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Abstract: Accidental flame initiation to propagation in pipes carrying flammable gases is a significant
safety concern that can potentially result in loss of life and substantial damage to property. The
understanding of flame propagation characteristics caused by methane–air mixtures within various
extractive and associated process industries such as coal mining is critical in developing effective
and safe fire prevention and mitigation countermeasures. The aim of this study is to investigate
and visualise the fire and explosion properties of a methane–air mixture in a straight pipe with and
without obstacles. The experimental setup included modular starting pipes, an array of sensors
(flame, temperature, and pressure), a gas injection system, a gas analyser, data acquisition and a
control system. The resulting observations indicated that the presence of obstacles within a straight
pipe eventuated an increase in flame propagation speed and deflagration overpressure as well as a
reduction in the elapsed time of flame propagation. The maximum flame propagation speed in the
presence of an orifice with a 70% blockage ratio at multiple spots was increased around 1.7 times
when compared to the pipe without obstacles for 10% methane concentration. The findings of this
study will augment the body of scientific knowledge and assist extractive and associated process
industries, including stakeholders in coal mining to develop better strategies for preventing or
reducing the incidence of methane–air flame propagation caused by accidental fires.

Keywords: flame deflagration; flame propagation mechanism; flame propagation speed; methane–air
explosion pressure; obstacles

1. Introduction

Although methane is recognised as ahigh profile and widely discussed substance due
to its significant global warming potential and adverse impact on climate change, it is less
researched in terms of being a major hazard in mining and the extractive industries [1–3].
Media coverage records that adverse incidents continue to occur in the extractive and
process industries, including coal and gold mines, and that massive loss of life and damage
to property have been outcomes of these incidents [4,5]. While considerable progress has
been made in the development of practical prevention and mitigation measures, significant
adverse incidents are still occurring. For example, 1049 lives were lost due to coal mine
accidents in China alone in 2013 [6]. Even as recently as May 2020, five miners were
severely injured in the Anglo-American coal mine explosion which occurred in Queensland,
Australia [7].

While some studies have sought to better understand unanticipated fire and the explo-
sion of methane–air mixtures, there is still a knowledge gap concerning the relationship
between these variables and their impact on the resulting adverse incidents [8,9]. In partic-
ular, the flame propagation mechanism in the real-world geometries found in the extractive
and process industries such as pipelines, tunnels, chimneys, and other enclosed and semi-
enclosed structures is not well understood, and further research is required to develop the
enhanced fire and explosion mitigation technologies for those industries [10–12].
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In previously published explosion studies, the focus has typically been on under-
standing the effect of reactor scale on flame propagation and explosion pressure. Zhang
et al. [13] determined that the explosion process of a methane–air mixture relates to the
scale of the physical geometry (e.g., a duct) where the explosion occurs. The effect of scale
on flame propagation gradually decreases with distance from the space containing the
methane–air mixture [13]. The effect of obstacles on flame propagation properties has also
been investigated by Kolahdooz et al. [14], Wang J. et al. [15], Yakush S. et al. [16], and
Wang T. et al. [17]. The location of obstacles relative to each other and the ignition source
significantly alters the structure and flame propagation [14,17]. The presence of obstacles
or any cross-sectional changes in the flame pathway increases fuel–air turbulence [17].
This phenomenon enhances heat transfer and burning rate, which leads to a significant
increase in flame propagation velocity and pressure [15,17]. Yakush et al.’s experimental
study [16] in both closed and open-ended tubes indicated that the presence of obstacles
in a channel where flame travels can significantly change the behaviour and shape of the
flame front. Additionally, the pressure that develops due to the thermal expansion of hot
combustion products is the main driving force for flame propagation and gas flow in the
duct [15,16]. In this study, blockage ratio (BR) was defined as the largest cross-sectional area
blocked by the obstacle divided by the inner cross-sectional area of the explosion duct or

BR = 1−
(

d
D

)2
where d is the hollow obstacle diameter and D is the internal tube diameter.

The authors investigated turbulent flame propagation for several fuels including hydrogen,
acetylene, ethylene, propane and methane and noted the obstacle’s impact on explosion
pressure and flame propagation speed. Phylaktou et al. also noted the phenomenon in
their explosion studies on methane–air mixtures by employing a closed vertical tube with
obstacles. They found that increasing the blockage ratio led to explosion pressure rise and
flame propagation speed enhancement [18].

The objective of this study was to gain a better understanding of the characteristics
of flame propagation in methane–air mixtures within a straight tube, and to explore how
the presence of obstacles affects flame propagation properties. Additionally, this study
generated experimental data that can be used to validate fire and explosion studies using
computational fluid dynamics (CFD) modelling. The theoretical modelling is expected to
yield a broader understanding of explosion characteristics, including flame–turbulence
interaction. Single and multiple obstacles with various blockage ratios were employed in
the experimental investigation. The broad objectives of this study were achieved through
comprehensive experimental work using a sophisticated experimental setup designed and
built for this project.

2. Experimental Setup and Methodology

The experimental setup designed and manufactured specifically for this study (shown
in Figures 1 and 2) consisted of a series of four modules of a clear borosilicate glass tube
(75 mm internal diameter, 5 mm wall thickness and total length of about 5 m). Each
module of 1 m length was connected by stainless steel flanges to another module. The
5 mm thick glass tube was sourced from Schott Duran with a temperature tolerance of
above 800 ◦C and pressure tolerance of more than 8 bar. The concentration of methane
was controlled by a mass flow controller (Bronkhorst F-201CV, Manufacturer: Bronkhorst,
City: Ruurlo, Country: Netherlands) and cross-checked by an inline methane monitor. A
thermocouple (K-type) was used to measure the temperature of the gas inside the tube
before conducting any experiment. After initiating an experiment, a pyrometer (Impact
IPE 140, Manufacturer: Advanced Energy, City: Denver, Country: USA; capable of non-
contact temperature measurement and fully digital with focusable optics) was employed
for measuring flame temperatures at the ignition position, based on the CO2 emission
from the combustion. The maximum value obtained from the pyrometer data during
an experiment was taken as the flame temperature. Pressure development in the tube
was measured by three piezo-resistive pressure transducers (STS Sensor Technik Sirnach,
ATM.ECO/EX with a pressure measurement range of 0–5 bar and 0.1–1 ms response time).
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The pressure transducers were installed on the tube in the locations of the flanges such
that they were positioned 1.2, 2.4 and 3.6 m from the ignition source, as illustrated in
Figure 1. A high-speed data acquisition system was employed to record pressure data.
An ultra-high-speed colour video camera (Phantom V1211, 12,000 frames/second at full
resolution) was used to film flame propagation during the experiment. The recorded film
was then used to estimate flame propagation speeds.
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Figure 2. Illustration of flame propagation inside the tube.

The system was purged (using compressed air) for five minutes prior to beginning
any experiment to ensure that no burned or unburned material was left from a previous
experiment. Methane was injected by closing the open end of the tube using a very thin
plastic wrap. Upon completion of the methane injection, the fuel–air mixture was circulated
in a closed loop line by an intrinsically safe (EX-rated) vacuum air pump (Air Dimensions
Incorporated, Dia-Vac Diaphragm R252-FP-GB2). Circulation was maintained for 5 min to
ensure that a homogeneous fuel–air mixture was achieved inside the tube. The mixture
was then ignited by a pyrotechnic ignitor of 50 mJ energy. Figure 2 illustrates the flame
propagation inside the tube from one of the experiments. Methane employed for the
experimental investigation was sourced from Coregas, Australia with 99.95% purity.

With the aim of investigating the effect of obstacles, orifice plates of various blockage
ratios were used at various locations along the length of the flame propagation tube. Mul-
tiple, single and no obstacle scenarios were employed in the experimental investigations.
The single obstacle with 30%, 50% or 70% of the glass tube cross-sectional area was posi-
tioned at a distance of 1.2 m and 2.4 m from the ignition source. Also, two obstacles were
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positioned at 1.2 and 2.4 m away from the ignition source simultaneously. Figure 3 shows
a schematic of a circular hollow obstacle with a 50% blockage ratio. The obstacles were
installed between the flanges using 12 sealed bolts, as shown in Figure 2.
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In this study on flame propagation, measurement errors were classified into two
categories: (i) systematic errors and (ii) random errors.

To mitigate and/or minimise the impact of systematic errors during the study, all
sensors and analysers were accurately calibrated by skilled technicians in accordance with
relevant industry standards.

The random errors were minimised through the implementation of a comprehensive
experimental design and the repetition of measurements. A single, well-trained operator
conducted all experiments, while the level of interaction between the operator and the
experimental activities, measurements, and data collection was reduced to a negligible
degree via system automation. In this setup, nearly all processes, including methane
injection, ignition, and data collection, were handled by a comprehensive programmed
system. The experimental work took place in a controlled laboratory environment with
consistent temperature and humidity levels. All consumables, such as methane and igniters,
were sourced from a single supplier to ensure consistency.

3. Flame Temperature

The adiabatic flame temperature (AFT) for methane combustion was calculated using
the energy balance equation approach. For this calculation, the initial pressure of 1 atm and
an initial temperature of 298 K were considered. The calculation is based on previous work
and considers that the system reaches equilibrium at fixed enthalpy and pressure [19,20].
To determine the AFT the initial step was to conduct an energy balance using the heat of
combustion and the specific heat capacities of the reactants and products. The calculation
was performed assuming there is no heat loss to the surroundings and that all the heat
released from the combustion reaction is used to heat the products.

The reaction enthalpy calculation for methane combustion can be achieved using the
standard enthalpies of formation for the reactants and products. The balanced chemical
equation for the complete combustion of methane is:

CH4(g) + 2 O2(g)→ CO2(g) + 2 H2O(g) (1)

The standard enthalpies of formation (∆Hf◦) for the substances involved in the reaction are
as follows:

∆Hf◦ [CH4(g)] = −74.8 kJ/mol
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∆Hf◦ [O2(g)] = 0 kJ/mol (since it is an element in its standard state)

∆Hf◦ [N2(g)] = 0 kJ/mol (since it is an element in its standard state)

∆Hf◦ [CO2(g)] = −393.5 kJ/mol

∆Hf◦ [H2O(g)] = −241.8 kJ/mol

Equation (2) is used to calculate the reaction enthalpy (∆Hr◦).

∆Hr◦ = Σ [∆Hf◦ (products)] − Σ [∆Hf◦ (reactants)] (2)

For the methane combustion reaction:

∆Hr◦ = [1 × (−393.5 kJ/mol) + 2 × (−241.8 kJ/mol)] − [1 × (−74.8 kJ/mol) + 2 × (0 kJ/mol)]

∆Hr◦ = (−393.5 − 2 × 241.8 + 74.8) kJ/mol ≈ −802.3 kJ/mol

Therefore, the reaction enthalpy for the combustion of methane is approximately
−802.3 kJ/mol.

The reaction enthalpy of methane combustion in the air (Equation (3)) follows a similar
approach and achieves the same results (−802.3 kJ/mol).

CH4 + 2 (O2 + 3.76 N2)→ CO2 + 2 H2O + 7.52 N2 (3)

Air is composed of about 21% O2 and 79% N2 by volume. The ATF then is calculated
using the following energy balance equation

∆Hr◦ = Σ[Cp(products) × (ATF − Tref)] − Σ[Cp(reactants) × (Tref)] (4)

where Tref is the reference temperature (298.15 K).
The approximate specific heat capacity (Cp) values for each species involved in the

methane reaction with air, at a reference temperature (298.15 K), are [21]:
CH4: 35.7 J/mol·K O2: 29.4 J/mol·K N2: 29.1 J/mol·K CO2: 37 J/mol·K H2O:

33.6 J/mol·K.

ATF = [∆Hr◦ + Σ(Cp(reactants) × (ATF − Tref))]/Σ(Cp(products)) (5)

The ATF is determined by replacing the ∆Hr◦ and Cp values in Equation (5).

ATF = [−802.3 kJ/mol × 1000 + (1 × 35.7 J/mol·K + 2 × 29.4 J/mol·K + 2 × 3.76 × 29.1 J/mol·K) × (298.15 K)]/
[(1 × 37.1 J/mol·K + 2 × 33.6 J/mol·K + 7.52 × 29.1 J/mol·K)]

In addition to the calculation typically used for stoichiometric conditions, COSILAB
software (version 3.3.2) was used to determine the flame temperature for the other upper
and lower methane concentrations. COSILAB is a specialised software package designed
for the simulation of complex chemical kinetics in combustion and reactive systems. The
program includes a series of species such as CH4, CO, CO2, H2, O2, N, and N2 in the
calculation. In the combustion of methane, carbon graphite does not participate directly
in the reaction. It is just a reference state for calculating the enthalpies of the formation
of carbon-containing compounds such as methane. The enthalpies of the formation of
chemical mixtures are often reported relative to the enthalpy of the formation of the most
stable allotrope of each element in its standard state, which is carbon graphite for carbon.
These chemical intermediates are included in the calculation by the program based on the
properties of the reactants and oxidiser [22]. The estimated adiabatic flame temperatures
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are directly applicable for confined vessel explosion studies with no heat loss. In the pre-
sented study, the vented geometry of the testing apparatus allows convective heat transfer
and thus reduces the flame temperature. Comparing the theoretical values of adiabatic
flame temperature from past studies, such as the work carried out by Movileanu [19] and
Veres [22], with the present experimental results shows the deviation in flame temperature
between a confined vessel and a vented vessel. This mainly happens because the adiabatic
flame temperatures are directly valid for enclosed vessels where no heat is utilised or lost.
Therefore, a considerable difference between the theoretical adiabatic flame temperature
and experimentally measured flame temperature can be expected. The estimated values of
adiabatic flame temperature are presented in the results and discussion section.

4. Results and Discussion
4.1. Flame Deflagration Overpressure and Temperature in the Straight Tube

The propagation of the flame has a significant impact on flame temperature, which is
why the flame temperature was measured at the position of the ignition source. Table 1
provides a set of data to demonstrate the difference between the adiabatic flame temperature
and the experimentally obtained flame temperature. The experimental setup in this study
was not confined, meaning it was open at one end. Therefore, heat was transferred via
convection, conduction, and radiation and/or discharged via the hot gas at the pipe’s outlet.
This resulted in a considerable difference between the theoretically calculated adiabatic
flame temperature and the experimentally measured flame temperature. The deviation
of the flame temperature between adiabatic and experimentally obtained values suggests
that the flame temperature is largely dependent on confinement. Another factor impacting
the deviation of the flame temperature is the concentration of methane. The deviation of
flame temperature increased as the methane concentration was increased from 6% towards
the stoichiometric condition (~9.5% CH4), then decreased. At the stoichiometric condition,
the flame temperature reaches a maximum; however, the convective heat transfer due to
the flame propagation is also high due to the higher flame speed. Thus, the maximum
deviation of the flame temperature occurs near stoichiometric methane–air mixtures.

Table 1. Flame temperature at various methane concentrations in absence of obstacles.

Methane
Concentration (V/V)

Adiabatic Flame
Temperature (K)

Measured Flame
Temperature (K) Deviation (K)

6% 1980 1720 260
8% 2338 1855 483
10% 2528 2010 518
12% 2353 1923 430

Deflagration overpressure increases inside the flame propagation tube due to the
partial confinement of the tube. As described in the experimental section, three pressure
transducers were located at 1.2, 2.4 and 3.6 m from the ignition source. The increase of
methane concentration from 6% to 10% in the absence of obstacles resulted in an increase
in the maximum pressure detected (Table 2), an outcome which aligns with the results
produced by previous works [8,12]. A gradual decreasing trend of maximum pressure was
observed along the length of the tube, as supported by the literature [10]. The variation in
pressure rise along the flame propagation tube of this geometry of interest was minimal.

The pressure values presented in Table 2 were obtained by averaging three consecutive
experiments for each methane concentration. The variation of pressures for a 12% methane
concentration at distances of 2.4 m and 3.6 m from the ignition source can be attributed
to complete combustion of the methane, which may happen toward the end of the pipe.
The 12% methane concentration falls in the upper explosion limit (rich methane region).
Hence, upon combustion initiation, part of the unburned methane is pushed out toward
the end of the tube where it has sufficient time to be heated by the combustion hot gases.
Therefore, the remaining methane is combusted as it travels toward the outlet, resulting



Fire 2023, 6, 167 7 of 15

in a negligible pressure rise (2 pa in this study). The pressure rise associated with each
methane concentration is shown in Figure 4.

Table 2. Maximum pressure along the length of the flame propagation tube in the absence of obstacles.

CH4 Concentration
(V/V)

Maximum Pressure (kPa)
1.2 m 2.4 m 3.6 m

6% 113 109 108
8% 128 115 116
10% 139 128 124
12% 132 119 121
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4.2. Effect of Obstacles on Deflagration Overpressure

Obstacles play an important role in flame dynamics. The impact of obstacles on the
generated pressure inside the flame propagation tube is reflected in Figures 5 and 6. In
general, deflagration overpressure increased inside the tube in the presence of obstacles.

Figure 5 was developed employing the data collected from experiments for different
methane concentrations, with a gradual increment of obstacle blockage ratios from 0
to 70%. In the straight tube with 0% obstacle blockage ratio (absence of obstacle), the
flame propagation tube itself provides partial confinement, as described earlier. The
introduction of orifice plates and the gradual increase of its blockage ratio (i.e., reducing
the orifice opening) increases the confinement. Therefore, the maximum overpressure
increased with the increase of the orifice’s blockage ratio, a finding that is in agreement
with the relevant literature [16]. It is well known that stoichiometric methane–air mixtures
(9.5% methane in air) generate the highest deflagration pressures when compared to lean
and rich methane–air mixtures [23,24]. Lean and rich methane–air mixtures are those
in which methane percentages are lower and higher, respectively, than they are under
stoichiometric conditions. As shown in Figure 5, for the experiment with 6% and 14%
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methane concentrations, the influence of the orifice plates on deflagration overpressure
was considerably low. However, that influence increased significantly for experiments at a
10% methane concentration (close to stoichiometry) in the employed apparatus.
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The location and number of obstacles that influenced the deflagration overpressures
are shown in Figure 6. Increasing the number of obstacles is expected to increase the
maximum deflagration overpressure due to the increase of confinement; however, even the
position of a single orifice was found to have an impact on the deflagration overpressure.
For example, when an orifice plate with a 50% blockage ratio was moved from 1.2 m to
2.4 m from the ignition source along the length of tube, all pressure transducers exhibited
elevated deflagration overpressures (see Figure 6). In this case, when the orifice plate
was moved outward from the ignition source, the gas volume from the ignition point
to the orifice plate was increased, providing a higher level of confinement. The flame
area increased with this movement, causing a faster burning rate, as well as higher flame
propagation speed and overpressure. Therefore, the deflagration overpressure increased
when the position of the orifice plate was located further from the ignition source: in this
case, located at 2.4 m instead of 1.2 m from the source of ignition.

4.3. Effect of Obstacles on the Flame Temperature

In the case of a confined vessel, the flow velocity decays to zero at the wall of the
vessel [15]. Confined vessels are therefore better at preventing convection heat transfer. The
introduction of an obstacle in a vented system increases the level of confinement, which
results in higher turbulence and flame propagation speed and a reduction in convective
heat transfer from the flame to the wall of the vessel. Therefore, the heat transfer is larger
between the flame and the wall of the vessel due to the lower flame propagation speed
when the vented system is without obstacles. Overall, in presence of obstacles, the heat
transfer increases due to the baffle and more intensive turbulence in a vented system
during a flame propagation, causing a significant rise in flame temperature. While the
flame temperature was measured only at the position of the ignition source and the distance
of the orifice plate location was at least 1.2 m from the ignition source, the impact of orifice
plates on flame temperature was still notable (Figure 7). Increasing the obstacle blockage
ratio resulted in an increase in flame temperature due to the increased confinement, and
the difference between the adiabatic flame temperature and the experimentally obtained
flame temperature was reduced.

The impact of the blockage ratio, location, and number of orifice plates on the flame
temperature for a 10% methane concentration is shown in Table 3. Increasing the number
of obstacles from 1 to 2 was found to have an effect similar to increasing the blockage ratio
of an obstacle. This is because in both cases confinement increases and heat loss is reduced.
The location of an obstacle also influences the flame temperature. The flame temperature
was found to increase when the orifice plate was moved from 1.2 m to 2.4 m away from the
ignition source. The larger confinement caused by moving the obstacle outward caused a
greater amount of flame behind the obstacle and intensive interaction with the tube wall,
resulting in a higher flame temperature.

Table 3. Maximum flame temperature (K) as a function of obstacle blockage ratio (BR%) and location
(obstacle distance in metres from ignition source) for a 10% methane concentration in a straight tube.

Circular BR% Distance of Obstacle from the
Ignition Source

Maximum Flame Temperature
(k) for 10% CH4

0 Non applicable 2010

30
1.2 2050
2.4 2054

1.2 and 2.4 2061

50
1.2 2063
2.4 2072

1.2 and 2.4 2079

70
1.2 2100
2.4 2113

1.2 and 2.4 2135
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Figure 7. Flame temperature as a function of methane concentration in the straight tube and when
the tube included 30%, 50% or 70% orifice plates placed 1.2 and 2.4 m from the ignition source.

4.4. Flame Propagation Speed

Various approaches have been employed in the literature to estimate flame propagation
speed when its determination is required. In this study, the flame propagation speed was
measured using a cinematography technique. The ignition source was determined as the
reference point and a high-speed video camera was used to record the flame propagation
behaviour and movement. This approach provides an opportunity to estimate the time
required for the flame to travel from the point of origin to any point in a tunnel or pipeline,
which is a very important consideration when contemplating safe fire prevention and
mitigation countermeasures in extractive and process industry applications.

Figure 8 presents the flame propagation speed for 8%, 10% and 12% methane concen-
trations when no obstacles were applied. The 10% methane concentration showed higher
flame propagation speeds along the length of the tube when compared to 8% and 12%
methane concentrations (lean and rich mixtures). This finding agrees with the current
literature [21].

The presence of obstacles in the straight tube generates vortices, as previously dis-
cussed [8]. Interaction between the tube wall and the generated vortices result in signifi-
cantly enhanced turbulence. As the blockage ratio of the orifices increases, there is a further
increase in the formation of vortices and wall interactions, producing a correspondingly
higher level of turbulence. More turbulence leads to an increase in burning rates, which
then results in an increase in flame propagation speed. The relationship between flame
propagation speed and the blockage ratio of obstacles is reflected in Figure 9. The flame
speed was measured at four points along the length of the glass tube, with each point
representing the entrance of the flame into the flange. The time of entry was recorded by
the high-speed camera. As the flame moves toward the end of the tube, the flame speed
increases due to the production of higher turbulence. This phenomenon is intensified by the
application of obstacles with larger blockage ratios. The variation in flame speed, shown in
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the error bars, is likely due to slightly different experimental conditions, or random and
systematic errors.
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Figure 9. Flame propagation speed for experiments with 10% methane concentration in the straight
tube and when the tube included a 30%, 50% or 70% orifice plate placed 2.4 m from the ignition source.
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The location and number of obstacles have similar impacts on flame propagation speed
to other explosion parameters such as deflagration overpressure and flame temperature
(Figure 10). Increasing the number of obstacles increases turbulence and thus enhances
the formation of vortices and wall interactions, leading to a correspondingly higher flame
propagation speed. The impact of the location of the obstacles on flame propagation speed
is also significant. As the orifice plate was moved from 1.2 m to 2.4 m along the length of the
tube, the turbulence and flame propagation speed increased, which is linked to increased
tube wall interaction due to flow resistance over the longer distance between the ignition
source and the obstacle.
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Figure 10. Flame propagation speed for experiments with a 10% methane concentration in a straight
tube; in a tube with one 70% orifice plate placed 1.2 m or 2.4 m from the ignition source; and in a tube
with two 70% orifice plates placed 1.2 and 2.4 m from the ignition source.

The observed impacts of the various configurations and number of obstacles on flame
propagation speed can be translated to real-world scenarios involving pipes, tunnels and
other vessels. If x and y are the two equal portions of a tunnel and the flame propagates from
portion x to y, the results (Figures 8–10) indicate that the time required for the flame to travel
portion y is smaller than that for portion x. That means the flame acceleration is higher
in the second portion (y). This needs to be factored in when developing any mitigation
measures which might be employed within the extractive or associated process industries.

4.5. Flame Propagation Speed in the Tube Included a 70% Obstacle

Eight sequential images have been presented in Figure 11 to illustrate 10% methane–air
flame propagation in the straight tube. Figure 12 demonstrates 10% methane–air flame
propagation when the tube included a 70% orifice plate positioned 1.2 m from the ignition
source. In the second half of the tube, the flame front arrival time was reduced. As
previously discussed, flame distortion occurs when obstacles are introduced and a higher
level of turbulence is generated. The elapsed time for flame propagation is therefore
reduced for experiments with obstacles when compared to experiments without obstacles.
A 3 ms reduction of flame elapse time (from 40 ms to 37 ms) was observed when an obstacle
was placed in the flame propagation tube at 1.2 m from the ignition source.
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Figure 11. 10% methane–air flame propagation in the straight tube.
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positioned 1.2 m from the ignition source.

5. Conclusions

Flame propagation behaviour for methane–air mixtures was investigated in a clear
borosilicate glass tube without obstacles and in the presence of single or multiple obstacles
employed in various configurations. The adiabatic flame temperature was computed using
COSILAB software (version 3.3.2). The difference between adiabatic flame temperature
and the experimentally measured flame temperature was determined. This difference in
flame temperature can be interpreted as the deviation of flame temperature from confined
vessel to vented vessel.

The deflagration overpressure increased inside the flame propagation tube in the
presence of obstacles. This was due to the increase in confinement when obstacles were
employed. For instance, the deflagration overpressure in the 10% methane experiment was
135 kPa and 175 kPa in the straight tube and the tube with a 70% obstacle, respectively. The
flame temperature also increased in the presence of obstacles. For example, for the 10%
methane experiment, the flame temperature increased from about 2000 K to 2135 K when
the blockage ratio of the orifice plate was increased from 0% to 70%.

Flame propagation speed increased with the introduction of orifice plates. The orifice
plate increases the flame surface, causing a higher burning rate and generating a higher
level of turbulence. For the 10% methane experiment, the flame propagation speed in
the absence and in presence of a 70% orifice plate was around 100 m/s and 160 m/s,
respectively. Flame propagation images demonstrated that the elapsed time of flame
propagation in the tube was reduced in the presence of obstacles.

The results suggest that the presence of obstacles in tunnels, chimneys, pipelines and
other semi-confined structures will increase the severity of explosions. Therefore, careful
mitigation measures should to be adopted in order to prevent any loss of life or damage to
property in these real-world applications.
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