low-light image

S=

√

L21 − L
2
0+

|O0B|

sin 6 BCO0
sin(arccos

2(1050.81− 0.11 ∗
∣

∣B′C ′
∣

∣− 5.84 ∗ 10−6 ∗
∣

∣B′C ′
∣

∣

2
)2+

∣

∣OC ′
∣

∣

2
+

∣

∣OB′
∣

∣

2
−

∣

∣B′C ′
∣

∣

2

2 |O0C ′| |O0B′|
)

(36)
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TABLE 6. Counterweight range comparison before and after applying the
proposed algorithm.

FIGURE 22. Estimated distances in the experiment.

enhancement method is introduced, the ranging accuracy is

significantly improved.

F. MONOCULAR VISION DYNAMIC

RANGING EXPERIMENT

In addition to the static test, this paper completed robot

motion test experiment planning [42]–[44]. Because the robot

itself not only provides vision equipment but also is equipped

with a walking odometer, it can verify the distance esti-

mation accuracy. In the experiment, the robot moves at

three different speeds: the wheel speeds are 20.85 r/min,

46.23 r/min and 68.46 r/min, and the corresponding linear

speeds are 6.36 m/min, 14.1 m/min and 20.88 m/min. The

experimental scheme steps of robot dynamic ranging are as

follows.

(1) The time stamp is added to the monocular vision pro-

gram, and the time stamp and monocular ranging values are

displayed in the image. As shown in Figure 22, the timestamp

is the time in Beijing.

(2) When the robot runs at a constant speed, the test dis-

tance at a certain moment of monocular vision is S1, and the

corresponding time stamp is displayed as T1. When the time

stamp is T2 (T2 > T1), the test distance of monocular vision

is S2.

(3) The speed V of the robot is known. Let Sdifference =

|S1-S2|, and use D1 = V (T2-T1) to determine whether D1

is equal to Sdifference. The absolute value of the difference

FIGURE 23. Distance diagram when the robot runs at three speeds.

FIGURE 24. Visual dynamic error rate when the robot runs at three
speeds.

TABLE 7. Visual dynamic error rate at the three speeds.

between D1 and Sdifference is Dmonocular vision dynamic error =

(| D1- Sdifference |/D1)
∗100%.

Figure 23 shows the curve of the distance estimated by

monocular vision and the actual distance when the robot

moves at three speeds. In Figure 23, the curves marked with

‘‘©’’ (red), ‘‘✩’’ (blue) and ‘‘∇’’ (cyan) correspond to the

actual distance curves between the robot and the obstacle at

three speeds of 6.36 m/min, 14.1 m/min and 20.88 m/min.

The curves marked with ‘‘� ’’ (black), ‘‘△’’ (magenta) and

‘‘⋄’’ (green) correspond to the distance curves estimated

by the robot vision under the three speeds of 6.36 m/min,

14.1 m/min and 20.88 m/min.

In Figure 23, the abscissa represents the time, and the

ordinate represents the distance. To reflect the advantages

of the proposed ranging algorithm, the analysis is shown

in Table 7 and Figure 24.
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At different time points, the visual dynamic error rate

curves of the robot at the three speeds of 6.36 m/min,

14.1 m/min and 20.88 m/min are shown in Figure 24.

Table 7 shows that the error rate of dynamic ranging is

basically kept below 5%. The ranging accuracy reaches 10%

of the dynamic error level of the robot.

V. CONCLUSION

Aiming at the problems of illumination influence and

obstacle distance measurement of obstacle images taken by

a high-voltage transmission line inspection robot in the pro-

cess of autonomous operation, an image enhancement fusion

monocular vision method is proposed. By using a high-

light suppression algorithm to suppress the highlight part of

an image, the overall brightness of the processed image is

significantly reduced, and the image contrast is enhanced.

Compared with the other five image enhancement methods,

this method has the best detail information retention ability

as shown through visual analysis and objective evaluation of

the image quality. The low illumination part of the image is

enhanced by the hue mapping algorithm based on a weighted

guided filter, which improves the overall brightness and clar-

ity of the image and highlights the image details. Compared

with the other five latest algorithms, this method achieves the

best performance on illumination compensation and contrast

enhancement through visual analysis and objective evaluation

of the image quality. In this paper, the monocular ranging

model of the robot is established, and the ranging parameter

modification is introduced. According to the mechanism, the

experiment is improved, and the accuracy of the ranging

method is finally verified. The experimental results of out-

door ranging show that the error rate is less than 3% for static

ranging and less than 5% for dynamic ranging. It has good

robustness and strong anti-jamming ability.
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