Obstacles in Object-Oriented Software Development

Mehmet Aksit & Lodewijk Bergmans

TRESE project, Dept. of Computer Science, University of Twente,
P.O. Box 217, 7500 AE, Enschede, The Netherlands
{aksit, bergmans} @cs.utwente.nl

Abstract

Recently, a considerable number of object-oriented
software development methods have been introduced
to produce extensible, reusable, and robust software.
We have been involved in the development of a large
number of pilot applications to form our own view on
object-oriented methods. Although our experiences
confirmed the claims about the benefits of object-
oriented methods, we identified a number of important
obstacles that are not addressed by current methods.
This paper summarizes these obstacles and evaluates
them with respect to our pilot applications. The aim of
this paper is to make software engineers aware of
problems they may encounter during object-oriented
devclopment, and to inspire researchers to initiate new
research activities.

1. Introduction

A significant number of object-oriented methods [1-
10] have been introduced during the past several years.
These methods claim that the object-oriented approach
creates highly extensible, reusable and robust soft-
ware. After studying most of the state-of-the-art
methods [1-10], we developed our own method. We
retained certain aspects of existing methods that we
considered to be the most promising. To obtain a more
realistic view, we have been involved in a large num-
ber of pilot applications varying from administrative
systems to process automation |[15-35]. Like other
practitioners [55], we experienced that object-oriented
methods substantially do improve productivity. On the

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing

Machinery, To copy otherwise, or to republish, requires a fee
and/or specific permission.

©1992 ACM 0-89791-539-9/92/0010/0341,..81.50

other hand, we identified a number of important short-
comings within current object-oriented methods.

This paper summarizes the state-of-the-art object-
oriented methods that we studied, and identifies a
number of problems that may appear during software
development. This work can be beneficial for at least
two purposes. Firstly, since none of the methods [1-
10| address these problems explicitly, software engi-
neers can now prepare themselves to deal with these
specific problems, when encountered in object-
oriented development. We, In fact, spent a
considerable amount of time just trying to identify
what was going wrong with our analysis and design
method. Secondly, the problems discussed in this
paper may inspire researchers to Initiate new research
activities.

This paper is organized as follows. Section 2 gives
background information and a short overview of the
state-of-the~art methods that we investigated. The pilot
applications that we have been involved with are
briefly detailed 1n section 3. Section 4 presents prob-
lems encountered in current methods. Section §
evaluates the pilot applications with respect to the
identified problems. Section 6 briefly refers to our
related rescarch activities. Finally, section 7 gives
conclusions.

2. Background and Related Work

2.1. Object-Oriented Software Development

The target of object-oriented software development 1s
the object-oriented decomposition of user's needs into
executable language constructs. The object-oriented
decomposition process can be sub-divided into
analysis, design and implementation phases.

[n the analysis phase, the sotiware engincer aims at

OOPSLA’'92, pp. 341-358

341

precise and correct identification and specification of
the user's needs 1n an understandable way. This phase
1s mainly directed by the user's problem, or the so
called real-world domain. In the design phase, the
software engineer revises and extends the analysis
model by specifying how the user requirements can be
realized. The implementation phase details the design
model by means of specific language constructs.

An important characteristic of object-oriented devel-
opment is that the analysis, design and implementation
phases adopt similar models, although each phase has
a different emphasis. This enables a smooth transition
between the different phases. Each phase in object-
oriented software development can be divided into
three sub-components: preparatory work, structural
relations and object interactions.

2.1.1. Preparatory Work

The preparatory work in the analysis phase consists of
mapping between the real world entities and the enti-
ties in the analysis model: objects!. This mapping
process 1S called domain analysis. Another important
activity is the partitioning of the problem domain into
manageable sub-components called subsystems.

As an example of the application of real-world know-
ledge, most theory books introduce classification hier-
archies to organize knowledge. These hierarchies can
usually be directly represented as object-oriented class
hierarchies. Since the basic aim of theory is to
introduce sound and generic solutions, the software

engineer can then create highly reusable inheritance
hierarchies.

The preparatory work for the design phase consists
mainly of mapping the analysis model to a design en-
vironment. In the design environment, libraries of pre-
defined classes may be available. The objects identi-
fied in the analysis phase are mapped, as far as possi-
ble, to these predefined classes. Another preparatory
activity of the design phase is collecting and formulat-
ing design requirements that may not have been rele-
vant in the analysis phase. For example, efficiency and
alternative realizations are typical design require-
ments.

oy-i— . j—

—

' In the analysis/preparatory phase, the term objects may

correspond to both classes or instances.

The preparatory work for the implementation phase is
concerned with the environment within which the de-
sign will be implemented. For example, the properties
and restrictions ot the implementation language may

require a non-trivial mapping between the design
model and the language model.

2.1.2, Structural Relations

Object-oriented analysis concentrates on a few specific
types of relations. The two most important relations
are classification and part-of relations. In addition,
some methods [3, 8] introduce associations which de-
scribe relations other than classification and part-of
relations among classes.

Classification relations indicate that one class may be
considered as a generalization or specialization of an-
other class. This is a common way of making abstrac-
tions, resulting in classification trees, with the most
general cases at the root of the tree, and the most spe-
cialized and dedicated cases as the leaves.

Part-of relations may reflect part-whole relations such
as wheels are part of a whole car, or for example,
organizations consist of departments. Subsystem parii-

tioning in the analysis phase often matches part-of
relations.

In the design and implementation phases, classifica-
tion structures manifest themselves as class-
inheritance hierarchies. During design and
implementation, the identified structural relations may
be moditied for several reasons. Design rules may
result 1n restructuring to obtain better modularity,
encapsulation, extensibility and reusability, and
mapping multiple inheritance to single inheritance.

2.1.3. Object Interactions

As where the structural relations define the architee-
ture ot a system, the dynamic behavior of the system
1s realized by object interactions. These are repre-
sented by message connections®. A message connec-
tion simply indicates that two objects communicale.
Message connections are usually identified after
structural relations have been determined. In the de-
sign and implementation phases, object interaclions

2 The terms instance connections and collaborations are used

by some methods.

342

may be modified as a result of various design deci-
sions, for instance to improve reusability.

In general, software engineering principles such as en-
capsulation and modularity tend to collide with per-
formance requirements. As a result, the interactions
hetween objects may be modified during design and
implementation phases to fulfil performance require-
ments.

2.2, Overview of Object-Oriented Analysis and
Design Methods

This section gives a short summary of the methods
that we have referred to as the state-of-the-art object-
oriented methods [1-10].

Booch's Object-Oriented Design method [1] intro-
duces notations for representing class ulilities, class
categories, classes, state iransitions, objects, modules,
subsystems, processors, devices, and processes, Each
of these elements can be represented graphically, as
so-called icons, and textually, by so-called templates.
Templates are less readable but more detailed than
icons. Class utilities represent the so called free-
programs which are program blocks that are not
included in a class definition. Class categories are
similar to Ada modules [36] and are used to organize
classes. The other clements are standard terms and
therefore should be self-explanatory. In addition, this
method defines detailed notations for representing
various kinds of visibility and synchronization con-
straints of object interactions. The method proposes
the following steps: ldentifying classes and objects,
identifying semantics of classes and objects, identity-
ing relationships between classes and objects, and
implementing classes and objects.

Object-Oriented Analysis and Top-Down Software
Development [2] introduces a top-down approach
using ensembles. Ensembles are subsystems and arc
comparable to objects. The main difference is that they
may have internal concurrency as where objects do
not. This method consists of three major components
called information, state and process models. The in-
formation model is an object model with structural
relations. The state model represents the dynamic be-
havior within an object, which is determined by
operation triggers. The process model specifies the
object interactions, describing all the causal

343

connections between objects. These three components

were adopted by earlier methods such as Object-
Oriented Systems Analysis [13].

Object-Oriented Analysis & Design by Coad &
Yourdon is split in two separate parts: the analysis part
[3] and the design part [4]. The analysis part defines
five vertical components called layers. Layers are la-
beled as subjects, classes and objects, structures, attri-
butes, and services. Subjects are subsystems with
simple semantics. Structures are inheritance and part-
of relations. Attributes characterize objects. In prac-
tice, attributes may be implemented either as local
variables, or computed through operations. Services
represent a set of operations provided by an object.

Coad and Yourdon's Object-Oriented Design method
applies the same five layers as utilized 1n their Object-
Oriented Analysis method. In addition, four horizontal
components are introduced resulting in a matrix archi-
tecture. Horizontal components are labeled as problem
domain, human interaction, task management and
data management. The problem domain component 1s
obtained from the analysis model. The human interac-
tion component is used to design user interfaces. The
task management component aims at defining object
interactions. The objective of the data management
component is to create persistent objects.

Johnson and Foote provide a set of design rules [3] in
four categories: when to define new classes, how to
improve object interfaces, how to construct abstract

classes, and how to identify reusable class hierarchies
called frameworks.

The Demeter system [6, 7] is a Computer-Aided
Software Engineering (CASE) environment which in-
troduces a set of automated tools to ease the software
development process. In the Demeter method, the
software engineer first identifies object instances. The
system provides a tool to infer the so-called class dic-
tionaries from these instances. Class dictionaries are
then optimized with respect to certain criteria. The
system is also able to adapt class dictionaries as new
object instances are introduced. Generally, in part-of
structures it may be required to invoke an operation on
a number of parts to insure the consistency of the
whole. Demeter provides a tool to generate the re-
quired repeated operations for each part. In addition,

the Demeter system is governed by a set of design
rules. For example, there arc rules for managing the
software growth and to minimize the object-
interaction patterns. The latter is also known as the
law of Demeter [6]. When the class dictionaries are
finalized, the system generates programs 1n the C++
language [47].

Object-Oriented Modeling and Design (OMT) [8] in-
troduces three models and a method to apply them. In
this method, first the object model is constructed. The
object model of OMT is analogous to the object mod-
els of other methods except for a clear emphasis 18
placed on associationsbetween objects. The second
model is called the dynamic model and 1s based on
state diagrams. The third model 1s called the furnc-
tional model and consists of data-flow diagrams.
These three models, are in fact, very similar to the
models of Yourdon's Structural Analysis [14], but the

design phase of OMT is centered more around the ob-
ject model.

The Responsibility-Driven approach [9] defines six
activities. The first activity deals with the identifica-

tion of classes and class hierarchies. As a second step,

operations of each class, the so-called responsibilities
are specified. In the third step, object interactions
termed collaborations are identified and specified. The
objective of the fourth step is to improve reusability
by further refining class hierarchies. The fifth step
aims at grouping classes into subsystems by construct-
ing so-called collaboration graphs based on object 1n-
teractions. The last step 1s devoted to the formal
specification of object interfaces, catled protocols.

Object-Oriented Role Analysis, Synthesis and
Structuring [10], introduces five steps. In the first step,
so-called roles and behaviors are identified. Roles and
behaviors roughly correspond to instance objects and
classes, respectively. Then roles of different subsys-
tems are compared to identity class hierarchies. The
second step aims at specifying object interactions. The
third step details class implementations. The next step
1S to define a meta model which includes rules for
structural relations and object interactions. The final
step specifies the system initialization rules.

344

3. Our Experience

3.1. The Approach |

Several years ago, when we decided to start a new re-
search project on object-oriented software engineering,
we wanted to identify research topics based on the
benefits and shortcomings of the state-of-the-art gb-
ject-oriented methods. The best way to determine
these was to apply object-oriented techniques to real-
istic examples in the form of pilot studies. At that
time, however, not so many methods were available.
We studied Booch's earlier publications [11, 12], and
defined our own method. When new methods were
intfroduced [1-10, 13}, we updated our method care-
fully [60]. Our intention was to combine what we
considered to be the best of these methods. For ex-
ample, we used Coad and Yourdon's layered approach
and their hints for object identification [3, 4], adopted
Booch's notation [1], employed the rules of Johnson
and Foote [5], applied the Law of Demeter |6], incor-
porated the associations and the dynamic model ot
OMT {8], and included the collaboration graphs of the
Responsibility Driven approach |9].

We used the same documentation means in each of our
pilot studies. Whenever we encountered a problem, we
examined the methods [1-10] to understand how these
problems were addressed by them. In cases where we
could not find a solution to our problem, we referred
to other related research work. At the end of each pilot
application, we tried to categorize and generalize the
problems that we experienced. These problems werce
explicitly used to initiate our research activities.

3.2. Pilot Applications

In this section, we briefly list the pilot applications (o
provide a framework to compare and categorize piro-
blems with respect to the type of applications in whici
they may be encountered. We further classify these
applications into external and internal assignments.
External assignments were carricd out under condi-
tions that were not fully under our control.

3.2.1. External Assignments

Administration system for social security services: 1o
gain experience in object-oriented analysis and design
within the area of data-intensive applications, an

object-oriented model of an administrative system for
disablement insurance laws was realized [25].

Network database: This assignment aimed at the con-
struction of a simple network database in relation to
the workshop "Different Paradigms in Software

Development”" which was organized at the University
of Twente {22].

Chemical process control system: A process control
system for a distillation process was developed at the

Faculty of Chemical Engineering, University of
Twente[26].

Mechatronic modeling system: This activity aims at
the design and implementation of a mechatronic
modeling environment using object-oriented principles
and 1s being realized at the Faculty of Electrical
Engincering, University of Twente [21].

Intelligent tutoring system: This work is being carried
out in conjunction with the Faculty of Applied
Education, University of Twente to design and im-
plement an intelligent tutoring system in the area of
software engineering [30].

3.2.1. Internal Assignments

Concurrent processing and synchronization: This
study [15] contained various examples to demonstrate
the capabilities of the object-oriented mechanisms to
solve some well-known synchronization problems. We
chose examples in five different categories: process
communication and coordination, implementation of
concurrent function evaluations, scheduling, resource
management, and client-server communication.

Distributed office system: A distributed office system
was simulated [16, 17] on a workstation to illustrate
the object-oriented approach for the following appli-
cations: layered communication architectures, security

protocols, asynchronous communications, and atomic
transactions.

Object-oriented language and environment
implementation: The object-oriented language Sina
[37] and its programming environment were
implemented by a number of students. This
implementation included a compiler [29], object-
manager, concurrent processing constructs [18],
interpreter {34], atomic transactions, deadlock
detection, type checking [23], graphical programming

345

environment [27, 31] and remote invocations [20].

Parser generator for Smalltalk: This study [28] aimed
at the development of a lexical analyser and parser
generator for Smalltatk [49].

Distributed operating system design: Various persons
were involved in distributed system design. Some
activities were carried out during the construction of a
distributed version of the Sina language. Other impor-
tant activities were completed in the area of distributed
object management [19, 24, 35}

Temperature control system: This study was selected
from some example problems presented by Booch [1]

for the purpose of identifying the problems associated
with control system design [32].

Intelligent mail: An intelligent mail application [33]

was developed to experiment with the Ontos object-
oriented database system [61].

4. Problems

4.1. Problems Related to the Preparatory Work

[n the analysis phase we experienced six major pro-
blems in the preparatory work. The first two problems
are related to domain analysis and are presented in
section 4.1.1. The remaining four problems are rclated
to subsystems and are explained in section 4.1.2.

4.1.1. Domain Analysis

Identification of Problem-Domain Structures.

In each of the pilot studies we carefully considered the
available domain knowledge. We tried to identify
classifications in the problem domain to map them di-
rectly into inheritance hierarchies. For some well-
structured and theoretically founded domains, indeed,
we could identify highly general and reusable hicrar-
chies. However, there were many problems which did
not demonstrate any clear structure. Quite often under-
lying theories of large systems are not completely un-
derstood, and it 1s difficult to define reusable hierar-
chies for these types of systems. One may not expect
software engineers to organize inheritance hierarchies
any better than their understanding of the classifica-
tions within the theory itself.

Dealing with Excessive Domain Objects.
Many object-oriented methods [1, 3, 8, 9] expound the

benefits of using domain knowledge while preparing
the user's requirement specifications. Integrating the
domain knowledge with these specifications, however,
can create an excessive number of objects, although
only a few of these objects may be relevant to the
problem being analyzed.

For example, in the neftwork database assignment
[22], we considered graph-theory as domain know-
ledge since networks can easily be modeled as graphs.
We used two books for this purpose [54, 63]. With
these two books, and the user's specification, we iden-
tified a number of classes representing different types
of graphs. Based on the features of these classes, we
have constructed the inheritance hierarchy as depicted
by figure 1.

i

SimpleGraph

Completedraph

Dirn:ie;:laupﬁ)

ConnectedGraph

1 Excsssiva ¢lassos
7] Required classes

FTHELSIT LI TTET TR . hy F=ad 0l ITRIOESTT IS

- L

[Fra-=

- "'I'-’II'!II'III-I A N e

T B L e R B

—.-L_-_l_..llr...l Iﬂl-Ill-l|‘-l-l|.|L|I--l.'-'lll-l--
W

Figure 1, Inheritance hierarchy in the network database,

Although this graph hierarchy can be reused in many
difterent applications, for our specific problem, only
classes MuliiGraph, NamedGraph and Network-
Database were relevant. However, until the
Inheritance hierarchy was constructed, we had to deal
with these excessive objects. Obviously, this problem
can be even more difficult to handle in large and
complex applications,

4.1.2. Subsystems
Early Decomposition.

All the methods [1-10] emphasize the importance of

proper object identification., One important problem in
the object 1dentification process is how to deal with a
large number of objects. This forces the software en-
gineer to partition the application into subsystems
prior to the object identification phase, and only then
consider the objects within the context of these sub-
systems. The prior identification of subsystems is also
proposed by some methods [2, 3].

Identification of subsystems can be done more accy-
rately after structural relations and object interactions
have been determined. This is because subsystem
boundaries are largely determined by inter-object rela-
tions and interactions. Some methods, therefore, defer
the subsystem identitication step to a later phase [1, 8,
9]. Coad and Yourdon's analysis method [3] considers
both alternatives.

The dilemma here 1s that if the software engineer does
not identify subsystems before starting with object
identification, then the project probably becomes un-
manageable. On the other hand, if the software engi-
neer identifies subsystems prior to object-
identification, then the defined subsystem boundaries
may not be optimal.

Subsystem-Qbject Distinction.

Almost all methods consider subsystems as being dif-
ferent from objects. Some methods consider subsys-
tems as a collection of objects and assign simple
semantics to them [3, 4, 8]. Booch [1] introduces two
separate constructs, class categories, which are similar
to Ada modules {36], and subsystems, which are basi-
cally collections of objects. In the Responsibility-
Driven approach [9], subsystems are identified using
the so-called collaboration graphs; objects that have
frequent interaction are placed into the same subsys-
tem. De Champeaux introduces ensembles as subsys-
tems [2] and emphasizes their use in a top-down man-
ner. Although ensembles appear to have similar
semantics to objects, they are different in that ensem-
bles may contain concurrently active objects while
objects cannot.

We have experienced difficulties due to the distinction
of subsystems from objects. During the analysis phase,
objects may eventually act as subsystems if their in-
ternal structures get too complicated. Similarly, sub-
systems may be defined as objects if their functional-
ity can be structured in a class hicrarchy and reused in
different applications. Since object-oriented methods
arc largely iterative, one may need to convert subsys-
tems 1nto objects (or vice versa). This requires modifi-
cations to the semantics of these constructs, which is
obviously very error prone.

Commonality versus Partitioning:
In general, subsystems are assigned to different solt-

346

ware engineers, and/or are handled sequentially one at
a time. In order to 1dentify class hierarchies, however,
the software engineer must compare features of
objects. Since subsystems partition the system, classes
belonging to the same hierarchy can be scattered over
different subsystems. This can make the task of find-
ing the proper Inheritance hierarchy very difficult.
This problem 1s also considered in Role Analysis,
Synthesis and Structuring [10].

As an example, consider the sensor hierarchy of the
temperature control system as shown by figure 2.

Yy y— eyl

e || FuslFlowStatus OptCombusiion
Sansor Sonnor '
Watsransor

Subsystem for the healer

Figure 2. Inheritance hierarchy in the temperature control

system.

The sensor hierarchy classifies the various sensors in
the system, like temperature sensors, room occupancy
sensors, etc., but, these sensors lie in separate subsys-

tems, such as rooms and heater. However, to
proper inheritance hierarchy, objects within al

tems must be considered.

Subsystems ldentification Using Object Interactions:
Some object-oriented methods [2, 9] introduce sub-
systems mainly for structuring interactions among
objects. Software engineers may also aim at creating
reusable subsystem modules and try to incorporate
functionality into partitioning. However, most existing
methods only provide intuitive techniques for subsys-

tem 1dentification.

build the
 subsys-

This is not sufficient for large

systems, since interactions can be too complex and
subject to changes. We therefore believe that proper
object-oriented subsystem identification is only teasi-

ble it

the software engineer is equipped with tools t

identify and configure subsystems automatically. T
requires algorithmic techniques.

nat
his

347

One ot the major goals in distributed system design is
to partition applications in such a way that the cost of
distribution is minimal [46]. It turns out that these
problems are analogous not only to the subsystem

partitioning problem, but also to software modulariza-
tion problems, in general.

4.2. Problems Related to Structural Relations

4.2.1. Sharing Behavior with State

In general, 1nstances store states as where classes be-
have as templates, defining the common features of
their instances. For certain applications, it may be de-
sirable that the state shared by instance objects affects
their operations defined at the class level. In current
object-oriented models, however, classes can not
conveniently express features that are affected by
shared state information stored in their instances.

Psreon
Documant Piannlnu ‘r
Procesaing Managomsant Employee
Secretary Clerk

Figure 3. Inheritance hierarchy in a simple office system with
shared behavior and state.

This problem 1s exemplified by the simple office sys-
tem as shown in figure 3. In this example, classes
Secretary and Clerk rtepresent otfice employees.
According to the company strategy, every cletk and
secretary is responsible to carry out a number of tasks
in a certain order (e.g. based on company strategies).
In addition, secretaries arc responsible for processing
documents. Both secretaries and clerks keep thetr
documents by themselves, and in certain cases it may
be desirable that they take their own initiative to over-
rule global company strategies.

In figure 3, classes Secretary and Clerk inherit from
classes Employee and PlanningManagement, and class
Employee inherits from class Person. In addition,
Secretary inherits from DocumentProcessing. This hi-
erarchy allows classes Secretary and Employee to in-
herit management operations that reflect the company

policy, for example, to order their tasks. To provide
the ordering operation, class PlanningManagement
implements the operation sort as shown in figure 4.

In line 4, the operation sort obtains the size of the list
by invoking the operation size on self. Here the ex-
pression self.size represents a message expression
where self is the receiver object, either an instance of
class Secretary or Clerk, and size is the operation to be
invoked on this instance. This is because the operation
search always begins from the receiver object and
continues towards the higher classes in the inheritance
hierarchy. After determining the size of the list in the
inner for-loop (lines 5-11), two adjacent elements of
the list are retrieved and compared (line 7). The com-
parison operation is carried out on self by invoking the
operation compare. Normally, the operation compare
1s inherited from class PlanningManagement, but can
be overridden by the subclasses Secretary and Clerk.
It the operation compare evaluates to true, then the
two adjacent elements are interchanged (line 10).

sort

"sorting the office tasks”

(1) i, J: Integer; "Indices”
(2) shift: Boolean:

(3)

(4) for i:= (self.size) downto 2 do

(5) for j:= 1 to i-1 do

(6) begin

(7) shift:=gelf.compare(self.activity(j),
(8) self.activity(3+1) };
(9) 1f shift

(10) then self.swapActivity(j, j+1);

(11) end;

Figure 4. Implementation of the operation sort of class
PlanningManagement.

The operation compare uses the current strategical in-
formation of the office which is adapted from time to
time. I[deally class PlanningManagement would store
this information locally. Retrieving this information
from an external object would not be desirable for two
reasons. First of all, strategical information should be
private and encapsulated in class Planning-
Management. Secondly, message invocation on an
external object would transfer the identity self to the
identity of the external object since self always refers
to the object that receives the message. Therefore, it

would be impossible for the external object to request
additional information from the instances of classes
Secretary or Clerk by sending a message to self. In
addition, overriding the methods of the external object
by classes Secretary and Clerk would no longer be
possible. This, the so called self-problem, is defined
by Lieberman in [56].

Our implementation in figure 4 can not achieve the re-
quirements of the office system. Since class
PlanningManagement is a class, it is not suitable to
store the strategical information locally. Using class
variables, as provided by Smalltalk [49], is not appro-
priate because we may want to create several instances
of class PlanningManagement, cach with its own
strategical information.

One proposed solution to this problem is to use a
delegation hierarchy instead of inheritance [56].
Delegation 1s mechanism that allows objects to redi-
rect messages to one or more designated objects. The
delegated object becomes part of the extended identity
of the delegating object, thereby solving the self-
problem, We are convinced that both inheritance and
delegation must be employed to model shared behay-
1or. Current object-oriented methods [1-10], however,
do not support delegation hierarchies® and therefore do
not provide convenient mechanisms to model shared
behavior with state.

4.2.2. Atomicity versus Inheritance

Atomic actions have proven to be a useful mechanism
to preserve consistency [58]. Serializability and indi-
visibility [50} are the two important properties of
atomic actions. Serializability means that if several
actions are executed concurrently, they manipulate the
attected data as if they were executed serially in some
order. Indivisibility means that either all or none of the
atomic actions are performed. Atomic actions lessen
the burden on software engineers by providing them
with a high-level mechanism to deal with the effects
of concurrency and failures. Serializability makes cer-

3 Some methods advise the use of a delegation hierarchy in
case inheritance is not suitable [4, 9]. Delegation, as
presented in these methods is not the true delegation, because
It I1s based on operation invocation on a delegaled object, and
therefore does not support extensibility through the pseudo
variable self.

348

tain that concurrent actions do not interfere with each
other. Indivisibility guarantees that when an atomic
action is affected by a failure, its partial results are un-
done.

Atomic actions were first adopted in databases as
transactions [48, 50]. Database applications are typi-
cally characterized by multiple accesses and perma-
nent updates to shared data, and they require mecha-
nisms that guarantee data integrity. Object-oriented
methods [1-10] do not support the use of transactions.

Database transactions are somewhat limited since they
are provided to users through the database but they are
not applicable to arbitrary objects. There has been a
considerable effort to provide transaction mechanisms
as a general tool to construct distributed systems.
Most of these systems provide fransactions as an
operating system support in the form of system calls
or run-time libraries [64, 70]. Only a few languages,
like Argus, support transactions within a language
[57].

Class B
npnratlnn51 .
| oparntlnnBﬁ
Class A | aparatlanﬂk
npnratlanﬁe’i """"""" aparutlnnB1
apﬁrati‘:“)ﬁ‘a begin- ~-transaction
-";-::: """"" e.pmae.a'm-:-:.rsa:e:e:ezeasees:efv-' omd-transaction

i e e e
Pl

npnmtwnﬁ1
ﬂpérutlunt‘:z

uparatlnnC'l

begin-transaction
seif.operationAtl;
self.operatilonBi;

and-trnnnnct_lrnn

Class C

Figure 5. Problem of using atomic transactions with an
inheritance hierarchy.

Most object-oriented databasc systems provide trans-
actions for a program block by delimiting it with
begin~transaction and end-transaction
like constructs, or by making the complete operation
body atomic [43, 53, 61]. Although transactions are

useful abstractions to preserve consistency, they arc

not uniformly integrated with the object-oriented

349

concepts. This is due to the conventional procedure-
call ike semantics of transaction executions. Consider,

for example, the inheritance hierarchy as depicted by
figure 3.

[n this example, Class C inherits from classes A and B.
The operation operationBI1 of class B declares an
atomic transaction block in its implementation.
Assume that class C requires to execute two inherited
operations operationAl and operationB1 atomically.
The operationCl of class C, therefore, declares an
atomic transaction block, and reuse the operations
operationAl and operationBl by Invoking these
operations on the pseudo variable self within the
atomic block.

[n an extreme case, assume that class C requires to
execute all the combinations of operations of classes A
and B atomically. If these combinations are restricted
only to a pair of operations, then class C has to declare

J X K operations atomically. If the operations declared

by class € are also to be included 1n atomic
declarations, and combinations are not restricted to a
pair of operations, then the required number of atomic
operation declarations grows exponentially.

4.2.3. Arbitrary Inheritance Mechanisms

Class inheritance can be seen as cxcluding, overriding
and/or extending the operations and local variables of
the superclasses. This kind of inheritance mechanism,
however, fails in modeling inheritance hierarchies
which require semantics other than overriding or ex-
tending operations. To make this more clear, consider
a class Calculator which defines the operation com-
puie that processes the input text stream according to
its specifications.

This calculator implements four arithmetic operations
(operators) and the input text stream can be provided
in the usual form, such as "2 + 2 =", The opera-
tion compute of class Calculator checks the syntax ot
the input stream and computes it if it understands the
syntax. Ideally, class Calculator can be extended, for
example, by defining a subclass ScientificCalculator
extending the grammar rules for some scientitic com-
putations, such as trigonometric functions. The object-
oriented model has no adequate means to implement
such hierarchies.

One might claim that implementation could be real-
ized by defining a class with basic arithmetic opera-
tions and its subclass providing a set of scientific op-
erations. This solution, however, still requires a parser
to be further extended in order to parse the input text
stream containing additional trigonometric operators,
and to invoke the corresponding operations.

A possibility could be to define operations for realiz-
ing a parser, and reuse them through the class hierar-
chy. However, this would force the software engineer
to choose implementations early in the analysis phase
which is obviously not desirable. This implies that
using class inheritance only is not sufficient for deal-
ing with the evolution of software systems incorporat-
ing parser modules.

The need for an inheritance mechanism other than
class inheritance becomes very apparent when build-
ing application generators. An application generator
accepts a certaln Specification, in our example a
grammar specification, and generates executable code
in its application domain. When developing such sys-
tems, especially in the analysis phase, the software
enginecer needs to define hierarchies that organize the
specifications of the application domain.

4.2.4. Inheritance versus States

Most methods {1-4, 8] consider states as an important
aspect of object-oriented software development, States
are used to capture the dynamic behavior of systems,
and are also used as a means for identifying operations
of objects. In general, a state represents the condition
of an object at a certain moment. This condition is ex-
pressed in terms of the values of local variables.
Events indicate the transitions from one state to an-
other. In object-oriented systems, events are usually
initiated by the reception of messages.

Although these methods consider states as an essential
Issue in object-oriented modeling, they do not address
the integration of states with inheritance. First of all, it
is not clear whether the state specification of a class
should be considered to be inherited by its subclasses.
If this is not the case, it means that state specifications
have to be provided again for every new subclass (i.e.
lack of reuse). If state specifications are inherited by
subclasses, it must be clearly defined how extensions
are to be made to the oniginal specifications. Things

350

become more complex when multiple inheritance is
considered; inheriting multiple state specifications
may cause inconsistencies or conflicts.

Only OMT [8] considers the issues of generalization
andfor specialization ot state specifications as signifi-
cant. State diagrams are inherited via the class inheri-
tance mechanism. Specialization of state diagrams is
partially possible, by replacing a single state of the su-
perclass by a state diagram in the subclass. The
method also proposes a generalization hierarchy of
events, which should be independent of the class hiet-
archy. Reuse and extensibility of state diagrams are
restricted due to the limited possibilities for extension,
Although multiple inheritance is supported by the ob-
ject-model, the consequences of this are not worked
out in cases where states are inherited.

We claim that a notation for the specification of state
diagrams should be suitable for extension by sub-
classes. Although such a mechanism 1s not provided
by most conventtonal methods, several object-oriented
languages provide a mechanism for specitying states.
This is primarily useful for purposes of synchroniza-
tton and concurrency control. Examples are ACT++
[52] and Rosette [67]. However, there may be some
situations where a certain extension of a class requires
extensive redefinitions, whereas this seems intuitively
unnecessary. We demonstrate an example of the so-
called State Partitioning Anomaly |59] which 1s ex-
emplified by a class BoundedBuffer.

The bounded buffer is a FIFO buffer with a Iimited ca-
pacity for storing data elements. The buffer provides
two operations: put and get. The operation put adds an
element to the end of the buffer, provided there is
space available. The operation get retricves an element
from the head of the buffer, if there are any elements
avallable. It a request cannot be executed at the mo-
ment of invocation, it is qucued. An instance of
BoundedBuffer can be in one of the following states:
empty, full, and partial. The state partial means that
the buffer contains at least one element but is not en-
tirely filled. Synchronization of the bounded buffer is
then described as follows:

empty --> only the put operation can be executed; the
get operation 18 queued.

partial --> both the put and the get operations can be

executed.

full --> only the get operation can be executed; the put
message must be queued.

The state partitioning anomaly occurs when the
bounded buffer 1s extended, for example, to a subclass
called BoundedBuffer2 with an operation that returns
two elements at a time. Then the state partial of the
puffer is partitioned 1nto two sub-states; one being the
state where a single get 15 allowed, but a double get is
not. In the other sub-state both a single and a double
get are allowed. Clearly, this gets more complicated
when an arbitrary number of elements is to be added
and/or extracted.

When a state partitioning is required in a subclass, this
creates two problems. Firstly, all operations in the su-
serclass that explicitly identify the partitioned state
ave to be redefined 1n order to make the distinction
etween the two sub-states that are required in the
subclass, Secondly, the introduction of the two sub-
states eliminates the super-state, requiring redefinition
of all references to this state.

4.3. Problems Related to Object Interactions

4.3.1. Multiple Views

Not all operations provided by an object are necessar-
ily of interest to other objects that use its services.
Therefore, it is desirable to define views on an object,
differentiating between clients. Consider the following
example.

In cur example school, as shown in figure 6(a), teach-
ers and students are represented by classes Teacher
and Student, respectively. Classes TeacherRegistration

and StudentRegistration are used for administrative
purposes. Now assume that part of the teachers are
willing to take courses, and are registered as students.
In such a case, a teacher may be viewed cither as a
student or as a teacher depending on the context that

he or she is functioning in. This situation is illustrated
in figure 6(b).

The object-oriented methods that are studied in this
paper [1-10] cannot express multiple views of objects.
In languages such as C++ [47], Trellis/Ow! [62] and
PAL [42}, different views can be defined by the pro-
grammer with respect to the different categories of cli-
ents of an object. These mechanisms in general only
distinguish between the following categories: the ob-
ject itself, the subclasses of an object, and other client
objects. However, they do not allow any distinction
between ditferent kinds of external client objects. In
the Smalltalk programming environment [49] the con-
cept ot private operations is introduced, but it is not
enforced by the language. Note that multiple views
cannot be simulated by introducing a different object
for every view. This is because there must be one ob-
ject, with a single identity, and a single state, which
behaves ditferently according to the way it is being
viewed.

4.3.2. Queries and Language-Database Integration
Most object-oriented methods do not address the data-
base issues, such as persistent data structures, trans-
actions, and queries in softwarc development. A few
methods (4, 8] address database issues, but only in re-
spect to the definition of persistent objects.

Traditionally, data-intensive applications have been

e ap—

oy

& —r b sintegisied n b
a - -r b iiollows dontase frem b

Figure 6. A school administration system: (a) classes have single views (b) class Teacher2 hias multiple views.

351

developed as application programs executing on top of
a database management sysiem by using database
services [44]. This approach suffers from the need to
manage two different languages and data structures.

There have been a number of attempts to integrate the
two systems within the framework of the object-
oriented paradigm [43, 53, 61]. 1t 1s claimed that there
would be a higher level of integration since the object-
oriented model is suitable as a common computation
model for both application programming and data
management operations.

Current object-oriented database systems support the
basic elements of the object-oriented model, and pro-
vide efficient data management, transaction support,
and querying facilities. However, the complete inte-
gration of language and database systems cannot be
considered to be accomplished satisfactorily. The
problem is many-fold.

Firstly, since these systems extend an object-oriented
computation model with conventional database
mechanisms, such as (non-object-oriented) query lan-
guages, the programmer still has to deal with two dif-
ferent systems. For instance, the usage ot a separate
block constructor in GemStone's OPAL [43], or the
necessity of explicit object lookups and puts, object-
type links, and the SQL interface in Ontos [61], force
the programmer to deal with two distinct systems.

Secondly, introducing database-like features into the
object-oriented language model generally weakens en-
capsulation. In Gemstone [43], Orion [33] and Ontos
(61], attempts to formulate object queries have re-
sulted in path expressions which make object struc-
tures visible, contrary to the encapsulation principle of
the object-oriented model: encapsulated data should be
accessible via message sends only,

Thirdly, for almost all systems, queries are restricted
to a fixed number of classes, and thus objects to be ac-
cessed associatively have to be inserted into an in-
stance of these classes explicitly. For example, the
query capabilities in Smalltalk [49] and Gemstone
[43] are restricted to instances of collection classes.
The problems with Orion's [53] approach are that
queries are defined on all instances of a class, thereby
produces sets, and the resulting sets cannot be further
restricted, In Ontos [61], queries can only be directed

352

to classes and aggregates. Similar to Orion, return
values are restricted to a few types of classes. In addi-
tion, a query may return rows that are not objects.

Other problems with respect to data management are
related to atomic transactions and multiple views, and
have been handled in sections 4.2.2 and 4.3.1, respec-
tively.

4.3.3. Coordinated Behavior

The object interaction model of object-oriented meth-
ods [1-10] is mainly based on message send seman-
tics, where the sender object transmits a message to a
receiver object, and depending on the synchronization
semantics, either it waits until the receiver object ex-
plicitly returns from performing its task or continues
with its processing®. We consider the message send
model as being too low-level, because it can only
specify communications that involve two partner ob-
jects at a time and its semantics cannot be easily ex-
tended.

Bicycle |||
Padestrian |fetd
' Tralflc
Lights

(@) (b)

Figure 7, Coordinated behavior: (a) distributed to objects.
(b) abstracted within a module,

Mechanisms like inheritance and delegation only
support the construction and behavior of objects but
not the abstraction of communication among objects.
These mechanisms therefore fail 1n abstracting
patterns of messages and larger scale synchronization
involving more than just a pair of objects. Consider
the interaction pattern of objccts trying to cross a

4 Booch's design notation (1] introduces different kinds of

synchronization, such as simple, synchronous, halking, time-
out and asynchronous communication.

junction as illustrated by figure 7(a).

Application of current object-oriented methods would
probably result into a specification similar to figure
7(a) which shows a pattern of interactions among ob-

jects Bicycle, Truck, Car, Pedesirian, Junction and
TrafficLights.

In the real-world, however, we define traffic laws to
specify the rules to participate in traffic flow. Traffic
laws simply define the coordinated behavior of objects
in traffic. The modularization of traffic rules has two
obvious advantages. Firstly, it is easier to enforce
traffic rules if there 1s a module explicitly representing
them. Secondly, similar to the object-oriented sub-
classing principle, modularly specified rules can be
extended easily by introducing new rules.

The idea of specifying object interactions is only ap-
plied® by contracts [51]. Contracts define the contrac-
fual obligations that a set of participants must satisty.
It 1s possible to refine a contract in order to make it
more specific, and it is possible to include existing
contracts into a new contract. Although contracts are
very useful in verifying the communication between
its participating aobjects, they cannot be fully exploited
for abstracting actual communications. Firstly, con-
tracts have their own inheritance hierarchy which is
not integrated with the class inheritance hierarchy.
Secondly, contracts are only concerned with making
sure that the communication between its participants
satisfies the contractual obligations, but the actual
communication activities are distributed over the par-
ticipants. This makes it impossible to reuse the im-
plementation of the object interactions.

Coordinated behavior can not be modeled by class in-
heritance. For instance, classes of Bicycle, Car and
Truck do not inherit from class TrafficLaws. These
classes use traffic laws when they need them; they are
not laws by themselves. What is required here i1s the
abstraction and realization of the coordinated behavior
by a dedicated class TrafficLaws, as illustrated by fig-
ure 7(b).

5. Evaluation
An overview of which specific problems were encoun-

—_—

S Apart from the object-oriented language Sina [16].

tered in each of our pilot-studies is given in figure 8.
We will brietly explain the connections between the

identified problems and the pilot studies in which they
were encountered.

The problem of identifying classification structures in
the problem domain was very obvious while we were
analyzing large systems, such as the administrative
system, the intelligent tutoring system, the distributed
office system, and to a lesser degree the distributed
operating system. The classification structures that we
could identify were too simple to be usable. Finding
hierarchies within the identified subsystem, however,
was not as difficult since these sub-components were
highly specified and well-understood. Generally, sub-
systems are responsible for a well-defined function,
and therefore can be related to a specific and well-or-
ganized knowledge domain.

We observed the problem of creating excessive objects
while we were analysing the network database, the
chemical process control system and the mechatronic
modeling system. These are relatively well-docu-
mented and understood problem areas, with a large
number of related publications. The books that we re-
ferred to were quite voluminous. Referring to theories
is useful in defining reusable class hierarchies but may
result in an excessive number of objects.

The problem of early decomposition was evident in
the administrative system design. When we started
with the analysis phase, we could not partition the
system into subsystems due to our restricted knowl-
edge of the problem domain. We underestimated the
early decomposition problem and started to identify
objects within the whole system immediately. The
analysis process soon became unmanageable because
we had too many objects to deal with.

The problem of subsystem-object distinction was rele-
vant in the distributed operating system design as-
signment. In operating systems, resources are typically
encapsulated within each other like onion-rings [45].
In case concurrent resources are encapsulated within
cach other, it is likely that subsystems will be turned
into objects in later steps of the analysis process.

One clear illustration of the problem of commonality
versus partitioning was the analysis of the temperature
control system, In this example, subsystems included

353

different kinds of sensors which could be organized in affected the execution of these calculations. In the in-
a common hierarchy. The distribution of sensors to telligent tutoring system, knowledge sources shared
subsystems, however, made the identification of class common behavior atfected by the current state of the
hierarchies more difficult, even though the system was decision making process. In the distributed office as-
rather small. signment, office activities shared by different employ-

The problem of subsystem identification using object ~ ©€S Were affected by the current office strategies.

interactions was encountered in the development of The problem of atomicity and inheritance demon-
the distributed language implementation and the dis- strated itself in the intelligent tutoring system and in
tributed system design. In these applications, we had the distributed office system. In the first pilot study,
to deal with bulky data transfers through the network. distributed information had to be processed atomically

swiajqoid

€3INi3NJI1S UIRIIOP W3 |qQoid
s]o3iqo uiPwIOp 3AISS3OXT
uonisedwoasp Ajiey
uoilaunsip 193lgo-waisAsgng
uoljesijituapl wayshsqng
ajei1s yiim lJlolaeyaq buireyg
aauelliayu] pue Adiwoly
asuejllayur Areiliqly
SIJEIS SA IJaueIayu]
SM3aIA a{diliny
aseqgejep-abenbuey
10iARYaq paleuiploon

Gujuolliyied sa Ajljsuocwiwe’

Pilot studies

]
o
|

Administrative system At ke

Network database

|||||||||||||||||
..........

Chemical process control system

Vvl

Mechatronic modeling system R o R

LRI il RN B R IR e . i - e s .) i . '
-, R it MO TN : S, LT L : : o '
R A A . B R . R e . N R R NIRRT SR w s wryywyw _— L . . - . .
e e AN E TR TN TTEE ORI IO UL T L A e 2 P T L B L B I B L L LB l e ‘1 . ——— . 'hm%w
N T i 8 e e e T TR TR o i s L P/ LR e * b
I et s oy it NN R R o B i B R T it S e . N R . L LAt RN
R L I B R e S Sl T T e e e e R oo ! : ' .
LR B R R R L [T S L R R BRI i R A A A R R i R L R - o " LT .

intelligent tutoring system R e

llllllllllllllllllll
' . . .

Concurrent processing/synchron, e

oyl

Distributed office system

Distributed janguage Implaman.m | | JE

Parser generator for Smalitalk

Distributed op. system design i B e

Temperature control system o
Intelligent maill system

Figure 8. Pilot studies versuy problems.

Without using automatic mechanisms [63, 66], how- by different knowledge sources. In the latter zlséigli~
ever, it was almost impossible to identify subsystems ment, the distributed calendar management system and
using object interaction patterns. the financial control system required atomic transac-

The problem of sharing behavior with state manifested ~ t1ODS.

itself in at least three applications: the administrative ~ During analysis of the chemical process control sys-
system, thc inteliigent tutoring system and the dis- tem, the mechatronic modeling system, the concurrent
tributed office system. In the administrative system, processing and synchronization examples, and the
some information about persons had to be reused in parser generator for Smalltalk, we needed to define a
different calculations. The current state of the persons different inheritance mechanism other than conven-

354

tional class inheritance. Typically all these applica-
ions were generated by using abstract specifications,
and for each specification, a dedicated inheritance
mechanism had to be defined.

The problem of inheritance versus states was very

obvious In the concurrent processing and synchroni-
zation examples.

The multiple views problem was clearly observed in
the administrative system, the mechatronic modeling
system, the intelligent tutoring system, the distributed
office system, and in the intelligent mail system.
Multiple views were needed in these applications to
properly structure object interactions.

We were confronted with the problem of language-
database integration in the administrative system, the
intelligent tutoring system, the distributed office sys-
tem, and in the intelligent mail system. All these ap-
plications required some sort of query facilities and
persistent objects. We did not face this problem in the
network database assignment, because queries were
very simple and objects were not persistent.

For many applications, we could benefit from mecha-
nisms that could abstract communication details. In
the administrative system, different components had to
coordinate for calculations. In the chemical process
control system and the mechatronic modeling system,
algorithms were distributed to different components,
but could be abstracted into modules. In the intelligent
futoring system, the decision making process was
based on the coordination of different knowledge
sources, Similarly, the distributed otfice system and
the distributed operating system designs required
communication abstractions, for example in building
layered architectures, dedicated distributed concur-
rency-control mechanisms and implementing security
protocols.

6. Our Research Activities

We initiated a number of research activities tounded
on our experiences in object-oriented design. This
scction briefly introduce our research activities.

We believe that an object-oriented model that provides
abstract operations for its users and encapsulatcs its
implementation details is a good starting point for
building large systems. Polymorphic message passing

between objects and sharing mechanisms, such as
Inheritance, are important techniques in building
reusable and extensible software. However, we feel
that the conventional object-oriented model is not

powerful enough to deal with the problems that are
presented in this paper.

In order to address the identified problems, we have
introduced a new concept, called composition filters.
The basic object model 1s extended modularly by
introducing tnput and output composition filters that
atfect the received and sent messages, respectively.
Composition filters support the following features:

Both inheritance and delegation are supported without
introducing special language constructs such as class
inheritance and/or delegation® [37]. As a result, one
can implement shared object statcs embedded in the
behavior of objects through delegations. This
technique solves the problem of sharing behavior with
state as presented in section 4.2.1.

Composttion filters are able to express a mechanism
called atomic delegation [39]. Atomic delegation
allows an object to delegate the requests of i1ts users to
one or more objects atomically; atomic delegations are
serializable and indivisible. Atomic delegation
resolves the problem of atomicity and inheritance
which was defined in section 4.2.2.

The inheritance versus states problem, as presented in
section 4.2.4, can be solved by controlling object's

interfaces through the application of composition
filters [41].

The composition-filter mechanism can define multiple
views on an object by differentiating between chients
(40}, The multiple views problem was identified in
section 4.3.1.

Composition filters can express associativity on
inheritance and delegation hierarchies; this 1s called
associative inheritance/delegation [40]. This feature is
useful in managing complex inheritance/delegation
hierarchies. In addition, data management operations
such as select and union can be defined through input
composition filters for any object [40]. This featurc
eliminates the restriction of the current object-oriented
databases which only allow database operations on

6 In [37], composition filters were called intertace predicates.

355

class hierarchies and/or a special set of classes such as
collections. The problem of language-database

integration was described in section 4.3.2.

Output composition filters are used to support the so-
called abstract communication types that abstract
patterns of communication and large scale synchro-
nization among objects. We are currently carrying out
a research activity based on our earlier publication
[16] to address the problem of coordinated behavior,
as presented in section 4.3.3.

We are defining suitable software development
methods to fully utilize and support the composition-
filters based object model.

The concept of composition-filters is adopted by the
Sina language. Various versions of the Sina language
have been implemented. The early version of the
language allowed only a single input filter with a fixed
structure |37, 39]. In addition, some publications [68,
69] have illustrated the flexible concurrency control
and synchronization mechanisms of the early version
of Sina. The extended version of the language is
published in our recent papers [40, 41].

To minimize expensive network traffic, we have
introduced the concept of inverse remote procedure
calls (IRPCS) [65, 66]. The IRPC system partitions a
given program by using a new heuristic that derives a
(sub-)optimal object allocation to the network sites.
Originally, the IRPC system was intended to be a part
of an operating system, thus providing transparent
code partitioning. Currently, we are extending this
work to support software development activities. We
define algorithms to partition systems hierarchically
using both the functional and object-interaction
semantics of applications. The extended IRPC
algorithm attempts to resolve the problem of
subsystem 1dentification using object interactions, as
presented in section 4.1.2.

The problem of arbitrary inheritance hierarchies, as
presented in section 4.2.3, is addressed partially by the
grammar inheritance tool [38]. Grammar inheritance
s a structural organization of grammar rules by which
a grammar inherits rules from super-grammars or may
have its own rules be inherited by sub-grammars.

356

7. Conclusions

We brietly introduced the basics of the object-oriented
paradigm and the state-of-the-art software develop-
ment methods. Then we presented the pilot studies
that we were involved with. Based on the experiences
from these pilot studics, we identified a number of
problems, in three categories: preparation, structural
relations and object interactions, which are explained
(n section 4. We then evaluated our pilot studies with
respect to these problems.

The following origins of these problems can be rec-
ognized. Firstly, some problems, such as of problem
domain structures, excessive domain objects, early de-
composition, commonality versus partitioning and
subsystem identification are inherent to the object-ori-
ented software development methods. They arise due
to the size and complexity of the problem domain, and
the way in which it is modeled by object-oriented
methods.

Secondly, some problems are due to the process of
object-oriented development. For example in the
commonality versus partitioning problem, one of the
two object-organization hierarchies (i.e. classification
and part-of hierarchies) prevails over the other.
Whichever choice is made, the primary organization
hierarchy will hinder proper identification of the seco-
nd organization hierarchy. Similarly, early decompo-
sition impedes proper structure identification, and late

decomposition results in too many objects to deal
with.

Thirdly, the expressive power of the object-oriented
computation model is too restricted to deal with the
problems that involve structural relations and object
interactions.

In spite of the encountered problems we are optimistic
about the application of object-oriented development
methods. This 1s both due to our current experiences
with the pilot applications, and to our expectation that
most of the identified problems can be solved, at least
partially.

Acknowledgements

We would like to thank Charles Grossman and Enis
Yiicesoy for their efforts in improving the earlier ver-
sion of this paper.

References

State-of-the-art Object-Oriented Methods:

[1] G. Booch, Object-Oriented Design with Applications, The
Benjamin/Cummings Publishing Company, Inc, 1991.

D. de Champeaux, Object-Oriented Analysis and Top-
Down Software Development, European Conference on
Object-Oriented Programming, pp. 360-375, July 1991,

P. Coad & E. Yourdon, Object-Oriented Analysis, 2nd edi-
tion, Yourdon Press Computing Series, Prentice-Hall, 1991.

P, Coad & E. Yourdon, Object-Oriented Design, Yourdon
Press Computing Series, Prentice-Hall, 1991.

R. Johnson & B. Foote, Designing Reusable Classes,

Journal of Object-Oriented Programming, pp. 23-35,
June/July 1988,

K. Lieberherr & 1. Holland, Assuring Good Style for

Object-Oriented Programs, TEEE Software, pp. 38-48,
September 1989,

K. Lieberherr et al.,, Graph-Based Software Engineering:
Concise Specifications of Cooperative Behavior,
Northeastern University, Tech. Report: NU-CCS-91-14,
September 1991,

J. Rumbaugh et al., Object-Oriented Modeling and Design,
Prentice-Hall, 1991.

R. Wirfs-Brock et al,, Responsibility-Driven Design,
Prentice-Hall, 1990.

R, Wirfs-Brock and R. Johnson, Surveying Current
Research in Object-Oriented Design, Communications of
the ACM, Vol. 33, No. 9, pp.104-124, September 1990,

Other methods:

[11] G. Booch, Software Engineering with Ada, Benjamin-
Cummings, 1983,

(12] G. Booch, Object-Oriented Development, IELE

Transactions on Software Engineering, Vol, SE-12, No. 2,
pp. 211-221, February 1986.

[13] S. Shlaer and S. Mellor, Object-Oriented Systems Analysis,
Modeling the World in Data, Yourdon Press, 1988,

[14] E. Yourdon, Modern Structural Analysis, Prentice-Hall,
1989,

Pilot Studies.

151 M. Aksit, Concurrent Processing and Synchronization, in
On the Design of the Object-Oriented Language Sina,
Ph.D. Dissertation, Chapter 3, Department of Computer
Science, University of Twente, The Netherlands, 1989,

M. Aksit, Abstract Communication Types, in On the Design
of the Object-Oriented Language Sina, Ph.DD. Dissertation,
Chapter 4, Department of Computer Science, University of
Twente, The Netherlands, 1989

M. Aksit, Atomic Delegations, in On the Design of the
Object-Oriented Language Sina, Ph.D. Dissertation,
Chapter 5, Department of Computer Science, University of
Twente, The Netherlands, 1989

[18] 1. Bank, Concurrent Programming and Synchronization in

2]

3]
[4]
[5]

[6}

[7]

8]

(9]
[10]

[16]

[17)

[19]

[20]

[21]

[22]

23

[24]

[25]

[26]

127]

[28]

[29]

[30]

[31]

32]

[33]

[34]

357

Stnafst, University of Twente, Department of Computer
Science, M.Sc. Thesis, The Netherlands, June 1988

M. v.d. Bempt, Construction of Hierarchies in Distributed
Computer Systems, M.Sc. Thesis, Department of Computer

Science, University of Twente, The Netherlands,
November 1997

L.M.J. Bergmans, The Sina Distribution Model, M.Sc,

Thesis, Department of Computer Science, University of
Twente, The Netherlands, March 1990,

A. Breunese, Design and Implementation of a Mechatronic
Modeling Environment Using QObject-Oriented Principles,
M.Sc. Thesis Description, Department of Electrical
Engineering, University of Twente, The Netherlands, 1992.

N.M. van Diepen, H. Griinefeld & W.A. Vervoort (eds.),
Ontwerpen van een Netwerkdatabase in vier talen,

Memoranda Informatica 91-22, University of Twentc,
March 1991.

J.W. Dijkstra, Atomic Delegations, M.Sc. Thesis,

Department of Computer Science, University of Twente,
The Netherlands, December 1988,

H. Dolfing, An Object Allocation Strategy for Stna, M.Sc.
Thesis, Department of Computer Science, University of
Twente, The Netherlands, November 1990,

N. de Greef, Object-Oriented System Development, M.Sc.
Thesis, Department of Computer Science, University of
Twente, The Netherlands, 1991,

E. Jonge, Object-georientcerde Arnalyse, Ontwerp en
Implementatie van een Batchdestillatiebesturing, M.Sc.
Thesis, Department of Chemical Engineering, University of
Twente, The Netherlands, January 1992,

K.A. Lesterhuis, An Object-Oriented User-Interface Model,
M.Sc. Thesis, Department of Computer Science, University
of Twente, The Netherlands, August 1991,

R. Mostert, SmallYacc, an Object-Oriented Compiler
Generator Imtroducing Grammar Inheritance, M.Sc.
Thesis, Department of Computer Science, University of
Twente, The Netherlands, December 1989.

R. Nijhuis, Sina/st, The Language and its Compiler, M.Sc.
Thesis, Department of Computer Science, University of
Twente, The Netherlands, August 1988,

M. Offreins, Requirements for Building Intelligent Tutoring
Systems, Memo, Department of Computer Science,
University of Twente, The Netherlands, 1992.

W. Veldkamp, The Sina/st User Interfuce, M.Sc. Thesis,
Department of Computer Science, University of Twente,
The Netherlands, December 1988,

}. de Visser, Object-Oriented Analysis of a Temperature
Control System, Memo, Dcpartment of Computer Science,
University of Twente, The Netherlands, 1991,

S. Vural, Object-Oriented Development of an Intelligent
Mail System, Memo, Department of Computer Science,
University of Twente, The Netherlands, 1991,

G. Wageningen, Abstract Communication Types, M.Sc.
Thesis, Department of Computer Science, University of
Twente, The Netherlands, 1989,

133]

E. G. Zondag, Hierarchical Management of Distributed
Objects, Memoranda Informatica 90-73, 1990.

Other references.
[36] Ada Joint Program Office, Reference Manual for the Ada

[37]

[38]

[39]

140}

[41]

142

43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

51]

52]

[33]

Programming Language, February 1983,

M. Aksit & A. Tripathi, Data Abstraction Mechanisms in
Sina/ST, OOPSLA '88, pp. 265-275, 1988.

M. Aksit, R. Mostert & B. Haverkort, Compiler Generation

Based on Grammar Inheritance, Memoranda Informatica
90-07, February 1990,

M. Aksit, .W. Dijkstra & A. Tripathi, Atomic Delegation:
Object-Oriented Transactions, IEEE Software, Vol. 8, No.
2, March 1991.

M. Aksit, L. Bergmans & S. Vural, An Object-oriented
Language-Database Integration Model: - The Composttion
Filters Approach, ECOOP '92.

L. Bergmans, M. Aksit, K. Wakita & A. Yonezawa, An
Object-Oriented Model for Extensible Synchronization and

Concurrency Control, working paper, University of
Twente, June 1992,

A. Bjornerstedt & S. Britts, AVANCE: An Object
Management System, OOPSLA '88, pp. 206-221, 1988.

R. Bretl et al.,, The GemStone Data Managemeni System,
Object-Oriented Concepts, Databases, and Applications,

Ch. 11, eds. W, Kim and F, H. Lochovsky, pp. 283-309,
Addison~-Wesley, 1989.

C. J. Date, An Introduction to Database Systems, Vol 1,
Addison-Wesley Publishing Company, 1990.
EW. Dijkstra, The Structure of the T.H.E.

Multiprogramming System, Communications of the ACM,
No, 11, pp. 341-346, 1968.

J.G. Donnett, M, Starkey & D.B. Skillicorn, Effective
Algorithms for Partitioning Distributed Programs,

Proceedings of the 7th Annual International Phoenix

Conference on Computers and Communications, pp. 363-
368, March 1988. |

M. Ellis & B. Stroustrup, The Annotated C++ Reference
Manual, Addison-Wesley, 1990,

K.P Eswaran, J.N, Gray, R A, Lorie & LL. Traiger, The
Notions of Consistency and Predicate Locks in @ Duatabase
System, Communications of the ACM, Vol. 19, No, 11,
November 1976,

A. Goldberg & D. Robson, Smalltalk-80 - The Language,
Addison-Wesley, 1939,

Haerder & A. Reuter, Principles of Transaction-QOriented
Database Recovery, ACM Computing Surveys, Vol, 15,
No. 4, pp. 287-317, December 1983,

R. Helm, I. Holland & D. Ganghopadhyay, Contracts:
Specifying Behavioral Compositions in Object-Oriented
Systems, QOPSLA '90, pp. 169-180, 1990.

D.G. Kafura & KH. Lee, Inheritance in Actor Based
Concurrent Object-Oriented Languages, ECOOP '89, pp.
131-145, 1989.

W. Kim et al., Features of the ORION Obhject-Oriented

[54]

[55]

[56]
[57)

[38]

[591

[60]
61}

62}

[63]

[64]

65]

[66]

[67]

68]

[69]

[70]

358

Database System, in Object-Oriented Concepts, Databases,
and Applications, Ch. 11, eds. W. Kim and F, H,
Lochovsky, pp. 251-282, Addison-Wesley, 1989,

D.E. Knuth, The Art of Computer Programming, Vo,
1/Fundamental Algorithms, Addison-Wesley, 1973.

J. A, Lewis et al., An Empirical Study of the Object-
Oriented Paradigm and Software Reuse, OOPSLA '91, pp.
184-196, October 1991,

H. Lieberman, Using Prototypical Objects to Implement
Shared Behavior, OOPSLA '86, pp. 214-223, 1986,

B. Liskov et.al.,, Argus Reference Muanual, MIT Lab. for
Computer Science, No. MIT-TR-400, November 1987.

D.B. Lomet, Process Structuring, Synchronization and
Recovery using Atomic Actions, ACM SIGPLAN, Vol 12,
No. 3, pp. 128-137, March 1977.

S. Matsuoka, K. Wakita & A. Yonezawa, [nfieritance

Anomaly in Object-Oriented Concurrent Languages, Un, of
Tokyo, April 1991,

Object Oriented Design, Course Notes, University of
Twente,; June 1992,

Ontos Object Database version 2.0 Developer's Guide,
Ontologic Inc., Burlington (Mass.), February 1991.

C, Schaffert, T. Cooper, B. Bullis, M. Kilian & C. Wilpoli,
An Introduction to TrellisiOwl, OOPSILLA '86, pp. 9-16,
1986.

R. Skvarcius & W.B. Robinson, Discrete Mathematics with
Computer Science Applications, Benjamin/Cummings
Publishing Company Inc., 1986.

Z. Spector, D. Daniels, D. Duchamp, J.L. Eppinger & R.
Pausch, Distributed Transactions for Reliable Systems,
ACM SOSP Conference, 19885.

A.D. Stoyenko, M. Aksit & J. Bosch, [nverse Remote
Procedure Calls, Memoranda Informalica 91-89, 1991,

A.D. Stoyenko, M. Aksit & J, Bosch, A new Heuristic for
Load-Balanced Assignment of Objects and Minimized
Netweork Communication in Distributed Programs
Implemented through Inverse Remote Procedure Caliy,
Memoranda Informatica 91-91, 1991,

C. Tomlinson & V. Singh, Inheritance and Synchronization
with Enabled-Sets, OOPSLA '89, pp. 103-112, 1989,

A. Tripathi & M. Aksit, Communication, Scheduling and
Resource Management in Sina, Journal of Object-Oriented
Programming, pp 24-41, November/December 1988,

A. Tripathi, E. Berge & M. Aksit, An Implementation of the
Object-Oriented Concurrent Programming Language Sina,
Software Practice and Experience, pp 235-256, March
1989,

B. Walker et al., The Locus Distributed Operating System,
Oth ACM Symposium on Operating System Principles, pp.
49-70, October 1983.

