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Abstract. In the paper, we consider the obstacle problem, with one and two irregular barriers, for semilinear
evolution equation involving measure data and operator corresponding to a semi-Dirichlet form. We prove
the existence and uniqueness of solutions under the assumption that the right-hand side of the equation
is monotone and satisfies mild integrability conditions. To treat the case of irregular barriers, we extend
the theory of precise versions of functions introduced by M. Pierre. We also give some applications to the
so-called switching problem.

1. Introduction

Let E be a locally compact separable metric space, let m be a Radon measure on
E with full support, and let {B(t), t ≥ 0} be a family of regular semi-Dirichlet forms
on L2(E;m) with common domain V satisfying some regularity conditions. By Lt ,
denote the operator corresponding to the form B(t). In the present paper, we study
the obstacle problem with one and two irregular barriers. In the case of one barrier
h : E → R, it can be stated as follows: For given ϕ : E → R, f : [0, T ]×E×R → R

and smooth (with respect to the parabolic capacity Cap associated with {B(t), t ≥ 0})
measure μ on E0,T ≡ (0, T ) × E , find u : Ē0,T ≡ (0, T ] × E → R such that

⎧
⎪⎨

⎪⎩

− ∂u
∂t − Ltu = f (·, u) + μ on the set {u > h}, u(T, ·) = ϕ,

− ∂u
∂t − Ltu ≥ f (·, u) + μ on E0,T ,

u ≥ h.

(1.1)

In the second part of the paper, we show how the results on (1.1) can be used to solve
some system of variational inequalities associated with so-called switching problem.
Problems of the form (1.1) are at present quite well investigated in the case where Lt

are local operators. Classical results for one or two regular barriers and L2-integrable
data are to be found in the monograph [1]. Semilinear obstacle problem with uni-
formly elliptic divergent form operators Lt and one or two irregular barriers was
studied carefully in [13,14] in case of L2-data and in [20] in case of measure data.
In [2], it is considered evolutianry p-Laplacian type equation (with p ∈ (1,∞)). In
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an important paper [30], linear problem (1.1) with one irregular barrier, L2-data and
operators Lt associated with Dirichlet forms is considered. The aim of the present
paper is to generalize or strengthen the existing results in the sense that we consider
semilinear equations involving measure data with two barriers and wide class of op-
erators corresponding to semi-Dirichlet forms. As for the obstacles, we only assume
that they are quasi-càdlàg functions satisfying some mild integrability conditions. The
class of quasi-càdlàg functions naturally arises in the study of evolution equations. It
includes quasi-continuous functions and parabolic potentials (which in general are not
quasi-continuous).
When considering problem (1.1) with measure data, one of the first difficulties

one encounters is the proper definition of a solution. Because of measure data, the
usual variational approach is not applicable. Moreover, even in the case of L2-data,
the variational inequalities approach does not give uniqueness of solutions (see [25]).
Therefore, following [20,30], we consider so-called complementary system associated
with (1.1). Roughly speaking, by a solution of this system we mean a pair (u, ν)

consisting of a quasi-càdlag̀ function u : Ē0,T → R and a positive smooth measure ν

on E0,T such that

− ∂u

∂t
− Ltu = f (·, u) + ν + μ on E0,T , u(T, ·) = ϕ in E, (1.2)

“ν is minimal′′, (1.3)

u ≥ h q.e., (1.4)

where q.e. means quasi-everywhere with respect to the capacity Cap. Of course, in the
above formulation one has to give rigorous meaning to (1.2) and (1.3). As for (1.2),
we develop some ideas from the paper [15] devoted to evolution equations involving
measure data and operators associated with semi-Dirichlet forms.
In the paper, we assume that μ belongs to the class M of smooth Borel measures

with finite potential, which under additional assumption of duality for the family
{B(t), t ≥ 0}, takes the form

M =
⋃

ρ

Mρ,

where Mρ denotes the set of all smooth signed measures on E0,T such that ‖μ‖ρ =
∫

E ρ d|μ| < ∞, and the union is taken over all strictly positive excessive functions ρ.
If ν ∈ M, then we define a solution of (1.2) as in [15]. To formulate this definition,

denote by M a Hunt process {(Xt )t≥0, (Pz)z∈E0,T } with life time ζ associated with the
operator ∂

∂t + Lt , and set ζυ = ζ ∧ (T − υ(0)), where υ is the uniform motion to
the right, i.e., υ(t) = υ(0) + t and υ(0) = s under Pz with z = (s, x). By Aμ, Aν

denote natural additive functionals of M in the Revuz correspondence with μ and ν,
respectively. By a solution of (1.2), we mean a function u such that for q.e. z ∈ E0,T ,

u(z) = Ez

(
ϕ(Xζυ ) +

∫ ζυ

0
f (Xr , u(Xr )) dr +

∫ ζυ

0
dAμ

r +
∫ ζυ

0
dAν

r

)
. (1.5)
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Formula (1.5) may be viewed as a nonlinear Feynman–Kac formula.
Unfortunately, in general, the “reaction measure” ν need not belong to M (in fact,

as shown in [14], in case of two barriers, it may be a nowhere Radon measure). In such
case, we say that u satisfies (1.2) if u is of class (D), i.e., there is a potential on Ē0,T

(see Sect. 3.2) dominating |u| on E0,T , and there exists a local martingale M (with
M0 = 0) such that the following stochastic equation is satisfied under the measure Pz
for q.e. z ∈ E0,T :

u(Xt ) = ϕ(Xζυ ) +
∫ ζυ

t
f (Xr , u(Xr )) dr

+
∫ ζυ

t
dAμ

r +
∫ ζυ

t
dAν

r −
∫ ζυ

t
dMr , t ∈ [0, ζυ ]. (1.6)

In the above definition the requirement that u is of class (D) is very important. The
reason is that (1.6) is also satisfied by functions solving equation (1.2) with additional
nontrivial singular (with respect to Cap) measure on its right-hand side (see [17]).
These functions are not of class (D).
If ν ∈ M, then (1.6) is equivalent to (1.5). Furthermore, if the time-dependent

Dirichlet formE0,T on L2(E0,T ;m1 := dt⊗m) determined by the family {B(t), t ≥ 0}
has the dual Markov property and ϕ ∈ L1(E;m), f (·, u) ∈ L1(E0,T ; dt ⊗ m),
μ, ν ∈ M1 (i.e., μ, ν are bounded), then the solution u in the sense of (1.5) is a
renormalized solution of (1.2) in the sense defined in [21]. In particular, this means
that u has some further regularity properties and may be defined in purely analytical
terms.More precisely,u is a renormalized solution if the truncations Tku = −k∨(u∧k)
of u belong to the space L2(0, T ; V ), and there exists a sequence {λk} ⊂ M1 such
that ‖λk‖1 → 0 as k → ∞, and for every bounded v ∈ L2(0, T ; V ) such that
∂v
∂t ∈ L2(0, T ; V ′) and v(0) = 0 we have

E0,T (Tku, v) = (Tkϕ, v(T ))L2 + ( f (·, u), v)L2 +
∫

E0,T

v dμ +
∫

E0,T

v dνk (1.7)

for all k ≥ 0. In case of local operators of Leray–Lions type, the above definition
of renormalized solutions was proposed in [29] (for the case of elliptic equations see
[4]).
We now turn to condition (1.3). Intuitively, it means that ν “acts only if necessary.”

If h is quasi-continuous, this statement means that ν acts only when u = h, because
then the right formulation of the minimality condition takes the form

∫

E0,T

(u − h) dν = 0 (1.8)

(see [20,30]). If h is only quasi-càdlàg, the situation is more subtle. For such h, the
function u satisfying (1.5) is also quasi-càdlàg, so the left-hand side of (1.8) is well
defined, because ν is a smooth measure. However, in general, the left-hand side is
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strictly positive. M. Pierre has shown (in the case of linear equations with L2-data and
Dirichlet forms) that for general barrier h the condition

∫

E0,T

(ũ − h̃) dν = 0 (1.9)

is satisfied. Here ũ is a precise m1-version of u and h̃ is an associated precise version
of h. The notions of a precise m1-version of a potential and an associated precise
version of a function h dominated by a potential (which is not necessarily m1-version
of h) were introduced in [30,31]. In the paper, in case of semi-Dirichlet forms, we
use probabilistic methods to introduce another notion of a precise m1-version û of
a quasi-càdlàg function u (note that potentials are quasi-càdlàg). Since our barriers
as well as solutions to (1.2)–(1.4) are quasi-càdlàg, we do not need the notion of an
associated precise version. We show that if u is an L2 potential, then

û = ũ q.e,

and for any quasi-càdlàg function u which is dominated by an L2 potential,

û ≤ ũ q.e.,
∫

(ũ − û) dν = 0.

It follows in particular that in case of L2 data and Dirichlet form, (1.9) is equivalent
to

∫

E0,T

(û − ĥ) dν = 0 (1.10)

One reasonwhywe introduce a new notion of a precise version is that it is applicable
to wider classes of operators and functions then those considered in [30,31]. The
second is that our definition is more direct that the construction of a precise version
given in [30,31]. Namely, in our approach by a precise version of a quasi-càdlàg
function u on Ē0,T we mean a function û on Ē0,T such that for q.e. z ∈ E0,T ,

û(Xt−) = u(X)t− , t ∈ (0, ζυ)

As a consequence, our definition appears to be very convenient for studying obstacle
problems and may be applied to quite general class of equations (possibly nonlinear
with measure data and two obstacles).
In case of one obstacle, the main result of the paper says that if ϕ, f (·, 0) satisfy

mild integrability conditions, and f is monotone and continuous with respect to u,
then for every μ ∈ M there exists a unique solution (u, ν) of (1.1), i.e., a unique pair
(u, ν) consisting of a quasi-càdlàg function u on Ē0,T and positive smooth measure ν

on E0,T such that (1.6), (1.10) and (1.4) are satisfied. We also give conditions under
which ν ∈ M or ν ∈ M1, i.e., when equivalent to (1.6) formulations (1.5) or (1.7) may
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be used. Moreover, we show that un ↗ u q.e., where un is a solution of the following
Cauchy problem

− ∂un
∂t

− Ltun = f (·, un) + n(un − h)− + μ, un(T, ·) = ϕ. (1.11)

Our probabilistic approach allows us to prove similar results also for two quasi-
càdlàg barriers h1, h2 satisfying some separation condition. In the case of two barriers,
the measure ν appearing in the definition of a solution is a signed smooth measure.
Moreover, we replace the minimality condition (1.9) by

∫

E0,T

(û − ĥ1) dν
+ =

∫

E0,T

(ĥ2 − û) dν− = 0, (1.12)

and replace condition (1.4) by h1 ≤ u ≤ h2 q.e. We show that under the same
conditions on ϕ, f, μ as in the case of one barrier, there exists a unique solution (u, ν)

of the obstacle problem with two barriers. We also show that ūn ↗ u and λn ↗ ν−,
where (ūn, λn) is a solution of problem of the form (1.1), but with one upper barrier
h2 and f replaced by

fn(t, x, y) = f (t, x, y) + n(y − h1(t, x))
−.

We prove these results under two different separation conditions. The first one, more
general, may be viewed as some analytical version of the Mokobodzki condition
considered in the literature devoted to reflected stochastic differential equations (see,
e.g., [16]). The second one, which is simpler and usually easier to check, as yet, has
not been considered in the literature on evolution equations. It says that

h1 < h2, ĥ1 < ĥ2 q.e. (1.13)

If h1, h2 are quasi-continuous, then (1.13) reduces to the condition h1 < h2 q.e.,
because quasi-continuous functions are precise (see [14] for this case).
Note also that at the endofSect. 6we show that the studyof theobstacle problemwith

one merely measurable barrier (or two measurable barriers satisfying theMokobodzki
condition) can be reduced to the study of the obstacle problem with quasi-càdlàg
barriers. It should be stressed, however, that when dealing with merely measurable
barriers, our definition of a solution is weaker. Namely, instead of (1.4) we only require
that u ≥ h m1-a.e. (or h1 ≤ u ≤ h2 m1-a.e. in case of two barriers).
In the last part of the paper, we use our results on (1.1) to study so-called switching

problem (see Sect. 7). This problem is closely related to system of quasi-variational
inequalities, which when written as a complementary system has the form

−∂u j

∂t
− Ltu

j = f j (t, x, u) + ν j + μ j , (1.14)
∫

E0,T

(û j − Ĥ j (·, u)) dν j = 0, (1.15)
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u j ≥ H j (·, u) q.e., (1.16)

where

H j (z, y) = max
i∈A j

h j,i (z, y
i ), z ∈ E0,T , y ∈ R

N .

In (1.14)–(1.16), we are given f j : E0,T × R
N → R

N , h j,i : E0,T × R → R,
μ j ∈ M and sets A j ⊂ {1, . . . , j − 1, j + 1, . . . , N }, and we are looking for a pair
(u, ν) = ((u1, . . . , uN ), (ν1, . . . , νN )) satisfying (1.14)–(1.16) for j = 1, . . . , N .
Note that in (1.16) the barrier H j depends on u.

Systems of the form (1.14)–(1.16) were subject to numerous investigations, but only
in the framework of viscosity solutions and for local operators (see [6,7,9–12,24]) or
for special class of nonlocal operators associated with a random Poisson measure (see
[23]). In the paper, we prove an existence result for (1.14)–(1.16). In the important
special case where

h j,i (z, y) = − c j,i (z) + yi ,

we show that there is a unique solution of (1.14)–(1.16) and, moreover, that u is the
value function for the optimal switching problem related to (1.14)–(1.16).

2. Preliminaries

In the paper, E is a locally compact separable metric space andm a Radon measure
on E such that supp[m] = E . ForT > 0,we set E0,T = (0, T )×E , Ē0,T = (0, T ]×E .

Recall (see [26]) that a form (B, V ) is called semi-Dirichlet on L2(E;m) if V is a
dense linear subspace of L2(E;m), B is a bilinear form on V × V , and the following
conditions (B1)–(B4) are satisfied:

(B1) B is lower bounded, i.e., there exists α0 ≥ 0 such that Bα0(u, u) ≥ 0 for u ∈ V ,
where Bα0(u, v) = B(u, v) + α0(u, v),

(B2) B satisfies the sector condition, i.e., there exists K > 0 such that

|B(u, v)| ≤ K Bα0(u, u)1/2Bα0(v, v)1/2, u, v ∈ V,

(B3) B is closed, i.e., for every α > α0 the space V equipped with the inner product
B(s)

α (u, v) = 1
2 (Bα(u, v) + Bα(v, u)) is a Hilbert space,

(B4) B has the Markov property, i.e., for every a ≥ 0, B(u∧a, u∧a) ≤ B(u∧a, u)

for all u ∈ V .

Condition (B4) is called theMarkov property, because it is equivalent to the fact that
the semigroup {Tt , t ≥ 0} associated with (B, V ) is sub-Markov (see [26, Theorem
1.1.5]). Recall that (B, V ) is said to have the dual Markov property if

(B5) for every a ≥ 0,

B(u ∧ a, u ∧ a) ≤ B(u, u ∧ a), u ∈ V .
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Note that (B5) is equivalent to the fact that the dual semigroup {T̂t , t ≥ 0} associated
with (B, V ) is sub-Markov (see [26, Theorem 1.1.5]). For the notions of transiency
and regularity, see [26, Sections 1.2, 1.3].
In the paper, {B(t), t ∈ R} is a family of regular semi-Dirichlet forms on L2(E;m)

satisfying (B2), (B3) with some constants K , α0 not depending on t . We also assume
that for all u, v ∈ V the mapping R � t �→ B(t)(u, v) is measurable, and for some
λ ≥ 1,

λ−1B(0)(u, u) ≤ B(t)(u, u) ≤ λB(0)(u, u), u ∈ V, t ∈ R.

Let (E, D[E])denote the time-dependent semi-Dirichlet formon L2(E1;m1) (E1 :=
R × E) associated with the family {B(t), t ∈ R} (see [26, Section 6.1]), and Cap de-
notes the associated capacity. We say that some property holds quasi-everywhere (q.e.
for short) if it holds outside some set B ⊂ E1 such that Cap(B) = 0. Capacity Cap
on E0,T is equivalent to the capacity considered in [30,31] (see [32]) in the context of
parabolic variational inequalities.
Let μ be a signed measure on E1. By |μ|, we denote the variation of μ, i.e., |μ| =

μ+ + μ−, where μ+ (resp. μ−) denote the positive (resp. negative) part of μ. Recall
that a Borel measure on E1 is called smooth if μ charges no exceptional sets and there
exists an increasing sequence {Fn} of closed subsets of E1 such that |μ|(Fn) < ∞ for
n ≥ 1 and Cap(K\Fn) → 0 for every compact K ⊂ E1.
It is known (see [26, Section 6.3]) that there exists a unique Hunt process M =

{(X)t≥0, (Pz)z∈E1} with life time ζ associated with the form (E, D[E]). Moreover,

Xt = (υ(t), Xυ(t)),

where υ is the uniform motion to the right, i.e., υ(t) = υ(0)+ t and υ(0) = s, Pz-a.s.
for z = (s, x) (see [26, Theorem 6.3.1]). In the sequel, for fixed T > 0 we set

ζυ = ζ ∧ (T − υ(0)).

Let us recall that from [26, Lemma 6.3.2] it follows that a nearly Borel set B ⊂ E1

is of capacity zero iff it is exceptional, i.e., Pz(∃t>0; Xt ∈ B) = 0, q.e. Recall also
(see [26, Section 6]) that there is one-to-one correspondence, called Revuz duality,
between positive smooth measures and positive natural additive functionals (PNAFs)
of M. For a positive smooth measure μ, we denote by Aμ the unique PNAF in the
Revuz duality with μ. For a signed smooth measure μ, we put Aμ = Aμ+ − Aμ−

. For
a fixed positive measurable function f and a positive Borel measure μ, we denote by
f · μ the measure defined as

( f · μ)(η) =
∫

E1

η f dμ, η ∈ B+(E1).

By S0, we denote the set of all measures of finite energy integrals, i.e., the set of all
smooth measures μ having the property that there is K ≥ 0 such that

∫

E
|η̃| d|μ| ≤ K‖η‖W , η ∈ W,



688 T. Klimsiak J. Evol. Equ.

where η̃ is a quasi-continuous m1-version of η (for the existence of such version see
[26, Theorem 6.2.11]). ByM, we denote the set of all smooth measures on E0,T such
that Ez A

|μ|
ζυ

< ∞ for q.e. z ∈ E0,T . Mc is the set of those μ ∈ M for which Aμ is
continuous.
For a given positive smooth measure μ on Ē0,T , we set

R0,Tμ(z) = Ez A
μ
ζυ

, z ∈ E0,T .

Set

V0,T = L2(0, T ; V ), W0,T =
{

u ∈ V0,T : ∂u

∂t
∈ V ′

0,T

}

,

WT = {
u ∈ W0,T : u(T ) = 0

}
, W0 = {

u ∈ W0,T : u(0) = 0
}

and

E0,T (u, v) =
{∫ T

0 〈− ∂u
∂t (t), v(t)〉 dt + ∫ T

0 B(t)(u(t), v(t)) dt, (u, v) ∈ WT × V0,T ,
∫ T
0 〈u(t), ∂v

∂t (t)〉 dt + ∫ T
0 B(t)(u(t), v(t)) dt, (u, v) ∈ V0,T × W0,

where 〈·, ·〉 is the duality pairing between V ′ and V (V ′ stands for the dual of V ). It
is known (see [33, Example I.4.9(iii)]) that E0,T is a generalized semi-Dirichlet form.
The operator associated with E0,T has the form

L = − ∂

∂t
− Lt , D(L) =

{
u ∈ WT : Lu ∈ L2(E0,T ;m1)

}
,

where (Lt , D(Dt )) is the operator associatedwith (B(t), V ), t ∈ [0, T ]. By (G0,T
α )α>0,

we denote the (unique) strongly continuous contraction resolvent on L2

(0, T ; L2(E;m)) associated with E0,T (see Propositions I.3.4 and I.3.6 in [33]).

3. Precise versions of quasi-càdlàg functions

3.1. Precise versions of parabolic potentials in the sense of Pierre and its probabilistic
interpretation

We first recall the notion of a precise version of a parabolic potential introduced in
[31].

DEFINITION. A measurable function u ∈ V0,T ∩ L∞(0, T ; L2(E;m)) is called
a parabolic potential if for every nonnegative v ∈ W0,

∫ T

0

〈∂v

∂t
(t), u(t)

〉
dt +

∫ T

0
B(t)(u(t), v(t)) dt ≥ 0.

The set of all parabolic potentials will be denoted by P2.
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PROPOSITION 3.1. Let u ∈ P2. Then, there exists a unique positive μ ∈ S0 on
Ē0,T such that

u(z) = Ez A
μ
ζυ

(3.1)

for m1-a.e. z ∈ E0,T .

Proof. By [31, Theorem III.1], there exists a positive measure μ ∈ S0 on Ē0,T such
that
∫ T

t

(
∂v

∂t
(s), u(s)

)

ds +
∫ T

t
B(s)(u(s), v(s)) ds =

∫

(t,T ]×E
v dμ − (v(t), u(t))L2

for all v ∈ W0,T and t ∈ [0, T ]. This and [15, Theorem 3.7] yield (3.1). �

In the sequel, for u ∈ P2 we set E(u) = μ, where μ ∈ S0 is the measure from
Proposition 3.1.

DEFINITION. A measurable function u on E0,T is called precise (in the sense
of M. Pierre) if there exists a sequence {un} of quasi-continuous parabolic potentials
such that un ↘ u q.e. on E0,T .

The following result has been proved in [31].

THEOREM 3.2. Each u ∈ P2 has a precise m1-version.

In what follows, we denote by ũ a precise version of u ∈ P2 in the sense of Pierre.
It is clear that ũ it is defined q.e. In [31], it is proved that the mapping t �→ ũ(t, ·) ∈
L2(E;m) is left continuous and has right limits, whereas in [15, Proposition 3.4] it
is proved that u defined by (3.1) has the property that the mapping t �→ u(t, ·) ∈
L2(E;m) is right continuous and has left limits. Since for any B ∈ B(E) and t ∈
[0, T ], Cap({t} × B) = 0 if and only if m(B) = 0 (see [31, Proposition II.4]), it
follows that in general Cap({u �= ũ}) > 0. In the sequel, for given u ∈ P2 we will
always consider its version defined by (3.1).

Let us recall that function x : [a, b] → R is called càdlàg (resp. càglàd) iff x is
right continuous (resp. left continuous) and has left (resp. right) limits.

LEMMA 3.3. Assume that {xn} is a decreasing sequence of càglàd functions on
[0, T ] such that xn(t) ↘ x(t), t ∈ [0, T ], and x(t) = −a(t) + b(t), t ∈ [0, T ], for
some nondecreasing function a and càglàd function b on [0, T ]. Then, a and x are
càglàd functions.

Proof. The proof is analogous to that of [28, Lemma 2.2], so we omit it. �
LEMMA 3.4. Assume that for each n ∈ N,

Y n
t = Yn

0 − An
t + Mn

t , t ∈ [0, T ], (3.2)

where An is a predictable increasing process with An
0 = 0, and Mn is a local mar-

tingale with Mn
0 = 0. If Y n is positive, Y n

t ↘ Yt , t ∈ [0, T ], and E supt≤T (|Y 1
t |2 +

|Yt |2) < ∞, then Ŷt := limn→∞ Yn
t−, t ∈ [0, T ], is a càglàd process.
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Proof. By [22, Theorem 3.1],

E |An|2T + E[Mn]T ≤ cE sup
t∈[0,T ]

|Yn
t |2 ≤ cE sup

t∈[0,T ]

(
|Y 1

t |2 ∨ |Yt |2
)

.

In particular, supn E |Mn
T |2 < ∞. Therefore, there exists X ∈ L2(FT ) such that

Mn
T → X weakly in L2(FT ). Let N be a càdlàg version of E(X |Ft ), t ∈ [0, T ].

Then, for every τ ∈ T , Mn
τ → Nτ weakly in L2(FT ). Indeed, if Z ∈ L2(FT ), then

EMn
τ Z = E(E(Mn

T |Fτ ) · Z) = E(Mn
T E(Z |Fτ ))

→ EXE(Z |Fτ ) = E(E(X |Fτ )Z) = ENτ · Z .

(3.3)

Since M is a Hunt process each F-martingale M has the property that Mτ− = Mτ for
all predictable τ ∈ T (see [3, Proposition 2]). Therefore, for any predictable τ ∈ T ,

An
τ− = Yn

0 − Yn
τ− + Mn

τ− = Yn
0 − Yn

τ− + Mn
τ . (3.4)

Set

Ât = Y0 − Ŷt + Nt−, t ∈ [0, T ].
Of course, Â is predictable. By (3.3) and (3.4), for any predictable τ ∈ T ,

An
τ− → Y0 − Ŷτ + Nτ = Y0 − Ŷτ + Nτ− = Âτ

weakly in L2(FT ). From the above convergence, Âσ ≤ Âτ for all predictable σ, τ ∈ T
such that σ ≤ τ . Therefore, applying the predictable cross-sectional theorem (see [5,
[Theorem 86, p. 138]) we conclude that Â is an increasing process. Consequently, by
Lemma 3.3, Ŷ is càglàd. �

Now we are ready to prove the main result of this section. In the sequel, for a
function u on Ē0,T we set u(X)t− = Yt− and u(X)t+ = Yt+, where Yt = u(Xt ),
t ∈ (0, T ].

THEOREM 3.5. Assume that u ∈ P2. Then, for q.e. z ∈ E0,T ,

ũ(Xt−) = u(X)t− , t ∈ (0, ζυ ], Pz-a.s. (3.5)

Proof. By the definition of a precise version of a potential, there exists a sequence
{un} of quasi-continuous parabolic potentials such that un ↘ ũ q.e. on E0,T . Since
ϕ(u) ∈ P2 for any bounded concave function ϕ on R

+ and any u ∈ P2, we may
assume that un, u are bounded. Since un, u ∈ P2, then by Proposition 3.1 and the
strong Markov property there exist measures μn, μ ∈ M and martingales Mn, M
such that

un(Xt ) =
∫ ζτ

t
dAμn

r −
∫ ζτ

t
dMn

r , t ∈ [0, ζτ ]
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and

u(Xt ) =
∫ ζτ

t
dAμ

r −
∫ ζτ

t
dMr , t ∈ [0, ζτ ]. (3.6)

Since un ↘ ũ q.e. on E0,T , we have

un(Xt−) ↘ ũ(Xt−), t ∈ (0, ζτ ], Pz-a.s.

for q.e. z ∈ E0,T . But un(Xt−) = un(X)t−, t ∈ (0, ζτ ], Pz-a.s. for q.e. z ∈ E0,T ,
because un is quasi-continuous. Therefore, applying Lemma 3.4 shows that ũ(Xt−)

is càglàd. We are going to show that

ũ(X−)t+ = u(Xt ), t ∈ (0, ζτ ). (3.7)

Since ũ = u m1-a.e.,

0 = R0,T |ũ − u|(z) = Ez

∫ ζυ

0
|ũ(Xt ) − u(Xt )| dt

= Ez

∫ ζυ

0
|ũ(Xt−) − u(Xt )| dt

= Ez

∫ ζυ

0
|(ũ(X−)t+ − u(Xt )| dt

for q.e. z ∈ E0,T . Hence,

ũ(X−)t+ = u(Xt ) for a.e. t ∈ (0, ζτ ) (3.8)

for q.e. z ∈ E0,T . Since ũ(X−)t+ and u(Xt ) are càdlàg processes, (3.8) implies (3.7).
In turn, (3.7) implies (3.5), because ũ(X−) is càglàd. �

3.2. Probabilistic approach to precise versions of quasi-càdlàg functions

DEFINITION. We say that u : Ē0,T → R is quasi-càdlàg if the process u(X) is
càdlàg on [0, ζυ ] under the measure Pz for q.e. z ∈ E0,T .

Of course, any quasi-continuous function is quasi-càdlàg. In the sequel the class of
smooth measures μ on Ē0,T for which Ez A

|μ|
ζυ

< ∞ q.e. on E0,T we denote by MT .

We say that u is a potential on Ē0,T iff for a positive μ ∈ MT .

u(z) = Ez A
μ
ζυ

for q.e. z ∈ E0,T . By [15, Proposition 3.4], each potential on Ē0,T is quasi-càdlàg. By
Proposition 3.1, each u ∈ P2 is a potential on Ē0,T .

THEOREM 3.6. Let u be a quasi-càdlàg function on Ē0,T . Then, there exists a
unique (q.e.) function û such that for q.e. z ∈ E0,T ,

û(Xt−) = u(X)t− , t ∈ (0, ζυ), Pz-a.s. (3.9)
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Proof. By [26, Theorem 3.3.6], there exists a measure m̂1 equivalent to m1 such
that (X, Pz) has the dual Hunt process (X̂, P̂z) with respect to m̂1. Therefore, by [8,
Theorem 16.4] applied to the process u(X)− there exists a Borel measurable function
û satisfying (3.9). Uniqueness follows from the very definition of exceptional sets and
[8, Proposition 11.1]. �

DEFINITION. For a quasi-càdlàg function u on Ē0,T we call the function û from
Theorem 3.6 a precise m1-version of u.

COROLLARY 3.7. For u ∈ P2, ũ = û q.e.

REMARK 3.8. It is clear that û is an m1-version of u (see the reasoning before
(3.8)).

In the sequel, we will need the following result.

PROPOSITION 3.9. Let μ be a positive smooth measure on E0,T , and let u be a
positive quasi-càdlàg function on E0,T . Then

∫ ζυ

0
[u(X)]t− dAμ

t =
∫ ζυ

0
û(Xt ) dA

μ
t , Pz-a.s. (3.10)

for q.e. z ∈ E0,T . Moreover,

Ez

∫ ζυ

0
u(Xt ) dA

μ
t = 0 for q.e. z ∈ E0,T

if and only if
∫

E0,T
u dμ = 0.

Proof. By Theorem 3.6,
∫ ζυ

0 [u(X)]t− dAμ
t = ∫ ζυ

0 û(Xt−) dAμ
t , Pz-a.s. It is well

known thatX has only totally inaccessible jumps (as a Hunt process), which combined
with the fact that Aμ is predictable gives (3.10). The second part of the proposition
follows directly from the Revuz duality. �

3.3. Associated precise versions in the sense of Pierre

Let u be a measurable function on Ē0,T bounded by some element ofW . In [30], M.
Pierre introduced the so-called associated precisem1-version ũ of u. By the definition,
ũ is the unique quasi-u.s.c. function such that

{v ∈ W0,T + P2 : ṽ ≥ u q.e.} = {v ∈ W0,T + P2 : ṽ ≥ ũ q.e.}
In general, it is not true that ũ = u m1-a.e. However, if u is quasi-càdlàg, then

û ≤ ũ q.e. (3.11)

Indeed, by [30, Proposition IV-I] there exists a sequence {un} ⊂ W0,T such that
infn≥1 un = ũ q.e. Since u ≤ un q.e. and u is quasi-càdlàg, we have

u(Xt ) ≤ un(Xt ), t ∈ [0, ζυ),
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which implies

û(Xt−) = u(X)t− ≤ un(X)t− = un(Xt−), t ∈ (0, ζυ).

Taking infimum, we get

û(Xt−) ≤ ũ(Xt−), t ∈ (0, ζυ).

By the above and [8, Proposition 11.1], we get (3.11). Set

ui (t, x) = ui (t) =
{
1, t ∈ Ii ,
0, t ∈ [0, T ]\Ii , (3.12)

where I1 = [0, T ] ∩ Q, I2 = [ T2 , T ], I3 = ( T2 , T ]. Then, ũ1 ≡ 1, so ũ1 is not an
m1-version of u1. Moreover, ũ2 = u2 and û2 = u3 (u3 is not quasi-u.s.c.), so in this
case û2 < ũ2 on the set { T2 } × E . Since Cap({t} × B) = 0 if and only if m(B) = 0,
it follows that in general, (3.11) cannot be replaced by “û = ũ q.e.”

4. Reflected BSDEs

In what follows, (,F , P) is a probability space, F = {Ft , t ≥ 0} is a filtration
satisfying the usual conditions, and T is an arbitrary, but fixed bounded F-stopping
time. By T , we denote the set of all F-stopping times with values in [0, T ]. For
σ, γ ∈ [0, T ] such that σ ≤ γ , we denote by Tγ (resp. Tσ,γ ) the set of all τ ∈ T such
that P(τ ∈ [γ, T ]) = 1 (resp. P(τ ∈ [σ, γ ]) = 1).
By M (resp. Mloc), we denote the space of martingales (resp. local martingales)

with respect to F. [M] denotes the quadratic variation process of M ∈ Mloc. ByM0

(resp. Mp ), we denote the subspace of M consisting of all M such that M0 = 0
(resp. E[M]p/2T < ∞).
By V (resp. V+), we denote the space of all F-progressively measurable processes

(resp. increasing processes) V of finite variation such that V0 = 0. V p is the subspace
of V consisting of V such that E |V |pT < ∞, where |V |t denotes the variation of V on
the interval [0, t]. pV is the space of all predictable processes in V .
By S p, we denote the space of F-progressively measurable processes Y such that

E supt≤T |Yt |p < ∞. L p(F) is the space of F-progressively measurable processes

X such that E
∫ T
0 |Xt |p dt < ∞. L p(FT ) is the space of FT -measurable random

variables X such that E |X |p < ∞.
Let f :  × [0, T ] × R → R be a measurable function such that f (·, y) is F-

progressively measurable for every y ∈ R, ξ be a FT -measurable random variable
and V be a càdlàg process of finite variation such that V0 = 0.

DEFINITION. We say that a pair of processes (Y, M) is a solution of the backward
stochastic differential equation with terminal condition ξ and right-hand side f + dV
(BSDE(ξ, f + dV ) for short) if
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(a) Y is an F-adapted càdlàg process of Doob’s class (D), M ∈ M0,loc ,
(b) [0, T ] � t → f (t,Yt ) ∈ L1(0, T ) and

Yt = ξ +
∫ T

t
f (r,Yr ) dr +

∫ T

t
dVr −

∫ T

t
dMr , t ∈ [0, T ], P-a.s.

Let L ,U be two càdlàg F-adapted processes such that Lt ≤ Ut , t ∈ [0, T ], and
LT ≤ ξ ≤ UT .

DEFINITION. We say that a triple of processes (Y, M, K ) is a solution of the
reflected backward stochastic differential equation with terminal condition ξ , right-
hand side f + dV and lower barrier L (RBSDE(ξ, f + dV, L) for short) if

(a) Y is an F-adapted càdlàg process of Doob’s class (D), M ∈ M0,loc, K ∈ pV+,
(b) Yt ≥ Lt , t ∈ [0, T ],
(c)

∫ T
0 (Yt− − Lt−) dKt = 0, P-a.s.,

(d) [0, T ] � t → f (t,Yt ) ∈ L1(0, T ) and

Yt = ξ +
∫ T

t
f (r,Yr ) dr +

∫ T

t
dVr +

∫ T

t
dKr −

∫ T

t
dMr , t ∈ [0, T ], P-a.s.

DEFINITION. We say that a triple of processes (Y, M, K ) is a solution of the
reflected backward stochastic differential equation with terminal condition ξ , right-
hand side f + dV and upper barrier L (RBSDE(ξ, f + dV,U ) for short) if the
triple (−Y,−M, K ) is a solution of RBSDE(−ξ, f̃ − dV,−L), where f̃ (t, y) =
− f (t,−y).

DEFINITION. We say that a triple of processes (Y, M, R) is a solution of the
reflected BSDE with terminal condition ξ , right-hand side f + dV , lower barrier L
and upper barrier U (RBSDE(ξ, f + dV, L ,U ) for short) if

(a) Y is an F-adapted càdlàg process of class (D), M ∈ M0,loc, R ∈ pV ,
(b) Lt ≤ Yt ≤ Ut , t ∈ [0, T ], P-a.s.
(c)

∫ T
0 (Yt− − Lt−) dR+

t = ∫ T
0 (Ut− − Yt−) dR−

t = 0, P-a.s.
(d) [0, T ] � t �→ f (t,Yt ) ∈ L1(0, T ) and

Yt = ξ +
∫ T

t
f (r,Yr ) dr +

∫ T

t
dVr +

∫ T

t
d Rr −

∫ T

t
dMr , t ∈ [0, T ], P-a.s.

REMARK 4.1. Observe that if (Y, M, K ) is a solution of RBSDE(ξ, f + dV, L)

and A ∈ pV+ has the property that dA ≤ dK , then the triple (Y, M, K − A) is a
solution of RBSDE(ξ, f + dV + dA, L).

In the sequel, we will need the following lemma.

LEMMA 4.2. Assume that

(i) there is μ ∈ R such that for a.e. t ∈ [0, T ] and all y, y′ ∈ R,

( f (t, y) − f (t, y′))(y − y′) ≤ μ|y − y′|2,
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(ii) [0, T ] � t �→ f (t, y) ∈ L1(0, T ) for every y ∈ R,
(iii) R � y �→ f (t, y) is continuous for a.e. t ∈ [0, T ],
(iv) ξ ∈ L1(FT ), V ∈ V1, f (·, 0) ∈ L1(F).

Let fn = f ∨ (−n), and let (Yn, Mn, Rn) be a solution ofRBSDE(ξ, fn +dV, L ,U ).
Then

Y n
t ↘ Yt , Mn

t → Mt , t ∈ [0, T ], dR+,n ↗ dR+, dR−,n ↘ dR−,

where (Y, M, R) is a solution of RBSDE(ξ, f + dV, L ,U ).

Proof. By [16, Proposition 2.14, Proposition 3.1, Theorem 3.3], Yn ≥ Yn+1 ≥ Y ,
dR+,n ≤ dR+,n+1 ≤ dR+, dR−,n ≥ dR−,n+1 for n ≥ 1. Set Ȳt = limn→∞ Yn

t , Kt =
limn→∞ R+,n

t , At = limn→∞ R−,n
t , R̄t = Kt − At , t ∈ [0, T ]. Without loss of

generality, we may assume that μ ≤ 0 in (i). Then,

f
(
r,Y 1

r

)
≤ fn

(
r,Yn

r

) ≤ f1(r,Yr ), r ∈ [0, T ].

From this, we conclude that the sequence {Mn} is locally uniformly integrable. Hence,
M̄t := limn→∞ Mn

t , t ∈ [0, T ], is a local martingale. We shall show that the triple
(Ȳ , M̄, R̄) is a solution of RBSDE(ξ, f + dV, L ,U ). It is clear that R̄ is a càdlàg
process of finite variation. Moreover, by (ii) and (iii),

Ȳt = ξ +
∫ T

t
f (r, Ȳr ) dr +

∫ T

t
d R̄r +

∫ T

t
dVr −

∫ T

t
d M̄r , t ∈ [0, T ].

It is also clear that Ȳ is of class (D) and L ≤ Ȳ ≤ U . By the Hahn–Saks theorem,

∫ T

0
(Ȳt − Lt ) dK

c
t = lim

n→∞

∫ T

0
(Ȳt − Lt ) dR

+,n,c
t = 0. (4.1)

Assume that �Kt > 0. Then, there exists n0 such that �R+,n
t > 0 for n ≥ n0. Since∫ T

0 (Yn
t− − Lt−) dR+,n

t = 0 and Yn
t ≥ Lt , it follows that Yn

t− = Lt− for n ≥ n0.
Consequently, Ȳt− ≤ Yn

t− = Lt−, which implies that Ȳt− = Lt−. We have proved
that

∑
t (Ȳt− − Lt−)�Kt = 0, which when combined with (4.1) shows that

∫ T

0

(
Ȳt− − Lt−

)
dKt = 0.

Also observe that
∫ T

0

(
Ut − Ȳt

)
dAt ≤

∫ T

0

(
Ut − Yn

t

)
dRn,−

t = 0. (4.2)

Thus, the triple (Ȳ , M̄, R̄) is a solution of RBSDE(ξ, f + dV, L ,U ). From this and
the minimality of the Jordan decomposition of the measure R, it follows that R+ =
K , R− = A. �
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5. PDEs with one reflecting barrier

In this section, T > 0 is a real number, ϕ : E → R, f : Ē0,T × R → R

are measurable functions, and h : Ē0,T → R is a quasi-càdlàg function such that
ĥ(T, ·) ≤ ϕ.

DEFINITION. We say that a quasi-càdlàg function u on Ē0,T is a solution of the
Cauchy problem

−∂u

∂t
− Ltu = f (·, u) + μ, u(T, ·) = ϕ

(PDE(ϕ, f + dμ) for short) if for q.e. z ∈ E0,T ,

u(z) = Ezϕ(Xζυ ) + Ez

∫ ζυ

0
f (Xr , u(Xr )) dr + Ez

∫ ζυ

0
dAμ

r .

DEFINITION. We say that a pair (u, ν), where u : Ē0,T → R is a quasi-càdlàg
function and ν is a positive smooth measure on E0,T , is a solution of problem (1.1),
i.e., obstacle problemwith data ϕ, f, μ and lower barrier h (we denote it by OP(ϕ, f +
dμ, h)), if

(a) (1.6) is satisfied for some local martingale M (with M0 = 0),
(b) u ≥ h q.e.,
(c)

∫

E0,T
(û − ĥ) dν = 0.

DEFINITION. We say that a pair (u, ν) is a solution of the obstacle problem with
data ϕ, f, μ and upper barrier h (we denote it by OP(ϕ, f + dμ, h)), if (−u, ν) is a
solution of OP(−ϕ, f̃ − dμ,−h), where f̃ (t, x, y) = − f (t, x,−y).

We will need the following duality condition considered in [15].

(�) For some α ≥ 0, there exists a nest {Fn} on E0,T such that for every n ≥ 1 there
is a nonnegative ηn ∈ L2(E0,T ;m1) such that ηn > 0m1-a.e. on Fn and Ĝ0,T

α ηn

is bounded, where Ĝ0,T
α is the adjoint operator to G0,T

α .

Note that (�) is satisfied if for some γ ≥ 0 the form Eγ has the dual Markov
property (see [15, Remark 3.9]).
Following [15], we say that f : Ē0,T → R is quasi-integrable if f ∈ B(E0,T ) and

Pz(
∫ ζτ

0 | f |(Xr ) dr < ∞) = 1 for q.e. z ∈ E0,T .
The set of all quasi-integrable functions will be denoted by qL1(E0,T ;m1). Note

that by [15, Remark 5.1], under condition (�), if f satisfies the condition

∀ ε > 0 ∃ Fε ⊂ E0,T , Fε-closed, Cap(E0,T \Fε)

< ε, 1Fε f ∈ L1(E0,T ;m1), (5.1)

then f is quasi-integrable. Also note that by [15, Proposition 3.8], under condition
(�),

M1 ⊂ M.
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We say that a function u : Ē0,T → R is of class (D) if process u(X) is of class
(D), i.e., family {u(Xτ ), τ ≤ ζυ, τ − stopping time} is uniformly integrable under
measure Pz for q.e. z ∈ E0,T .

REMARK 5.1. If Ez |u(Xζυ )| < ∞ for q.e. z ∈ E0,T (this holds for example if
u(T, ·) ∈ L1(E;m), see [15, Proposition 3.8]) and there exists a potential v on Ē0,T

such that |u| ≤ v q.e. on E0,T then u is of class (D). Indeed, let v = R0,Tβ for some
positive β ∈ MT . By [15, Proposition 3.4],

v(Xt ) = v(X0) −
∫ t

0
dAβ

r +
∫ t

0
dMr , t ∈ [0, ζυ ]

for some martingale M . Of course, the process v(X) is of class (D), and |u|(Xt ) ≤
v(Xt ), t ∈ [0, ζυ). Since Ez |u|(Xζυ ) < ∞ for q.e. z ∈ E0,T , it follows that u(X) is
of class (D), too.

Let us consider the following assumptions.

(H1) μ, f (·, 0) · m1 ∈ M, Ez |ϕ(Xζυ )| < ∞ for q.e. z ∈ E0,T ,
(H2) there exists λ ∈ R such that for all y, y′ ∈ R and (t, x) ∈ E0,T ,

( f (t, x, y) − f (t, x, y′))(y − y′) ≤ λ|y − y′|2,

(H3) the mapping y �→ f (t, x, y) is continuous for every (t, x) ∈ E0,T ,
(H4) f (·, y) ∈ qL1(E0,T ;m1) for every y ∈ R,

(H5) h+ is of class (D).

REMARK 5.2. It is an elementary check (see [15, (3.7)]) that Ez |ϕ(Xζυ )| = Ez A
|β|
ζυ

(on E0,T ), where β = δ{T } ⊗ (ϕ ·m), so by [15, Proposition 3.8] under condition (�)

if ϕ ∈ L1(E;m), then Ez |ϕ(Xζυ )| < ∞ for q.e. z ∈ E0,T .

THEOREM5.3. Assume (H2). Then, there exists at most one solution ofOP(ϕ, f +
dμ, h).

Proof. Let (u1, ν1), (u2, ν2) be two solutions of OP(ϕ, f + dμ, h). Set u = u1 − u2,
ν = ν1 − ν2. By the Tanaka–Meyer formula, for any stopping time τ such that τ ≤ ζυ

we have

|u(Xt )| ≤ |u(Xτ )| +
∫ τ

t
( f (r, u1(Xr )) − f (r, u2(Xr )))sgn(u)(Xr ) dr

+
∫ τ

t
sgn(u)(Xr−) dAν

r −
∫ τ

t
sgn(u)(Xr−) dMr , t ∈ [0, τ ]

for q.e. z ∈ E0,T . Observe that by the minimality condition and Proposition 3.9,
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∫ τ

t
sgn(u)(Xr−) dAν

r =
∫ τ

t
1{u �=0}

1

|u|u(Xr−) dAν
r

≤
∫ τ

t
1{u �=0}

1

|u| (u1 − h)(Xr−) dAν1
r

=
∫ τ

t
1{u �=0}

1

|u| (û1(Xr ) − ĥ(Xr )) dA
ν1
r = 0. (5.2)

Let {τk} be a chain (i.e., an increasing sequence of stopping times with the property
Pz(lim infk→∞{τk = T }) = 1, q.e.) such that Mτk is a martingale for each k ≥ 1.
Then, by (H2) and (5.2),

Ez |u(Xt )| ≤ Ez |u(Xτk )| + λEz

∫ τk

t
|u(Xr )| dr. (5.3)

Letting k → ∞ in (5.3) and using the fact that u is of class (D) we get

Ez |u(Xt )| ≤ λEz

∫ ζυ

t
|u(Xr )| dr.

Applying Gronwall’s lemma shows that Ez |u|(Xt )| = 0, t ∈ [0, ζυ ] for q.e. z ∈ E0,T .
This implies that u = 0 q.e. From this, (1.6) and the uniqueness of the Doob–Meyer
decomposition we conclude that Aν = 0, which forces ν = 0. �
THEOREM 5.4. Assume (H1)–(H5). Then, there exists a solution of OP(ϕ, f +

dμ, h).

Proof. By [15, Theorem 5.8], there exists a unique solution un of (1.11). Set

fn(t, x, y) = f (t, x, y) + n(y − h(t, x))−.

By the definition of a solution of (1.11) and [15, Proposition 3.4], there exists a martin-
galeMn such that the pair (un(X), Mn) is a solution ofBSDE(ϕ(Xζυ ), fn(X, ·)+dAμ)

under the measure Pz for q.e. z ∈ E0,T . By [16, Theorem 4.1] (see also [34]), there
exists a solution (Y z, Mz, K z) of RBSDE(ϕ(X), f (X, ·) + dAμ, h(X)) under the
measure Pz for q.e. z ∈ E0,T , and

un(Xt ) ↗ Y z
t , t ∈ [0, ζυ ], Pz-a.s. (5.4)

From (5.4), it follows that un ≤ un+1 q.e. (since the exceptional sets coincide with
the sets of zero capacity) for n ≥ 1 and

Y z
t = u(Xt ), t ∈ [0, ζυ ], Pz-a.s.

for q.e. z ∈ E0,T , where u := supn≥1 un . This implies that u is quasi-càdlàg. What is
left to show that there exists a smooth measure ν such that K z = Aν for q.e. z ∈ E0,T .
Since the pointwise limit of additive functionals is an additive functional, we may
assume by Lemma 4.2 and [16, Theorem 2.13] that EK z

ζυ
< ∞ for q.e. z ∈ E0,T . By

[16, Proposition 4.3] and Theorem 3.6, for every predictable stopping time τ ,

�K z
τ =

(
u(Xτ ) − ĥ(Xτ ) + �Aμ

τ

)−
.
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Hence,

Jt =
∑

s≤t

�K z
t

is a PNAF (without jump in ζυ since ĥ(T, ·) ≤ ϕ), which implies that there exists
β ∈ M such that J = Aβ (by the Revuz duality). Set

Cz
t = K z

t − Aβ
t , t ∈ [0, ζυ ].

It is clear that the process Cz is continuous. By Remark 4.1, the triple (Y z, Mz,Cz)

is a solution of RBSDE(ϕ(X), f (X, ·) + dAμ + dAβ, h(X)). By [15, Theorem 5.8],
there exists a solution vn of the equation

−∂vn

∂t
− Ltvn = fn(·, vn) + μ + β, vn(T, ·) = ϕ.

Therefore, by the definition of solution and [15, Proposition 3.4] there exists a martin-
gale Nn such that the pair (vn(X), Nn) is a solution of BSDE(ϕ(X), fn(X, ·)+dAμ +
dAβ) under the measure Pz for q.e. z ∈ E0,T . Let Cn

t = ∫ t
0 n(vn(Xr ) − h(Xr ))

− dr ,
t ∈ [0, ζυ ]. By [16, Theorem 2.13], the sequence {Cn} converges uniformly on [0, ζυ ]
in probability Pz for q.e. z ∈ E0,T . Since Cn is a PCAF for each n ≥ 1, the process
C defined by

Ct = lim
n→∞Cn

t , t ∈ [0, ζυ ],

is a PCAF. Therefore, there exists a measure α ∈ M such that C = Aα . It is clear that
Cz = Aα for q.e. z ∈ E0,T . Finally, K z = Aν for q.e. z ∈ E0,T , where ν = α+β. �

PROPOSITION 5.5. Assume that ϕi , fi , μi , i = 1, 2, satisfy (H1)–(H4) and h1, h2
are quasi-càdlàg. Let (ui , νi ) be a solution to OP(ϕi , fi + dμi , hi ). Assume that
ϕ1 ≤ ϕ2 m-a.e., f1(·, y) ≤ f2(·, y) m1-a.e. for every y ∈ R, dμ1 ≤ dμ2 and h1 ≤ h2
q.e. Then,

u1 ≤ u2 q.e. on E0,T ,

and if h1 = h2 q.e., then dν1 ≥ dν2.

Proof. By the proof of Theorem 5.4, ui,n ↗ ui q.e., where ui,n is a solution to
PDE(ϕi , fn,i + dμi ) with

fi,n(t, x, y) = fi (t, x, y) + n(y − hi (t, x))
−.

By [15, Corollary 5.9], u1,n ≤ u2,n q.e. Hence, u1 ≤ u2 q.e. As for the second
assertion of the theorem, by Lemma 4.2 we may assume that ν1, ν2 ∈ M. By the proof
of Theorem 5.4,

Aνi
t = Aαi

t + Aβi

t , t ∈ [0, ζυ ], Pz-a.s.
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for q.e. z ∈ E0,T and some positive βi ∈ M, αi ∈ Mc such that Aβi is purely jumping
and

�Aβi
t =

(
ui (Xt ) − ĥ(Xt ) + �Aμi

t

)−
.

We already know that u1 ≤ u2 q.e. Moreover, by the assumptions and Revuz duality,
dAμ1 ≤ dAμ2 . Therefore, dAβ1 ≥ dAβ2 . Furthermore, by the proof of Theorem 5.4,

A
αi,n
t → Aαi

t , t ∈ [0, ζυ ], Pz-a.s.

for q.e. z ∈ E0,T , where αi,n = n(vi,n−h)− ·m1 and vi,n is a solution to PDE(ϕi , fn+
dμi +dβi ). By [15, Corollary 5.9], v1,n ≤ v2,n , which implies that α1,n ≥ α2,n , n ≥ 1.
Consequently, dAα1,n ≥ dAα2,n , n ≥ 1. Hence, dAα1 ≥ dAα2 , so dAν1 ≥ dAν2 , which
implies that dν1 ≥ dν2. �

REMARK 5.6. Let v = R0,Tβ for some β ∈ MT be such that v ≥ h q.e. on E0,T .
By [15, Proposition 3.4],

v(Xt ) = v(X0) −
∫ t

0
dAβ

r +
∫ t

0
dMr , t ∈ [0, ζυ ]

for some martingale M . Let γ = −(h(T, ·) · m) ⊗ δ{T }. Observe that the function
v̄ = E·h(Xζυ ) + R0,T γ + R0,Tβ is equal to v on E0,T . Moreover, v̄(X) satisfies the
same equation as v(X), but on [0, ζυ), and v̄(T, ·) ≥ h(T, ·), from which it follows
that v̄(Xt ) ≥ h(Xt ), t ∈ [0, ζυ ].
We denote byM1,T the set of all finite Borel measures on Ē0,T .

PROPOSITION 5.7. Let the hypotheses (H1)–(H4) hold. Assume that μ ∈ M and
there exists β ∈ MT such that v := R0,Tβ ≥ h on E0,T , and f −(·, v) · m1 ∈
M. Let (u, ν) be a solution of OP(ϕ, f + dμ, h). Then, f (·, u) · m1, ν ∈ M. If we
assume additionally that Eγ has the dual Markov property for some γ ≥ 0 and ϕ ∈
L1(E;m), f (·, 0), f −(·, v) ∈ L1(E0,T ;m1), μ ∈ M1, β ∈ M1,T , then f (·, u) ∈
L1(E0,T ;m1) and ν ∈ M1.

Proof. Assume that μ, f −(·, v) · m1 ∈ M and β ∈ MT . By [16, Theorem 2.13] (see
also Remark 5.6), ν ∈ M. By [15, Theorem 5.4], f (·, u) · m1 ∈ M, which proves the
first part of the proposition. Now, assume that μ, f −(·, v) ·m1 ∈ M1, β ∈ M1,T . Let
v̄ be a solution of PDE(ϕ+, f + f −(·, v) + dμ+ + dβ+) (it exists by [15, Theorem
5.8]). By [15, Corollary 5.9], v̄ ≥ v, and consequently v̄ ≥ h q.e. on E0,T . Observe
that the pair (v̄, f −(·, v) · m + β+) is a solution to OP(ϕ+, f + dμ+, v̄). Hence, by
Proposition 5.5, v̄ ≥ u q.e. on E0,T . On the other hand, by [15, Corollary 5.9], u0 ≤ u
q.e. on E0,T , where u0 is a solution to PDE(ϕ, f + dμ). By [15, Proposition 5.10],
f (·, v̄), f (·, u0), v̄, u0 ∈ L1(E0,T ;m1). Since u0 ≤ u ≤ v̄, thanks to (H2) we have
u, f (·, u) ∈ L1(E0,T ;m1). Let γ = f −(·, v) · m + μ+ + β+. Observe that
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u(z) = Ezϕ(Xζυ ) + Ez

∫ ζυ

0
f (Xr , u(Xr )) dr + Ez

∫ ζυ

0
dAν

r + Ez

∫ ζυ

0
dAμ

r

≤ Ezϕ
+(Xζυ ) + Ez

∫ ζυ

0
f (Xr , v̄(Xr )) dr + Ez

∫ ζυ

0
dAγ

r = v̄(z).

Hence,

Ez

∫ ζυ

0
dAν

r ≤ Ez |ϕ|(Xτυ ) + Ez

∫ ζυ

0
| f (Xr , u(Xr ))| dr

+ Ez

∫ ζυ

0
| f (Xr , v̄(Xr ))| dr + Ez

∫ ζυ

0
dA|μ+γ |

r

for q.e. z ∈ E0,T . By the above inequality and [15, Proposition 3.13],

‖ν‖1 ≤ c
(‖ϕ‖L1 + ‖ f (·, u)‖L1 + ‖ f −(·, v)‖L1 + ‖μ+‖1 + ‖β+‖1

)
,

which completes the proof. �

REMARK 5.8. Observe that under the assumptions of the second assertion of the
above proposition, u ∈ L1(E0,T ;m1). Moreover, by [15, Proposition 5.10],

‖u‖L1 + ‖ f (·, u)‖L1 ≤ c(‖ϕ‖L1 + ‖ f (·, 0)‖L1 + ‖μ‖1 + ‖ν‖1).

6. PDEs with two reflecting barriers

We assume as given T, ϕ, f as in Sect. 5, and quasi-càdlàg functions h1, h2 :
Ē0,T → R such that ĥ1(T, ·) ≤ ϕ ≤ ĥ2(T, ·).
DEFINITION. We say that a pair (u, ν) consisting of a quasi-càdlàg function u :

Ē0,T → R of class (D) and a smooth measure ν on E0,T is a solution of the obstacle
problem with data ϕ, f, μ and barriers h1, h2 (we denote it by OP(ϕ, f +dμ, h1, h2))
if

(a) (1.6) is satisfied for some local martingale M (with M0 = 0),
(b) h1 ≤ u ≤ h2 q.e. on E0,T ,
(c)

∫
(û − ĥ1) dν+ = ∫

(ĥ2 − û) dν− = 0.

PROPOSITION 6.1. Let assumption (H1) hold. Then, there exists at most one
solution of OP(ϕ, f + dμ, h1, h2).

Proof. The proof is analogous to the proof of Theorem 5.3. The only difference is
the estimate of the integral involving dAν . In the present situation, the estimate is as
follows:

∫ τ

t
sgn(u)(Xr−) dAν

r ≤
∫ τ

t
1{u �=0}

1

|u| (u1 − h1)(Xr−) dAν1
r

+
∫ τ

t
1{u �=0}

1

|u| (h2 − u2)(Xr−) dAν2
r
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=
∫ τ

t
1{u �=0}

1

|u| (û1(Xr ) − ĥ1(Xr )) dA
ν1
r

+
∫ τ

t
1{u �=0}

1

|u| (ĥ2(Xr ) − û2(Xr )) dA
ν2
r = 0. (6.1)

�

Consider the following hypothesis:

(H6) h1, h2 are quasi-càdlàg functions of class (D) such that ĥ1(T, ·) ≤ ϕ ≤ ĥ2(T, ·)
and h1 < h2, ĥ1 < ĥ2 q.e. on E0,T , or there exists β ∈ MT such that h1 ≤
R0,Tβ ≤ h2 q.e. on E0,T .

REMARK 6.2. If (H1)–(H4) (H6) are satisfied then the assertion of [16, Theorem
4.2] holds true under measure Pz for q.e. z ∈ E0,T . Indeed, it is clear that (H1)–(H4)
of [16] are satisfied under measure Pz for q.e. z ∈ E0,T . If h1 < h2 and ĥ1 < ĥ2 q.e.
on E0,T , then (since the exceptional sets coincide with the sets of zero capacity) for
q.e. z ∈ E0,T

h1(Xt ) < h2(Xt ), ĥ1(Xt ) < ĥ2(Xt ), t ∈ (0, ζυ), Pz-a.s. (6.2)

Since X has no predictable jumps (as a Hunt process), it follows from (6.2) and
Theorem 3.6 that h1(X)τ− < h2(X)τ− for every predictable stopping time τ with
values in (0, ζυ ]. By this and [34] the assertion of [16, Theorem 4.2] is satisfied under
measure Pz for q.e. z ∈ E0,T . If h1 ≤ R0,Tβ ≤ h2 on E0,T for some β ∈ MT , then
hypothesis (H7) from [16] (with L = h1(X), U = h2(X), X = v(X)) is satisfied
by Remark 5.6 under measure Pz for q.e. z ∈ E0,T , so again the assertion of [16,
Theorem 4.2] holds true.

THEOREM 6.3. Assume that (H1)–(H4), (H6) are satisfied. Then, there exists a
unique solution of OP(ϕ, f + dμ, h1, h2).

Proof. By Remark 6.2, for q.e. z ∈ E0,T there exists a solution (Y z, Mz, Rz) of
RBSDE(ϕ(Xτυ ), f (X, ·) + dAμ, h1(X), h2(X)) under the measure Pz . To prove the
existence of a solution, it suffices to show that there exists a function u and a smooth
measure ν such that Y z = u(X), Rz = Aν for q.e. z ∈ E0,T , because then the pair
(u, ν)will be a solution of OP(ϕ, f +dμ, h1, h2). By [16, Theorem 4.1], for every n ≥
1 there exists a solution (Ȳ n,z, M̄n,z, Ān,z)ofRBSDE(ϕ(Xζυ ), fn(X, ·)+dAμ, h2(X))

with fn defined by

fn(z, y) = f (z, y) + n(y − h1(z))
−.

By Theorem 5.4,

Ȳ n,z = ūn(X), Ān,z = Aγ̄n , (6.3)

where (ūn, γ̄n) is a solution of OP(ϕ, fn + dμ, h2). By (6.3), M̄n,z in fact does not
depend on z. By [16, Theorem 4.2],

Ȳ n,z
t ↗ Y z

t , t ∈ [0, ζυ ].
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Since the exceptional sets coincide with the sets of zero capacity, this implies that
ūn ≤ ūn+1 q.e. for n ≥ 1, and

Y z
t = u(Xt ), t ∈ [0, ζυ ]

for q.e. z ∈ E0,T , where u := supn≥1 ūn . By [16, Theorem 4.2], dAγ̄n ≤ dAγ̄ n+1
,

so A defined as At = limn→∞ Aγ̄n
t , t ≥ 0, is a PNAF. Therefore, there exists a

positive smooth measure γ such that A = Aγ . By [16, Theorem 4.2], Aγ = Rz,−
for q.e. z ∈ E0,T . By Lemma 4.2, without loss of generality we may assume that
Ez

∫ ζυ

0 d|Rz |r < ∞ for q.e. z ∈ E0,T . Observe that the triple (Y z, Mz, Rz,+) is
a solution of OP(ϕ, f + dμ + dγ, h1). Therefore, by Theorem 5.4, there exists a
positive smooth measure α such that Rz,+ = Aα for q.e. z ∈ E0,T , which completes
the proof. �
PROPOSITION 6.4. Let the hypotheses (H1)–(H4) and (H6) with some measure

β ∈ MT hold. Assume that f (·, v) · m1 ∈ M with v = R0,Tβ, and that μ ∈ M.
Then, f (·, u) · m1, ν ∈ M. If, in addition, Eγ has the dual Markov property for some
γ ≥ 0, and ϕ ∈ L1(E;m), f (·, 0), f (·, v) ∈ L1(E0,T ;m1), μ ∈ M1, β ∈ M1,T ,
then f (·, u) ∈ L1(E0,T ,m1), ν ∈ M1.

Proof. If f (·, v) · m1, μ ∈ M, then ν ∈ M by [16, Theorem 3.3] (see also Remark
5.6). Hence, by [15, Theorem 5.4], f (·, u) · m1 ∈ M. Assume that Eγ has the dual
Markov property for some γ ≥ 0, and that f (·, 0), f (·, v) ∈ L1(E0,T ;m1), μ ∈ M1,
β ∈ M1,T . Let (v̄, ν̄) be a solution to OP(ϕ+, f + f −(·, v) + dβ+ + dμ+, h2). By
Proposition 5.5, v̄ ≥ v q.e. on E0,T (since (v, 0) is a solution to OP(0, f − f (·, v) +
dβ, v)). Let (ūn, γ̄n) be a solution to OP(ϕ, fn + dμ, h2) with

fn(z, y) = f (z, y) + n(y − h1(z))
−.

By the proof of Theorem 6.3, ūn ↘ u and Aγ̄n
t ↗ Aν−

t , t ∈ [0, ζυ ], Pz-a.s. for q.e.
z ∈ E0,T . Since v̄ ≥ v, we have v̄ ≥ h1 q.e. on E0,T . Therefore, f (·, v) = fn(·, v),
and in fact, (v̄, ν̄) is a solution to OP(ϕ+, fn + f −(·, v) + dβ+ + dμ+, h2). Hence,
by Proposition 5.5,

γ̄n ≤ ν̄.

By the Revuz duality, Aγ̄n
t ≤ Aν̄

t , which when combined with the convergence of
{Aγ̄n } implies that Aν−

t ≤ Aν̄
t , t ∈ [0, ζυ ], Pz-a.s. for q.e. z ∈ E0,T . Consequently,

ν− ≤ ν̄. By Proposition 5.7, ν̄ ∈ M1. Hence, by [15, Proposition 3.13], ν− ∈ M1.
Since the pair (u, ν+) is a solution of OP(ϕ, f +dμ−dν−, h1), applying Proposition
5.7 yields ν+ ∈ M1. This completes the proof. �
REMARK 6.5. Under (H1)–(H4), (H6) and the assumptions of the second assertion

of Proposition 6.4,

‖u‖L1 + ‖ f (·, u)‖L1 ≤ c(‖μ‖1 + ‖ϕ‖L1 + ‖ν‖1 + ‖ f (·, 0)‖L1).

This follows from Proposition 6.4 and [15, Proposition 5.10].
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REMARK 6.6. Let v be a difference of potentials on Ē0,T , i.e., v = R0,Tβ for some
β ∈ MT . Observe that if a pair (ū, ν̄) is a solution ofOP(ϕ, fv+dμ−dβ, h1−v, h2−v)

with

fv(z, y) = f (z, v + y),

then (u, ν) = (ū + v, ν̄) is a solution of OP(ϕ, f + dμ, h1, h2). It follows that the
assumption f (·, 0) · m1 ∈ M in Theorems 5.4 and 6.3 may be replaced by more
general assumption saying that there exists a function v which is a difference of
potentials on Ē0,T such that f (·, v) · m1 ∈ M. Similarly, counterparts of the results
stated in Propositions 5.7, 6.4 and Remarks 5.8 and 6.5 hold true under the assumption
f (·, v) ·m1 ∈ M. To get appropriate modifications of these results, we first apply them
to the pair (ū, ν̄), and next we use the fact that (ū, ν̄) = (u − v, ν).

In condition (b) of the definition of the obstacle problem given at the beginning of
this section, we require that the solution lies q.e. between the barriers. Below we show
that if we weaken (b) and require only that this property holds a.e., then our results also
apply to measurable barriers h1, h2 satisfying the following condition: There exits v

of the form v = R0,Tβ with β ∈ MT (i.e., v is a difference of potentials) such that
h1 ≤ v ≤ h2 m1-a.e. (in case of one barrier h it is enough to assume that h+ is of
class (D)).
Before presenting our results for measurable barriers, we give a definition of a

solution.

DEFINITION. We say that a pair (u, ν) consisting of a quasi-càdlàg function u :
Ē0,T → R of class (D) and a smooth measure ν on Ē0,T is a solution of the obstacle
problem with data ϕ, f, μ and measurable barriers h1, h2 : Ē0,T → R if

(a) (1.6) is satisfied for some local martingale M (with M0 = 0),
(b*) h1 ≤ u ≤ h2 m1-a.e. on E0,T ,
(c*)

∫
(û − η̂1) dν+ = ∫

(η̂2 − û) dν− = 0 for all quasi-càdlàg η1, η2 such that
h1 ≤ η1 ≤ u ≤ η2 ≤ h2 m1-a.e.

If the barriers are quasi-càdlàg, then the above definition agrees with the definition
given at the beginning of Sect. 6, because for quasi-càdlàg functions condition (b*)
is equivalent to (b) and in (c*) we may take η1 = h1 and η2 = h2. Therefore, the
obstacle problem with data ϕ, f, μ and measurable barriers h1, h2 we still denote by
OP(ϕ, f + dμ, h1, h2).
In case of measurable barriers the proof of uniqueness of solutions to the problem

OP(ϕ, f +dμ, h1, h2) goes as in the case of quasi-càdlàg barriers, the only difference
being in the fact that in (6.1) we replace h1 by u1 ∧ u2 and h2 by u1 ∨ u2, and then
we apply (c*).
The problem of existence of a solution is more delicate. Observe that if (u, ν) is

a solution to OP(ϕ, f + dμ, h1, h2) with measurable barriers h1 and h2, then it is a
solution to OP(ϕ, f +dμ, η1, η2)with η1, η2 as in condition (c*). It appears that under
the additional assumption on barriers (mentioned before the last definition) one can
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construct quasi-càdlàg η1, η2 such that if (u, ν) is a solution to OP(ϕ, f +dμ, η1, η2),
then it is a solution to OP(ϕ, f + dμ, h1, h2). This shows that as long as we only
require (b∗), the study of the obstacle problemwithmeasurable barriers can be reduced
to the study of the obstacle problem with quasi-càdlàg barriers. Finally, note that,
unfortunately, there is no construction of η1, η2 depending only on h1 and h2 (the
barriers η1, η2 depend also on ϕ, f, μ). The reason is that the class of càdlàg functions
is neither inf-stable nor sup-stable.
Let L ,U be measurable adapted processes (L ≤ U ). Following [16] we say that

a triple of processes (Y, M, R) is a solution of the reflected BSDE with terminal
condition ξ , right-hand side f + dV , lower barrier L and upper barrier U if

(a) Y is an F-adapted càdlàg process of class (D), M ∈ M0,loc, R ∈ pV ,
(b*) Lt ≤ Yt ≤ Ut P-a.s. for a.e. t ∈ [0, T ],
(c*)

∫ T
0 (Yt−−H1

t−) dR+
t = ∫ T

0 (H2
t−−Yt−) dR−

t = 0 P-a.s. for all càdlàg processes
H1, H2 such that Lt ≤ H1

t ≤ Yt ≤ H2
t ≤ Ut P-a.s. for a.e. t ∈ [0, T ],

(d) [0, T ] � t �→ f (t,Yt ) ∈ L1(0, T ) and

Yt = ξ +
∫ T

t
f (r,Yr ) dr +

∫ T

t
dVr +

∫ T

t
dRr −

∫ T

t
dMr , t ∈ [0, T ], P-a.s.

It is obvious that for càdlàg barriers the above definition agrees with the definition
given in Sect. 4. We see that (u, ν) is a solution to OP(ϕ, f +dμ, h1, h2) if and only if
(u(X), Aν, M) is a solution to RBSDE(ϕ(Xζυ ), f (X, ·) + dAμ, h1(X), h2(X)) under

the measure Pz for q.e. z ∈ E0,T (because m(A) = 0 if and only if Ez
∫ ζυ

0 1A(X) = 0
for q.e. z ∈ E0,T , q.e., and the last condition is satisfied if and only if for q.e. z ∈ E0,T

we have 1A(Xt ) = 0 Pz-a.s. for a.e. t ∈ [0, ζυ ]).
PROPOSITION 6.7. Assume that (H1)–(H4) are satisfied and h1, h2 are measur-

able functions such that h1 ≤ v ≤ h2 m1-a.e. for some function v being a differ-
ence of potentials on Ē0,T . Then, there exist quasi-càdlàg functions η1, η2 such that
h1 ≤ η1 ≤ v ≤ η2 ≤ h2 m1-a.e., and moreover, having the property that if (u, ν) is a
solution to OP(ϕ, f + dμ, η1, η2), then (u, ν) is a solution to OP(ϕ, f + dμ, h1, h2).

Proof. By Remark 6.2, for q.e. z ∈ E0,T there exists a unique solution (Y z, Mz, Rz)

to RBSDE(ϕ(Xζυ ), f (X, ·) + dAμ, h1(X), h2(X)) under the measure Pz . By [16,
Theorem 4.2],

Y z,n
t → Y z

t , t ∈ [0, ζυ ], Pz-a.s.

for q.e. z ∈ E0,T , where (Y z,n, Mz,n) is a solution to BSDE(ϕ(Xζυ ), fn(X, ·)+ dAμ)

with

fn(z, y) = f (z, y) + n(y − h1(z))
− − n(y − h2(z))

+.

By [15, Theorem 5.8], Y z,n
t = un(Xt ), t ∈ [0, ζυ ], Pz-a.s. for q.e. z ∈ E0,T , where

un is a solution to PDE(ϕ, fn + dμ). Let w := supn≥1 un . It is clear that

w(Xt ) = Y z
t , t ∈ [0, ζυ ], Pz-a.s.



706 T. Klimsiak J. Evol. Equ.

for q.e. z ∈ E0,T . Write η1 = w ∧ v, η2 = w ∨ v and denote by (u, ν) a solution to
OP(ϕ, f +dμ, η1, η2). Then, (u(X), M, Aν) is a solution toRBSDE(ϕ(Xζυ ), f (X, ·)+
dAμ, η1(X), η2(X)). Since (Y z, Mz, Rz) is a solution to the same equation (since
η1(Xt ) ≤ Y z

t ≤ η2(Xt ), t ∈ (0, ζυ)), we have (Y z, Mz, Rz) = (u(X), M, Aν) for
q.e. z ∈ E0,T , which implies that (u, ν) is a solution to OP(ϕ, f + dμ, h1, h2). �

COROLLARY 6.8. Under the assumptions of Proposition 6.7, there exists a unique
solution (u, ν) to OP(ϕ, f + dμ, h1, h2).

7. Switching problem

Wefirst describe informally the switching problem. Precise definitions will be given
later on. Consider a factory in which we can change a mode of production. Let c j,i (X)

be the cost of the change from mode j ∈ {1, . . . , N } to mode i from some set A j ⊂
{1, . . . , j − 1, j + 1, . . . , N }, and let f i (X) + dAμi

be the payoff rate in mode i .
Then a management strategy S = ({τn}, {ξn}) consists of a pair of two sequences of
random variables. The variable τn is the moment when we decide to switch the mode
of production, and ξn is the mode to which we switch at time τn . If ξ0 = j , then we
start the production at mode j . If ξ0 = j , then under strategy S the expected profit on
the interval [0, ζυ ] is given by the formula

J (z,S, j) = Ez

( ∫ ζυ

0
f w

j
r (Xr ) dr +

∫ ζυ

0
dAμw

j
r

r

−
∑

n≥1

c
w

j
τn−1 ,w

j
τn

(Xτn )1{τn<ζυ } + ϕ
w

j
ζυ (Xζυ )

)
, (7.1)

where

w
j
t = j1[0,τ1)(t) +

∑

n≥1

ξn1[τn ,τn+1)(t).

The main problem is to find an optimal strategy, i.e., the strategy S∗ such that

J (x,S∗, j) = sup
S

J (x,S, j).

In this section, we show thatS∗ exists andS∗, J (z,S∗, j) are determined by a solution
of the system (1.14)–(1.16).

7.1. Systems of BSDEs with oblique reflection

In what follows, N ∈ N, ξ = (ξ1, . . . , ξ N ) is an FT -measurable random vector,
V = (V 1, . . . , V N ) is an F-adapted process such that V0 = 0 and each component
V j is a càdlàg process of finite variation, f : ×[0, T ]×R

N → R
N is a measurable

function such that for every y ∈ R
N the process f (·, y) isF-progressivelymeasurable.

Consider a family {h j,i ; i, j = 1, . . . , N } of measurable functions h j,i : ×[0, T ]×
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R → R such that h j,i (·, yi ) is progressively measurable for every y ∈ R. For given
sets A j ⊂ {1, . . . , j − 1, j + 1, . . . , N }, j = 1, . . . , N , we set

H j (t, y) = max
i∈A j

h j,i (t, yi ),

H(t, y) = (H1(t, y), . . . , HN (t, y)), t ∈ [0, T ], y ∈ R
N .

We consider the following system of BSDEs with oblique reflection:

⎧
⎪⎨

⎪⎩

Y j
t = ξ j + ∫ T

t f j (r,Yr ) dr + ∫ T
t dVr + ∫ T

t dK j
r − ∫ T

t dM j
r , t ∈ [0, T ],

Y j
t ≥ H j (t,Yt ), t ∈ [0, T ],

∫ T
0

(
Y j
t− − [H j (·,Y )]t−

)
dK j

t = 0, j = 1, . . . , N .

(7.2)

DEFINITION. We say that a triple (Y, M, K ) of adapted càdlàg processes is a
solution of BSDE with oblique reflection (7.2) if Y is of class (D), M is a local
martingale with M0 = 0, K is an increasing process with K0 = 0 and (7.2) is
satisfied.

If A j = ∅, then by convention, H j = −∞, so Y j has no lower barrier. We then
take K j = 0 in the above definition.

7.2. Systems of quasi-variational inequalities

Fix N ≥ 1. Let μ j , j = 1, . . . , N , be smooth measures on E0,T , and let ϕ j : E →
R, f j : Ē0,T × R

N → R, h j,i : Ē0,T × R → R, i, j = 1, . . . , N , be measurable
functions. We set

f j (z, y; a) = f j (z, y1, . . . , y j−1, a, y j+1, . . . , yN
)
, y ∈ R

N , a ∈ R,

and for given sets A j ⊂ {1, . . . , j − 1, j + 1, . . . , N }, j = 1, . . . , N , we set

H j (z, y) = max
i∈A j

h j,i (z, yi ), H(z, y) =
(
H1(z, y), . . . , HN (z, y)

)
,

z ∈ Ē0,T , y ∈ R
N .

We adopt the convention that the maximum over the empty set equals −∞. Conse-
quently, if A j = ∅ for some j , then H j (z, y) = −∞.
Set

ϕ = (ϕ1, . . . , ϕN ), f = ( f 1, . . . , f N ), μ = (μ1, . . . , μN ),

and consider the following system of equations:

− ∂u j

∂t
− Ltu

j = f j (t, x, u) + μ j in E0,T , u j (T, ·) = ϕ j on E (7.3)

for j = 1. . . . , N . In the sequel, we denote (7.3) by PDE(ϕ, f + dμ).
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DEFINITION. We say that measurable function u = (u1, . . . , uN ) : Ē0,T → R
N

is a subsolution (resp. supersolution) of PDE(ϕ, f +dμ) if there exist positivemeasures
β j ∈ M and ϕ ≤ ϕ, ϕ · m ⊗ δ{T } ∈ MT (resp. ϕ ≥ ϕ, ϕ · m ⊗ δ{T } ∈ MT ) such

that u j is a solution of PDE(ϕ j , f j + dμ j − dβ j ) (resp. PDE(ϕ j , f j + dμ j + dβ j )),
j = 1, . . . , N .

DEFINITION. We say that a quasi-càdlàg function u = (u1, . . . , uN ) : Ē0,T →
R

N is a solution of (1.14)–(1.16) if there exist positive smooth measures ν j on E0,T

such that (u j , ν j ) is a solution of OP(ϕ j , f j (·, u; ·)+dμ j , H j (·, u)), j = 1, . . . , N .

Let us consider the following hypotheses:

(A1) μ, ϕ · m ⊗ δ{T } ∈ MT ,
(A2) for j = 1, . . . , N the function is a �→ f j (z, y; a) is nonincreasing for all

z ∈ E0,T , y ∈ R
N ,

(A3) f is off-diagonal nondecreasing, i.e., for j = 1, . . . , N we have f j (z, y) ≤
f j (z, ȳ) for all y, ȳ ∈ R

N such that y ≤ ȳ and y j = ȳ j ,
(A4) y �→ f (z, y) is continuous for every z ∈ E0,T ,
(A5) f j (·, y) ∈ qL1(E0,T ;m) for all y ∈ R

N , j = 1, . . . , N ,
(A6) there exists a subsolution u and a supersolution u of PDE(ϕ, f +dμ) such that

u ≤ u, H(·, u) ≤ u,

N∑

j=1

(| f j (·, u)| + | f j (·, u; u j )|) · m1 ∈ M,

(A7) H j is continuous on Ē0,T ×R
N with the product topology consisting of quasi-

topology on Ē0,T and Euclidean topology on R
N , and h j,i , i, j = 1, . . . , N ,

are nondecreasing with respect to the second variable.

THEOREM 7.1. Let the assumptions (A1)–(A7) hold. Then, there exists a minimal
solution of (1.14)–(1.16) such that u ≤ u ≤ u.

Proof. First observe that the data f (X, ·), H j (X, ·), ξ := ϕ(Xζυ ),Y := u(X), Y :=
u(X), V = Aμ satisfy the assumptions of [18, Theorem 3.11] under the measure Pz
for q.e. z ∈ E0,T . Set u0 = u and Y 0 = Y . By Theorem 5.4 (see also Remark 6.6),
for every n ≥ 1,

u j
n(Xt ) = Yn, j

t , Aνn
t = Kn, j

t ,

where (u j
n, ν

j
n ) is a solution of OP(ϕ j , f j (·, un−1; ·)+μ j , H j (·, un−1)) and the triple

(Yn, j , Kn, j , Mn, j ) is a solution of RBSDE(ξ j , f j (X,Yn−1; ·)+dV j , H j (·,Yn−1)).
By Proposition 5.5, un ≤ un+1 q.e. Set u := supn≥0 un . By [18, Theorem 3.11],

Yn, j
t ↗ Yt , t ∈ [0, ζυ ], Pz-a.s.

for q.e. z ∈ E0,T , where (Y, M, K ) is the minimal solution of (7.2) such that Y ≤
Y ≤ Y . Hence, since the exceptional sets coincide with the sets of zero capacity, we
have

u j (Xt ) = Y j
t , t ∈ [0, ζυ ], Pza.s.
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for q.e. z ∈ E0,T . We see that the triple (Y j , M j , K j ) is a solution to the problem

RBSDE(ϕ j (Xζυ ), f j (X, u(X); ·)+dAμ j
, H j (·, u(X))). ByTheorem5.4, K j = Aν j

,
where (u j , ν j ) is a solution to OP(ϕ j , f j (·, u; ·) + dμ j , H j (·, u)), j = 1, . . . , N ,
which implies that the pair (u, ν) is a solution of (1.14)–(1.16).Minimality of u follows
from the minimality of Y . �

REMARK 7.2. Let u be the minimal solution of Theorem 7.1. Observe that under
assumptions of Theorem 7.1 f j (·, u) · m1 ∈ M and ν j ∈ M, j = 1, . . . , N . Indeed,
first observe that ū j ≥ H j (·, u) and

f j (·, ū) ≤ f j (·, u; ū) ≤ f j (·, u; ū). (7.4)

Since u j is a solution of OP(ϕ j , f j (·, u; ·) + dμ j , H j (·, u)), j = 1, . . . , N we
get the result by Remark 6.6. Moreover, if we assume that Eγ has the dual Markov
property for some γ ≥ 0, assumptions (A1), (A6) are satisfied with M replaced by
M1 and the measures β j appearing in the definition of the supersolution u belong
to M1. Then by Remark 6.6 under assumptions of Theorem 7.1 ν j ∈ M1, and
f j (·, u) ∈ L1(E0,T ;m1), j = 1, . . . , N .

Let us consider the following hypothesis:

(A8) there exists a subsolution u and a supersolution u of PDE(ϕ, f + dμ) and a
function v = (v1, . . . , vN ) which is a difference of potentials on Ē0,T such that

N∑

j=1

(| f j (·, u; v j )| + | f j (·, u; v j )|) · m1 ∈ M.

PROPOSITION7.3. Let assumptions (A1)–(A5), (A8) hold. Then, there existsmin-
imal solution u of PDE(ϕ, f + dμ) such that u ≤ u ≤ u q.e.

Proof. Observe that f (X, ·), Y := u(X), Y := u(X), S = v(X) (see Remark 5.1),
V = Aμ, ξ := ϕ(Xζυ ) satisfy the assumptions of [18, Theorem 2.12] under the

measure Pz for q.e. z ∈ E0,T . Set u0 = u. By [15, Theorem 5.8], Yn, j = u j
n(X),

where u j
n is a solution of PDE(ϕ, f j (·, un−1; ·) + dμ j ) and (Yn, j , Mn, j ) is a so-

lution of BSDE(ξ j , f j (X,Yn−1; ·) + dV j ), j = 1, . . . , N . By [15, Corollary 5.9]
un ≤ un+1 q.e. Set u = supn≥1 un . By [18, Theorem 2.12], it follows that Yn

t ↗
Yt , t ∈ [0, ζυ ], Pz-a.s. for q.e. z ∈ E0,T , where (Y, M) is a minimal solution of
BSDE(ϕ(Xζυ ), f (X, ·) + dAμ) such that u(X) ≤ Y ≤ u(X). Hence, (since the ex-
ceptional sets coincide with the sets of zero capacity) u(Xt ) = Yt , t ∈ [0, ζυ ], Pz-a.s.
for q.e. z ∈ E0,T , which implies that u is the minimal solution of PDE(ϕ, f + dμ)

such that u ≤ u ≤ u q.e. �

THEOREM 7.4. Assume (A1)–(A7). Then, there exists minimal solution un of the
system

− ∂un
∂t

− Ltu
j
n = f j (·, un) + n(u j

n − H j (·, un))− + μ (7.5)
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such that u ≤ un ≤ u. Moreover, un ↗ u q.e., where u is minimal solution of
(1.14)–(1.16) such that u ≤ u ≤ u.

Proof. Observe that u is a supersolution of (7.5), and u is a subsolution of (7.5).
Moreover, (A8) for (7.5) is satisfied with v = u. By Proposition 7.3, there exists
a minimal solution un of (7.5). By the definition and construction of minimal solu-
tion to (7.5) (see Proposition 7.3) and minimal solution to BSDE(ϕ(Xζυ ), fn(X, ·) +
dAμ) (see [18, Theorem 2.12]), un(X) is the first component of minimal solution of
BSDE(ϕ(Xζυ ), fn(X, ·) + dAμ) with f j

n (z, y) = f j (z, y) + n(y j − H j (z, y))−. By
[18, Theorem 3.15], the sequence {un(X)} is nondecreasing and un(X)t ↗ Yt , t ∈
[0, ζυ ], Pz-a.s. for q.e. z ∈ E0,T , where Y is the first component of the minimal so-
lution (Y, M, K ) of (7.2) such that u(X) ≤ Y ≤ u(X). Since the sets coincide with
the sets of zero capacity un ≤ un+1, q.e. on E0,T . Let u := supn≥1 un . It is clear that
Yt = u(Xt ), t ∈ [0, ζυ ], Pz-a.s. for q.e. z ∈ E0,T . Now we see that (Y j , M j , K j ) is a

solution to RBSDE(ϕ j (Xζυ ), f j (X, u(X); ·)+ dAμ j
, H j (·, u(X))). By Theorem 5.4

K j = Aν j
, where (u j , ν j ) is a solution to OP(ϕ j , f j (·, u; ·) + dμ j , H j (·, u)), j =

1, . . . , N . This implies that (u, ν) is the minimal solution of (1.14)–(1.16) such that
u ≤ u ≤ u. Of course, un ↗ u q.e. �

7.3. Value function for the switching problem

In what follows, we assume that H j are of the form

H j (z, y) = max
i∈A j

(
− c j,i (z) + yi

)
, (7.6)

where c j,i are quasi-continuous functions on E0,T such that for some constant c > 0,

c j,i (z) ≥ c, z ∈ E0,T , i ∈ A j , j = 1, . . . , N .

By a strategy, we call a pair S = ({ξn}, {τn}) consisting of a sequence {τn, n ≥ 1}
of increasing F-stopping times such that

Pz (τn < ζυ, ∀ n ≥ 1) = 0

for q.e. z ∈ E0,T , and a sequence {ξn, n ≥ 1} of random variables taking values in
{1, . . . , N } such that ξn is Fτn -measurable for each n ≥ 1. The set of all strategies we
denote by A. For S ∈ A, we set

w
j
t = j1[0,τ1)(t) +

∑

n≥1

ξn1[τn ,τn+1)(t).

REMARK 7.5. In Theorem 7.3, assume additionally that μ ∈ Mc, h j,i are strictly
increasing with respect to y, and that the following condition considered in [11] is
satisfied:
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(A9) there are no (y1, . . . , yk) ∈ R
k and j2 ∈ A j1 , . . . , jk ∈ A jk−1 , j1 ∈ A jk such

that

y1 = h j1, j2(z, y2), y2 = h j2, j3(z, y3), . . . , yk−1 = h jk−1, jk (z, yk), yk = h jk , j1(z, y1).

Then, ν ∈ Mc and u is quasi-continuous. This follows from [18, Remark 3.14].
Observe that (A9) is satisfied for h j,i defined by (7.6).

THEOREM 7.6. Assume that f does not depend on y, the functions H j are of the
form (7.6) and f j · m1, μ

j ∈ M, j = 1, . . . , N. Then, there exists a unique solution
u of (1.14)–(1.16). Moreover,

u j (z) = sup
S∈A

J (z,S, j)

and

u j (z) = Ez

( ∫ ζυ

0
f w

j,∗
r (Xr ) dr +

∫ ζυ

0
dAμw

j,∗
r

r

−
∑

n≥1

c
w

j,∗
τn−1 ,w

j,∗
τn

(Xτn )1{τn<ζυ } + ϕ
w

j,∗
ζυ (Xζυ )

)
,

where

w
j,∗
t = j1[0,τ j,∗

1 )
(t) +

∑

n≥1

ξ
j,∗
n 1[τ j,∗

n ,τ
j,∗
n+1)

(t)

and

τ
j,∗
0 = 0, ξ

j,∗
0 = j,

τ
j,∗
k = inf

{
t ≥ τ

j,∗
k−1 : uξ

j,∗
k−1(Xt ) = H ξ

j,∗
k−1(Xt , u(Xt ))

}
∧ ζυ, k ≥ 1,

ξ
j,∗
k = max

{
i ∈ A

ξ
j,∗
k−1

; H ξ
j,∗
k−1

(
X

τ
j,∗
k

, u
(

X
τ
j,∗
k

))
= −c

ξ
j,∗
k−1,i

(
X

τ
j,∗
k

)
+ ui (X

τ
j,∗
k

)
}

,

k ≥ 1.

Proof. Follows from Proposition 7.3, Remark 7.5 and [18, Theorem 4.3]. �
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Śniadeckich 8
00-956 Warsaw
Poland
E-mail: tomas@mat.umk.pl

and

Faculty of Mathematics and
Computer Science
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń
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