
Obstacle Tower: A Generalization Challenge in Vision, Control, and Planning

Arthur Juliani1∗ , Ahmed Khalifa2 , Vincent-Pierre Berges1 , Jonathan Harper1 ,

Ervin Teng1 , Hunter Henry1 , Adam Crespi1 , Julian Togelius2 and Danny Lange1

1Unity Technologies
2New York University

{arthurj, vincentpierre, jharper, ervin, brandonh, adamc, dlange}@unity3d.com,
ahmed@akhalifa.com, julian@togelius.com

Abstract

The rapid pace of recent research in AI has been
driven in part by the presence of fast and chal-
lenging simulation environments. These environ-
ments often take the form of games; with tasks
ranging from simple board games, to competitive
video games. We propose a new benchmark - Ob-
stacle Tower: a high fidelity, 3D, 3rd person, proce-
durally generated environment 1. An agent playing
Obstacle Tower must learn to solve both low-level
control and high-level planning problems in tandem
while learning from pixels and a sparse reward sig-
nal. Unlike other benchmarks such as the Arcade
Learning Environment, evaluation of agent perfor-
mance in Obstacle Tower is based on an agent’s
ability to perform well on unseen instances of the
environment. In this paper we outline the envi-
ronment and provide a set of baseline results pro-
duced by current state-of-the-art Deep RL methods
as well as human players. These algorithms fail to
produce agents capable of performing near human
level.

1 Introduction

It is crucial for the development of artificial intelligence meth-
ods to have good benchmark functions, so that the perfor-
mance of different methods can be fairly and easily com-
pared. For tree search and reinforcement learning methods,
the benchmarks of choice have often been based on games.
Classic board games such as Checkers and Chess were promi-
nent in AI research since its inception and spurred the de-
velopment of many important techniques; for example, the
first reinforcement learning algorithm was developed to play
Checkers [Samuel, 1959].

In the last two decades, video games have increasingly
been used as AI benchmarks. In contrast to classic board
games, video games require more frequent decision making,
often in real-time settings, and additionally define more com-
plex state spaces. They may or may not also have some
combination of hidden information, stochasticity, complex

∗Corresponding Author
1https://github.com/Unity-Technologies/obstacle-tower-env

interaction rules, and large branching factors. A number
of benchmarks focus on classic 2D arcade games, as well
as first-person shooters and racing games. These games all
have limited branching factors, and the benchmarks built on
them either make a low-dimensional processed observation
of the environment available to the agent, or a fast forward
model which allows for forward planning. This includes
benchmarks based on Super Mario Bros [Karakovskiy and
Togelius, 2012], Minecraft [Johnson et al., 2016], and Pac-
Man [Rohlfshagen et al., 2018]. The General Video Game AI
competition is a special case of this, where agents are tasked
with playing unseen 2D arcade-style games [Perez-Liebana
et al., 2016].

A new generation of video game-based AI benchmarks do
not provide agents with processed representations of the envi-
ronment, but instead forces them to act based on the raw pix-
els, i.e. the screen output. The popularity of such benchmarks
go hand-in-hand with the advent of reinforcement learning
using deep neural networks as function approximators, so
called deep reinforcement learning, as these deep networks
are capable of processing high-dimensional input such as
screen images. In particular, the Arcade Learning Environ-
ment (ALE), which is based on an emulation of the Atari
2600 video game console, became one of the more widely
used reinforcement learning benchmark after it was demon-
strated that Deep Q-learning could learn to play many of these
games at a human-competitive level [Bellemare et al., 2013;
Mnih et al., 2015].

The Atari 2600, on which ALE is based, is a very lim-
ited machine. It has 128 bytes of RAM, no video memory
and games are typically 2 or 4 kilobytes of ROM; screen
output is low-resolution 2D graphics. The lack of a sys-
tem clock for seeding a pseudorandom number generator
means that all games are deterministic. Having variabil-
ity in the challenge, ideally through some kind of proce-
dural content generation, is important for avoiding over-
fitting in reinforcement learning, and being able to evalu-
ate what many AI researchers are actually interested in -
agent generalization [Cobbe et al., 2018; Zhang et al., 2018;
Justesen et al., 2018]. Arguably, targeting generalization is
necessary in order to make progress on artificial general in-
telligence, rather than just solving individual problems.

Recognizing these limitations, several game-based AI en-
vironments featuring raw pixel inputs have been proposed.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2684



Figure 1: Examples of agent observations in the Obstacle Tower at different floor levels. [Left] Early floor is rendered in the Ancient theme.
[Middle] Intermediate floor is rendered using the Moorish theme. [Right] Later floor is rendered in Industrial theme.

Figure 2: Examples of floor layouts in the Obstacle Tower at different floor levels. [Left] Early floor is rendered in the Ancient theme.
[Middle] Intermediate floor is rendered using the Moorish theme. [Right] Later floor is rendered in Industrial theme.

The VizDoom competition and benchmark, based on the
classic first-person shooter Doom is a prominent exam-
ple [Kempka et al., 2016]. While it features a first-person per-
spective and complex gameplay, the age of the game means
that the graphics are relatively primitive. Furthermore, the
only kind of randomization is in enemy movement and item
spawning, as the level topologies are fixed. Other recently
introduced game-based AI benchmarks, such as the OpenAI
Retro Challenge [Nichol et al., 2018], CoinRun [Cobbe et al.,
2018], and Pommerman [Resnick et al., 2018] all feature var-
ious kinds of environment randomization. They are however
limited to providing 2D environment representation and only
simple navigation challenges.

Obstacle Tower was developed specifically to overcome
the limitations of previous game-based AI benchmarks, offer-
ing a broad and deep challenge, the solving of which would
imply a major advancement in reinforcement learning. In
brief, the features of Obstacle Tower are:

High visual fidelity. The environment is rendered in 3D us-
ing real-time lighting and shadows, along with much more
detailed textures and model than previous benchmarks. See
Figure 1 for examples of the agents perspective.

Procedurally generated floors and rooms. Navigating the
game requires both dexterity and planning, and the floors
within the environment are procedurally generated, making
generalization a requirement to perform well during evalua-
tion. See Figure 2 for examples of floor layouts of various
levels of the Obstacle Tower.

Physics-driven interactions. The movement of the agent
and other objects within the environment are controlled by a

real-time 3D physics system.

Procedurally generated visuals. There are multiple levels
of variation in the environment, including the textures, light-
ing conditions, and object geometry. Therefore agents must
be able to generalize their understanding of objects’ appear-
ance.

2 Obstacle Tower Environment

Obstacle Tower provides recognizable and configurable ob-
servation spaces, action spaces, and reward functions. The
environment itself relies heavily on procedural generation at
multiple levels of interaction. To accommodate this, we pro-
pose a set of novel evaluation criteria specifically targeted at
generalization, as well as outline the additional value pro-
vided by these design choices.

2.1 Environment Specifications

The Obstacle Tower environment uses the Unity platform and
ML-Agents Toolkit [Juliani et al., 2018]. It can run on the
Mac, Windows, and Linux platforms, and can be controlled
via the OpenAI Gym interface for easy integration with exist-
ing DeepRL training frameworks [Brockman et al., 2016].

Episode Dynamics

The Obstacle Tower environment consists of up to 100 floors,
with the agent starting on floor zero. All floors of the environ-
ment are treated as a single finite episode in the RL context.
Each floor contains at the least a starting and ending room.
Each room can contain a puzzle to solve, enemies to defeat,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2685



obstacles to evade, or a key to open a locked door. The lay-
out of the floors and the contents of the rooms within each
floor becomes more complex at higher floors in the Obsta-
cle Tower, providing a natural curriculum for learning agents.
Within an episode, it is only possible for the agent to go to
higher floors of the environment, and not to return to lower
floors.

The episode terminates when the agent collides with a haz-
ard such as a pit or enemy, when the timer runs out, or when
the agent arrives at the top floor of the environment. The
timer is set at the beginning of the episode, and completing
floors as well as collecting time orbs increase the time left to
the agent. In this way a successful agent must learn a behav-
ior which is a trade off between collecting orbs and quickly
completing floors of the tower in order to arrive at the higher
floors before the timer ends.

Observation Space

The observation space of the agent consists of two types of
information. The first type of observation is a rendered pixel
image of the environment from a third person perspective.
This image is rendered in 168× 168 RGB, and can be down-
scaled to 84 × 84. The second type of observation is a vec-
tor of auxiliary variables which describe relevant, non-visual
information about the state of the environment. The ele-
ments which make up this auxiliary vector are: number of
keys agent is in possession of, as well as the time left in the
episode.

Action Space

The action space of the agent is multi-discrete, meaning
that it consists of a set of smaller discrete action spaces, of
which the union corresponds to a single action in the environ-
ment. These subspaces are as follows: forward/backward/no-
op movement, left/right/no-op movement, clockwise/counter-
clockwise rotation of the camera/no-op, and no-op/jump. We
also provide a version of the environment with this action
space flattened into a single choice between one of 54 pos-
sible actions, whose size corresponds to the product of the
sizes of all the sub-spaces in the multi-discrete case.

Reward Function

Obstacle Tower has two reward function configurations:
sparse and dense. In the sparse reward configuration, a posi-
tive reward of +1 is provided only upon the agent completing
a floor of the tower. In the dense reward version a positive re-
ward of +0.1 is provided for opening doors, solving puzzles,
or picking up keys. In many cases even the dense reward
version of the Obstacle Tower will likely resemble the spar-
sity seen in previously sparse rewarding benchmarks, such
as Montezuma’s Revenge [Bellemare et al., 2013]. Given the
sparse-reward nature of this task, we encourage researchers to
develop novel intrinsic reward-based systems, such as curios-
ity, empowerment, or other signals to augment the external
reward signal provided by the environment.

2.2 Procedural Generation of Floors

Each floor of Obstacle Tower contains procedurally generated
elements which impact multiple aspects of the agent’s experi-
ence. These include lighting, textures, room layout, and floor

1:Ax

2:Ax

1:Ax

2:Ax

3:Nx

(a) AddNormal Rule

1:Ax

2:Ax

1:Ax

2:Ax+1

3:Kx

4:Lx+1

(b) AddKeyLock Rule

1:Ax

2:Ax

1:Ax

2:Ax+1

3:Px

(c) AddPuzzle Rule

1:Ax

1:Ax

3:Nx

2:Kx

2:Kx

(d) AddNormalKey Rule

Figure 3: Four examples of Obstacle Tower mission graph rules.

plan. This proceduralism ensures that for agents to do well on
new instances of the Obstacle Tower, they must have learned
general purpose representations of the task at the levels of vi-
sion, low-level control, and high-level planning.

Visual Appearance

On each floor of Obstacle Tower various aspects of the ap-
pearance of the environment are generated procedurally. This
includes the selection of a visual theme which determines the
textures and geometry to be used, as well as a set of generated
lighting conditions. There are five distinct visual themes: An-
cient, Moorish, Industrial, Modern, and Future. The lighting
conditions include the direction, intensity, and color of the
real-time light in the scene.

Floor layout

The floor layout is generated using a procedure inspired by
Dormans [Dormans, 2010]. The floor layout generation is
divided into two parts: a mission graph and a layout grid.

The mission graph is responsible for the flow of the mission
in the current level. For example: to finish the level the player
needs to get a key then solve a puzzle then unlock the door
to reach the stairs for the next level. Similar to Dormans, we
used graph grammar which is a branch of generative grammar
to generate the mission graph.

Figure 3 shows four of the graph rules used during genera-
tion. The letter in the node specifies the node type, while the
small subscript number is the access level. The access level
refers to how many locked doors must be opened in order to
enter that room. The first number is used to make a mapping
between nodes in the grammar. Circular nodes are consid-
ered as wild card nodes which means it can match any node.
These rules are applied on the starting graph (consists of two
connected nodes with access level of zero of type start and
exit) using what is called a graph recipe. A graph recipe
is a sequence of graph grammar rules that are applied after
each other to generate a level. The recipe contains some ran-
domness by allowing each rule to be applied randomly more
than once. In Obstacle Tower, the system uses different graph

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2686



recipes for each group of levels to generate more complex
floor layouts in later levels than the beginning levels.

After generating the mission graph, we then transform it
into a 2D grid of rooms which is called layout grid. A sim-
pler grammar called shape grammar [Stiny and Gips, 1971]

is used in the transformation process which is similar to Dor-
man’s transformation process [Dormans, 2010]. This layout
grid is then directly used to generate the virtual scene which
the agent navigates as a floor of the tower. See Figure 2 for
example images of the result of this process.

Room Layout

For the generation of the layout of each room within a floor,
we used a template-based system similar to that used in the
popular video game Spelunky. In this system each of the dif-
ferent room types, such as Puzzle or Key have their own
set of templates from which specific room configurations are
drawn from. In the case of the Puzzle room, the agent must
push a block from a starting location to a goal location, while
avoiding intermediate obstacles. In the Key rooms, there is
a key somewhere in the room, along with potential obstacles.
All templates consist of a grid of characters which represents
the potential layout of the room. These grids can be either
3 × 3, 4 × 4, or 5 × 5. The specific placement of the mod-
ules and items within a room is based on these templates. The
template can define the specific module or item to be placed
in each position within the room, or define a category from
which a specific module or item is drawn and placed proba-
bilistically. In this way a finite number of templates can be
used to generate a much larger number of possible room con-
figurations.

2.3 Evaluation Criteria

It is essential that the evaluation of agent performance on en-
vironments such as the one described here be as reproducible
and interpretable as possible. We provide three possible eval-
uation schemes. Because Obstacle Tower is designed to ex-
plicitly test the generalization ability of agents, we recom-
mend evaluating using the latter two methods. This criteria
described here is inspired by a recent set of recommendations
by Henderson and colleagues [Henderson et al., 2017].

No Generalization. It is possible to evaluate the perfor-
mance of an agent on a single, fixed version of the Obsta-
cle Tower. In this case we recommend explicitly reporting
that the evaluation was performed on a fixed version of the
Obstacle Tower, and also reporting performance on five ran-
dom seeds of the dynamics of the agent. These seeds can
be provided on environment reset, and condition the random
number generator used to generate the tower definition.

Weak Generalization. Agents should be trained on a fixed
set of 100 seeds for the environment configurations. They
should then be tested on a held-out set of five randomly se-
lected tower configuration seeds not in the training set. Each
should be evaluated five times using different random seeds
for the dynamics of the agent (initial weights of the policy
and/or value network(s)).

Strong Generalization. In addition to the requirements for
weak generalization, agents should be tested on a held-out

visual theme which is separate from the ones on which it was
trained. In this paper we train on the Ancient and Moorish
themes, and test on the Industrial theme.

2.4 Value as a Research Benchmark

Obstacle Tower is designed to provide a meaningful chal-
lenge to current and future AI agents, specifically those
trained using the pixels-to-control approach. There are four
axes of challenge which we believe that this environment pro-
vides: vision, control, planning, and generalization. While
various other environments and benchmarks have been used
to provide difficult challenges for AI agents, this is to the
best of our knowledge the first benchmark which combines
all such axes of complexity.

Vision

The primary observation available to agents within the the
Obstacle Tower is a rendered RGB image. Obstacle Tower
contains high-fidelity real-time lighting, complex 3D shapes,
and high-resolution textures. Furthermore, the floors in the
environment are rendered in one of multiple different visual
themes, such as Ancient or Industrial. These visual themes
were chosen to provide a large amount of variation in the tex-
tures, colors, and 3D models that the agent would encounter.
With the combination of high-fidelity visuals and increased
visual variation, we expect models with much greater rep-
resentational capacity than those used in A3C [Mnih et al.,
2016] or DQN [Mnih et al., 2015] will be needed to perform
well in the environment.

Generalization & Vision. Humans can easily understand
that two different doors seen under different lighting condi-
tions are still doors. We expect that general-purpose agents
should have similar abilities, however this is not the case.
In many cases agents trained under one set of visual con-
ditions, and then tested on even a slightly different visual
conditions perform much worse at the same task [Huang et
al., 2017]. The procedural lighting and visual appearance of
floors within the Obstacle Tower means that agents will need
to be able to generalize to new visual appearances which they
may never have directly experienced before.

Control

An agent in Obstacle Tower must be able to navigate through
multiple rooms and floors. Each of these rooms can con-
tain multiple possible obstacles, enemies, and moving plat-
forms, all of which require fine-tuned control over the agent’s
movement. Floors of the environment can also contain puz-
zle rooms, which involve the physical manipulation of objects
within the room in order to unlock doors to other rooms on the
floor. While the action space of the agent is discrete, the en-
vironment itself uses continuous metrics for the position and
velocity of objects, making the state space extremely large.
We expect that in order for agents to perform well on these
sub-tasks, the ability to model and predict the results of the
agents actions within the environment will be of benefit.

Generalization & Control. The layout of the rooms on
every floor are different on each instance of the Obstacle
Tower, as such we expect methods which are designed to ex-
ploit determinism of the training environment, such as Brute

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2687



[Machado et al., 2017] and Go-Explore [Ecoffet et al., 2018]

to perform poorly on the test set of environments. It is also
the case that within a single instance of a Tower, there are ele-
ments of the environment which contain stochastic behavior,
such as the movement of platforms and enemies.

Planning

Depending on the difficulty of the floor, some floors of the
Obstacle Tower require reasoning over multiple dependencies
in order to arrive at the end room. For example, some rooms
cannot be accessed without a key that can only be obtained in
rooms sometimes very far from the door they open. In these
cases, planning is required to ensure the agent takes the most
efficient path between rooms.

Generalization & Planning. Due to the procedural gener-
ation of each floor layout within the Obstacle Tower, it is not
possible to re-use a single high-level plan between floors. It
is likewise not possible to re-use plans between environment
instances, as the layout of each floor is determined by the en-
vironment’s generation seed. Because of this, planning meth-
ods which require computationally expensive state discovery
phases are likely not able to generalize to unseen floor lay-
outs.

3 Preliminary Results

In order to analyze the usefulness of Obstacle Tower bench-
mark, we conducted evaluations of the environment as well
as agent and human performance within the environment. We
evaluated human and agent performance within three distinct
conditions, each designed to provide insight into the level
of generalization ability that the human or agent possesses.
We conducted this evaluation on version 1.0 of the Obstacle
Tower which contains a maximum of 25 floors, and a lim-
ited subset of visual themes, floor configurations, and object
types. We performed evaluation within the three conditions
described under ”Evaluation Criteria:” No Generalization -
training and testing on the same fixed environment, Weak
Generalization - training and testing on separate sets of en-
vironment seeds, and Strong Generalization - training and
testing on separate sets of environment seeds with separate
visual themes.

3.1 Environment Performance

The ability to simulate at a high speed is important for en-
suring that experimental iteration can take place at a reason-
able pace. See Table 1 for performance metrics detailing the
average time it takes to perform an environment step from
the Python interface. Note that this corresponds to five in-
ternal simulation steps, as the agent only requests decisions
once every five simulation steps. This is similar to the con-
cept of “frame-skip” found in the ALE. These reported times
also do not include model inference or training time typically
involved in learning. These metrics were compared across
floors and averaged over multiple seeds to provide a more
general picture of performance. As expected, higher floors
in the tower correspond to longer step times. This is due
to the increasing complexity of the floor layouts on higher

Floor Per-Sec Mean (Std) Min Max

0 100.7 9.9 (1.6) 9.6 10.1

5 81.4 12.28 (1.6) 11.5 12.9

10 80.9 12.36 (1.7) 11.5 14.3

15 75.8 13.1 (4.2) 12.2 14.4

20 69.8 14.3 (5.2) 13.3 15.7

Table 1: Environment performance metrics on ‘n1-highmem-2’
GCP instance with NVIDIA Tesla K80. Average steps-per-second
and time-per-step (in ms). Averages recorded over five seeds each,
and 500 steps per seed.

Condition Train Test Test (Max)

No Gen. 15.2 (2.9) 15.2 (2.9) 22

Weak Gen. 12.3 (2.9) 15.6 (3.5) 21

Strong Gen. 12 (6.8) 9.3 (3.1) 20

Table 2: Results of human evaluation on under different conditions.
Performance results under Train and Test are reported as the mean
(std) of the number of floors solved in a single episode. Results
reported under Test (Max) correspond to maximum floor reached by
a participant in each condition.

floors. Even on floor 20, we can still get roughly 350 simula-
tion steps per second, with performance on the simplest floor
around 500.

3.2 Human Performance

In order to understand the expected quality of performance
from a human-level agent, we conducted a series of evalua-
tions with human play-testers. These were drawn from a pool
of Unity Technologies employees who volunteered to partici-
pate in the evaluation process. These individuals did not have
any particular background or established skill level with simi-
lar games. Overall fifteen participants took part in the evalua-
tion. For human evaluation, training corresponds to the initial
five minutes of playtime.

See Table 2 for human performance results. In the No Gen-
eralization and Weak Generalization conditions humans were
able to solve an average of 15 floors during the test phase.
Human participants performed slightly worse in the Strong
Generalization condition, however were still able to solve up
to 20 floors in this condition as well, suggesting that humans
are not able to perfectly transfer learned knowledge to new
situations, but are also to do so with general success. As
expected, these results show that humans are able to reuse
knowledge gained during training to perform well on new un-
seen configurations of the environment. In fact we find that
human performance in the Weak and No generalization condi-
tions increases between the training and testing phases due to
the ability of humans to continue to rapidly learn from small
amounts of data. The additional difficulty of generalizing in
the Strong generalization condition is likely responsible for
the decrease rather than increase between training and test-
ing.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2688



0.0 0.5 1.0 1.5 2.0

Time Steps 1e7

0

2

4

6

8

10

12

M
ea

n
E

p
is

o
d
ic

R
ew

ar
d

RNB-Fixed

RNB-Varied

PPO-Fixed

PPO-Varied

Figure 4: Mean episodic reward received during training by agent
trained using OpenAI Baseline PPO (PPO) and Dopamine Rainbow
(RNB) in the Fixed and Varied training conditions.

3.3 Agent Performance

We then turned to evaluation of agents trained using Deep
RL. In particular we utilized the OpenAI Baseline implemen-
tation of Proximal Policy Optimization (PPO) [Schulman et
al., 2017; Dhariwal et al., 2017]2 as well as the implementa-
tion of Rainbow provided by the Dopamine library [Hessel et
al., 2018; Castro et al., 2018]3. These two were chosen for
being the standard implementations of current state of the art
on-policy and off-policy algorithms.

We performed training under the No Generalization
(Fixed) and Weak Generalization (Varied) conditions, and
performed evaluation within all three conditions. Based on
initial experiments, we decided to conduct the evaluation us-
ing the ”dense” reward function, due to a lack of significant
learning with the ”sparse” function. We utilized the default
hyperparameters provided by each library for use with Atari
benchmarks, in order to provide comparable results with eval-
uations performed on the ALE. We collected data in PPO
using 50 concurrently running environments. In the case of
Rainbow we collect data from a single environment running
serially. We conducted training sessions spanning 20 million
environment steps for PPO and Rainbow.

See Figure 4 for graphs of the mean reward during training
of the two algorithms in both the varied and fixed conditions.
We find that agents trained using either algorithm are able to
solve fewer than 10 floors in both training conditions, with
agents performing better in the fixed condition compared to
the varied condition. This is to be expected, as the agents in
the fixed condition are required to learn to solve only a sin-
gle instance of Obstacle Tower, whereas agents in the varied

2https://github.com/openai/baselines
3https://github.com/google/dopamine

Condition PPO (F) PPO (V) RNB (F) RNB (V)

No Gen. 5.0 (0.0) 1.0 (0.0) 7.0 (0.0) 4.8 (0.4)

Weak Gen. 1.2 (0.4) 0.8 (0.4) 1.0 (0.7) 3.4 (1.1)

Strong Gen. 0.6 (0.8) 0.6 (0.5) 0.6 (0.0) 0.8 (0.8)

Table 3: Results comparing trained models on three evaluation con-
ditions. “F” corresponds to fixed training environment (one environ-
ment seed). “V” corresponds to varied training environment (100
environment seeds). Performance results are reported as the mean
(std) of the number of floors solved in a single episode.

condition are required to learn to solve a distribution of in-
stances. In both fixed and varied training conditions we find
that Rainbow outperforms PPO, suggesting that the Rainbow
(Varied) agent has learned a more generalizable policy. We
explicitly examine this generalizability in our evaluations.

When the agents were benchmarked in the three evalua-
tion conditions, we find that they consistently perform poorly
compared to the human results, failing to reach even an aver-
age floor completion score of 10 in the fixed case, and floor 5
in the varied case. Interestingly, it is at floor 5 that the room
mechanic of locked doors is introduced. We find that the var-
ied agents are unable to solve this sub-task, and therefore are
no longer able to make progress in the tower. This is pos-
sibly due to the lack of a long-term memory mechanism in
these agents which would enable them to remember whether
certain visited doors were locked or not. The partial success
of the Rainbow (Fixed) agent in the No Generalization condi-
tion is likely due to the ability to simply memorize the correct
trajectory to the key and locked door locations. See Table 3
for the full set of results.

The agents trained using Rainbow under the varied condi-
tion outperforms all other algorithms and training conditions
in terms of evaluation performance on the weak and strong
generalization conditions. One hypothesis for this is that the
off-policy nature of the Rainbow algorithm allows for the
agent to learn from a greater diversity of experiences, thus
enabling better generalization to new conditions.

As expected, agents in both training conditions perform
significantly worse in the Strong Generalization evaluation
condition, with neither agent achieving an average floor com-
pletion rate of one. This result suggests that current Deep RL
algorithms are very brittle with respect to their visual inputs.

4 Discussion

In this paper we have described the Obstacle Tower, a new
research challenge for AI agents. Our preliminary results
suggest that current state of the art methods achieve far less
than human level performance on all experimental conditions.
While the Rainbow agent is able to display limited general-
ization capabilities, they are significantly worse than those
displayed by even the worst-performing human players. Fur-
thermore, this difference was made apparent when using a
dense reward function. Whether there exist methods capable
of performing well using the sparse reward function in Obsta-
cle Tower is an open question.

We believe that in order for learned agents to better perform
on the task, fundamental improvements to the state of the art

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2689



in the field will be required. We expect that these improve-
ments will be more generally applicable beyond the Obstacle
Tower itself, with impacting broader domains such as robotic
navigation and planning.

The results presented in this paper correspond to version
1.0 of Obstacle Tower. We have since released a version 2.0
which included additional floors and configuration options for
users. We plan to release a completely open source version of
the Obstacle Tower project code in the coming months (ver-
sion 3.0). This version will provide the ability to add addi-
tional state information such as a representation of the cur-
rent floor layout, the freedom to modify the reward function,
and the ability to add new module and item types into the
procedural generation system. We hope that these extensions
will allow the Obstacle Tower to not only be useful as a high-
end benchmark of agents abilities, but also as a more general
customizable environment for posing novel tasks to learning
agents.

4.1 Conclusion

For the past few years the Arcade Learning Environment and
other classic games have pushed the boundaries of AI re-
search. We hope that the Obstacle Tower environment, with
its focus on unsolved problems in vision, control, planning,
and generalization, can serve the community in a similar way
in the coming years.

Acknowledgments

The authors acknowledge the financial support from NSF
grant (Award number 1717324 - ”RI: Small: General Intel-
ligence through Algorithm Invention and Selection.”).

We would additionally like to thank Leon Chen, Jeff Shih,
Marwan Mattar, Vilmantas Balasevicius, and Yuan Gao for
helpful feedback and support during the development and
evaluation of this environment, as well as all the participants
who took part in the human performance evaluation process.

References

[Bellemare et al., 2013] Marc G Bellemare, Yavar Naddaf,
Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents.
Journal of Artificial Intelligence Research, 47:253–279,
2013.

[Brockman et al., 2016] Greg Brockman, Vicki Cheung,
Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym.
arXiv:1606.01540, 2016.

[Castro et al., 2018] Pablo Samuel Castro, Subhodeep
Moitra, Carles Gelada, Saurabh Kumar, and Marc G
Bellemare. Dopamine: A research framework for deep
reinforcement learning. arXiv:1812.06110, 2018.

[Cobbe et al., 2018] Karl Cobbe, Oleg Klimov, Chris Hesse,
Taehoon Kim, and John Schulman. Quantifying gener-
alization in reinforcement learning. arXiv:1812.02341,
2018.

[Dhariwal et al., 2017] Prafulla Dhariwal, Christopher
Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-
pert, Alec Radford, John Schulman, Szymon Sidor,
Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

[Dormans, 2010] Joris Dormans. Adventures in level de-
sign: Generating missions and spaces for action adventure
games. In Workshop on Procedural Content Generation in
Games. ACM, 2010.

[Ecoffet et al., 2018] Adrien Ecoffet, Joost Huizinga, Joel
Lehman, Kenneth Stanley, and Jeff Clune. Montezuma’s
revenge solved by go-explore, a new algorithm for hard-
exploration problems (sets records on pitfall too), 2018.

[Henderson et al., 2017] Peter Henderson, Riashat Islam,
Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. Deep reinforcement learning that matters.
arXiv:1709.06560, 2017.

[Hessel et al., 2018] Matteo Hessel, Joseph Modayil, Hado
Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Sil-
ver. Rainbow: Combining improvements in deep rein-
forcement learning. In AAAI Conference on Artificial In-
telligence, 2018.

[Huang et al., 2017] Sandy Huang, Nicolas Papernot, Ian
Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial at-
tacks on neural network policies. arXiv:1702.02284, 2017.

[Johnson et al., 2016] Matthew Johnson, Katja Hofmann,
Tim Hutton, and David Bignell. The malmo platform
for artificial intelligence experimentation. In IJCAI, pages
4246–4247, 2016.

[Juliani et al., 2018] Arthur Juliani, Vincent-Pierre Berges,
Esh Vckay, Yuan Gao, Hunter Henry, Marwan Mattar, and
Danny Lange. Unity: A general platform for intelligent
agents. arXiv:1809.02627, 2018.

[Justesen et al., 2018] Niels Justesen, Ruben Rodriguez Tor-
rado, Philip Bontrager, Ahmed Khalifa, Julian Togelius,
and Sebastian Risi. Illuminating generalization in deep re-
inforcement learning through procedural level generation.
In NeurIPS Workshop on Deep RL, 2018.

[Karakovskiy and Togelius, 2012] Sergey Karakovskiy and
Julian Togelius. The mario ai benchmark and competi-
tions. IEEE Transactions on Computational Intelligence
and AI in Games, 4(1):55–67, 2012.

[Kempka et al., 2016] Michał Kempka, Marek Wydmuch,
Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski.
Vizdoom: A doom-based ai research platform for visual
reinforcement learning. In IEEE Conference on Computa-
tional Intelligence and Games (CIG), 2016.

[Machado et al., 2017] Marlos C Machado, Marc G Belle-
mare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environ-
ment: Evaluation protocols and open problems for general
agents. arXiv:1709.06009, 2017.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2690



[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529,
2015.

[Mnih et al., 2016] Volodymyr Mnih, Adria Puigdomenech
Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In In-
ternational conference on machine learning, pages 1928–
1937, 2016.

[Nichol et al., 2018] Alex Nichol, Vicki Pfau, Christopher
Hesse, Oleg Klimov, and John Schulman. Gotta
learn fast: A new benchmark for generalization in rl.
arXiv:1804.03720, 2018.

[Perez-Liebana et al., 2016] Diego Perez-Liebana, Spyridon
Samothrakis, Julian Togelius, Simon M Lucas, and Tom
Schaul. General video game ai: Competition, challenges
and opportunities. In Thirtieth AAAI Conference on Artifi-
cial Intelligence, pages 4335–4337, 2016.

[Resnick et al., 2018] Cinjon Resnick, Wes Eldridge, David
Ha, Denny Britz, Jakob Foerster, Julian Togelius,
Kyunghyun Cho, and Joan Bruna. Pommerman: A multi-
agent playground. arXiv:1809.07124, 2018.

[Rohlfshagen et al., 2018] Philipp Rohlfshagen, Jialin Liu,
Diego Perez-Liebana, and Simon M Lucas. Pac-man con-
quers academia: Two decades of research using a classic
arcade game. IEEE Transactions on Games, 10(3):233–
256, 2018.

[Samuel, 1959] Arthur L Samuel. Some studies in machine
learning using the game of checkers. IBM Journal of re-
search and development, 3(3):210–229, 1959.

[Schulman et al., 2017] John Schulman, Filip Wolski, Pra-
fulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv:1707.06347, 2017.

[Stiny and Gips, 1971] George Stiny and James Gips. Shape
grammars and the generative specification of painting and
sculpture. In IFIP Congress (2), volume 2, 1971.

[Zhang et al., 2018] Chiyuan Zhang, Oriol Vinyals, Remi
Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv:1804.06893, 2018.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

2691


