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Experiments are conducted exploring the flow of Carbopol past obstacles in a narrow slot

and compared with predictions of a model based on the Herschel-Bulkley constitutive law

and the conventional Hele-Shaw approximation. Although Carbopol is often assumed to be

a relatively simple yield-stress fluid, the flow pattern around an obstacle markedly lacks the

fore-aft symmetry expected theoretically. Such asymmetry has been observed previously

for viscoplastic flows past obstacles in unconfined geometries, but the narrowness of the

Hele-Shaw cell ensures that the stress state is very different, placing further constraints on

the underlying origin. The asymmetry is robust, as demonstrated by varying the shape and

number of the obstacles, the surfaces of the cell walls, and the steadiness of the flow rate.

The results suggest that rheological hysteresis near the yield point may be the cause of the

asymmetry.

DOI: 10.1103/PhysRevFluids.5.013301

I. INTRODUCTION

Slow viscous flow around an obstacle is a classical problem in fluid mechanics, illustrating the

so-called Stokes paradox and its resolution. When placed into the confines of a narrow slot—a

Hele-Shaw cell—the flow problem becomes (at leading order) equivalent to two-dimensional

potential flow around an obstacle. For either unconfined or Hele-Shaw flow, the problem has fore-aft

symmetry owing to the reversibility of the steady flow field.

Here we are concerned with the generalization of these flow problems to the situation in which

a complex fluid flows around an obstacle. In particular, following recent work on soft matter and

complex fluids [1,2], we address the problem of viscoplastic flow around an obstacle in a Hele-Shaw

cell. The practical applications are widespread, particularly for drilling and fracture problems in the

oil and gas industries where unwanted blockages are a key consideration (see, e.g., Refs. [3–5]).

Flow around obstacles placed in a Hele-Shaw cell provides the simplest possible idealization of

how a spatial nonuniformity in a slender conduit can create such blockages.

Viscoplastic flows around obstacles have previously been considered in unconfined geometries,

both theoretically and experimentally (see, e.g., Refs. [6–9]). For the flow around cylinders and

spheres, the yield stress ensures that fluid motion becomes localized around the obstacle, alleviating

the Stokes paradox without recourse to inertia. Moreover, theory based on the Herschel-Bulkley

constitutive law again predicts fore-aft symmetry. In detail, the flow pattern consists of a “bubble”

of yielded material surrounding the obstacle, with triangular or conical plugs attached to its front

and back. By contrast, experiments show the surprising feature that the flow and attached plugs are
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FIG. 1. Viscoplastic flow through a Hele-Shaw cell containing an obstacle. The plane of the cell is shown

in (a), where the grid represents the mosaic pattern used to create composite images of the flow field. A

velocity profile for flow down a uniform, unobstructed cell, with a central rigid plug, is shown in (b), while

the corresponding profile through the centerline of the obstructed cell (y = 0) is shown in (c), with a shaded

pseudoplug that widens to fill the cell and become truly rigid near the obstacle.

not fore-aft symmetrical. Viscoelastic liquids also display such asymmetry, an effect attributed to the

viscoelastic relaxation of the stress [10]. Following on for viscoplastic fluid, nonideal rheological

effects such as elasticity or thixotropy have been proposed to explain the asymmetry [7,11,12].

Similar asymmetry has been observed in the flow of floating foam rafts around obstacles, which has

been modeled as two-dimensional elasto-viscoplastic flow [11].

In a narrow slot [Fig. 1(a)], the situation is very different in two important ways: the flow is

forced to yield against the walls in order to move through the slot, and the shear across the slot

dominates the strain-rate tensor of the fluid. These differences are well known, and their implications

are demonstrated in the expected flow profiles illustrated in Fig. 1. For unidirectional flow down a

uniform cell, the profile is characterized by shear layers against the walls, together with a central

rigid plug, as shown in Fig. 1(b). When the flow encounters an obstacle in the slot, however, the

fluid must slow down and be diverted sideways, preventing the central region from remaining truly

rigid. Instead, stresses in the plane of the slot become important to break the plug and hold the

central region marginally above the yield stress. The flow profile across the slot remains pluglike,

and the central region better referred to as a “pseudoplug” [1,13]. As illustrated in Fig. 1(c), the

thickness and speed of the pluglike flow vary along the slot, widening in the vicinity of the obstacle.

Eventually, the pseudoplug can grow to fill the cell, at which point the slot becomes spanned by

a genuine rigid plug. The distinction between a rigid plug filling the cell and a central, moving

pseudoplug bounded by sheared fluid is a key detail of these flows, ensuring that there is no

“lubrication paradox” of the sort that has been mistakenly proposed in the past [1].

Confined viscoplastic flow down a narrow slot is therefore rather different than the unconfined

flows previously studied; the flow is directed primarily along the slot, rendering it quasi-two-

dimensional, but the shear occurs mainly across the slot according to a known profile. Thus, unlike

in an unconfined geometry where all the velocity gradients must be measured, the velocity in the

cell’s midplane provides a direct gauge of the key strain rates. In addition, the shear stresses across

the slot provide the main resistance to flow, weakening any effects of the extensional stresses, and

further simplifying the expected rheological behavior. In other words, the Hele-Shaw cell provides

a transparent and definitive setting in which to assess nonideal rheological effects in complex flows

(cf. Ref. [14]).
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FIG. 2. Flow curves for the three different Carbopol suspensions used in this work [0.075% (black), 0.06%

(blue), and 0.055% (red)]. The curves are obtained using a rheometer with roughened parallel plates (MCR501,

Anton Paar) and correspond to ramps in shear stress, proceeding first up and then down with a ramp rate of

0.05 Pa/s. The dashed lines give the Herschel-Bulkley fits in Table I.

The current work follows on from a theoretical study [13] exploring the flow of Bingham fluid

around cylindrical obstacles in Hele-Shaw cells. As for the unconfined problem, the theory again

predicts that the flow field is fore-aft symmetric. Moreover, the pseudoplugs do indeed expand to

fill the cell over confined regions at the front and back of the obstacle. The goals in this paper are

to explore the experimental counterpart to this predicted flow structure for a wider array of different

kinds of obstacles and to identify any fore-aft asymmetry and constrain its origin. In addition, to

provide a more detailed theoretical comparison to these experimental results, we generalize the

theory of Ref. [13] to a Herschel-Bulkley fluid and perform further computations (the details of the

theoretical formulation and numerical approach can be found in that paper).

II. EXPERIMENTAL METHOD

All results reported in this work were obtained in a thin rectangular channel, formed between

two acrylic plates (of length L = 105 mm and width W = 64 mm) separated by a height H =

1 (±0.05) mm; see Fig. 1(a). The flow was generated by a syringe pump delivering a flow rate

Q with a maximum of 3 ml/min (and providing inlet flow velocities of order 10−4 m/s). To place

obstacles in the cell, we either drilled holes in the plates and inserted a cylinder or three-dimensional

printed shapes with the thickness of the channel. The shapes, with cross sections of a circle, square,

or stadium (each with a shortest cross-sectional length of D = 11 ± 0.01 mm), were printed with

internal compartments to house a magnet, so that the obstacles could be suitably positioned and

orientated inside the cell.

The working fluids were three different aqueous suspensions of Carbopol-940. These fluids were

well described by the Herschel-Bulkley constitutive law and showed little sign of hysteresis in their

measured flow curves above the yield stress (Fig. 2). Near that threshold, the flow curves display the

hysteresis commonly found when performing controlled ramps in shear stress, an effect attributable

to elastic deformation [1,15]. The flow-curve data in Fig. 2 suggest that the fluids do not display any

thixotropy of the kind previously found for other Carbopol gels [16,17]. Moreover, the fluid was

also presheared before injection into the cell, to eliminate the initial nonideal rheological effects

reported in sedimenting sphere experiments [7].

The Herschel-Bulkley fits of the yield stress τY , consistency K and power-law index n are

summarized in Table I. Also listed are measurements of the shear storage and loss moduli, G′
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TABLE I. Herschel-Bulkley fits of the Carbopol solutions. Also listed are shear storage and loss moduli (G′

and G′′) measurements taken from small amplitude oscillatory rheometry at a frequency of 1 Hz and a strain

amplitude of γ = 1% (below which we confirmed that the two moduli where independent of γ ).

Concentration

(wt/wt %) τY (Pa) K (Pa sn) n G′ (Pa) G′′ (Pa)

0.055 0.10 0.23 0.64 3.0 0.9

0.060 0.20 0.39 0.57 4.2 0.7

0.075 1.43 1.53 0.46 16 2.0

and G′′, from oscillatory rheometry; G′ is somewhat larger than G′′ for all three fluids, suggesting

a linear viscoelastic relaxation time below the yield stress that is less than a second or so [15].

This estimate for the relaxation time was consistent with additional stress relaxation tests and with

previous rheometry of Carbopol gels with similar concentration [9].

In addition to these Carbopol suspensions, we also conducted a small number of tests with

two others fluids: a glycerol-water mixture and a polyethylene oxide (PEO) solution. The former

provides a direct comparison with a Newtonian Hele-Shaw flow, the latter with a prototypical

viscoelastic liquid characterized by a relaxation time of a few seconds [18].

Particle-image velocimetry (PIV) was conducted using a swept-field laser-scanning confocal

microscope at an imaging frequency of 30 Hz. A 4×-objective lens with working distance of 16 mm

captured the motion of 3 μm diameter fluorescent beads, which were seeded at concentration of

0.005 (wt/wt%). The position of the observation plane was controlled by a motorized stage and fixed

on the central horizontal plane of the cell. Because the field of view of the lens (2 mm × 2 mm) was

too small to capture the whole cell, the full flow field was visualized by stitching together a series

of pictures to create a composite image [see Fig. 1(a)]. This procedure limited us to map the full

flow field only for a subset of the experiments, and to focus on features at the front or back of the

obstacles for most of the tests.

Each experiment was conducted by first cleaning the walls of the cell. In most cases with

isolated disks, the walls were also chemically treated to reduce wall slip, as described in Ref. [19].

Carbopol was then pumped through the cell for approximately 20 minutes before flow visualization

commenced. Given the flow rate and rheological parameters, we define the Bingham number (the

dimensionless strength of the yield stress) by

B = τY K−1(W H2/Q)n.

To verify the velocity profile across the cell, we undertook some separate studies of flow down a

uniform slot with treated walls, combining optical coherence tomography (Thorlabs TEL1300V2-

BU) with particle-tracking velocimetry [20,21]. Sample profiles are presented in Fig. 3, together

with theoretical predictions based on the prescribed flow rate and rheological parameters [13]. These

results confirm the removal of any effective slip by the chemical treatment and demonstrate how the

theory and experiment are in quantitative agreement. By contrast, and in line with other studies [22],

the Carbopol was observed to slip somewhat when the walls were left untreated. As illustrated in

Fig. 3, the slip velocity is relatively small (less than about 25% of the maximum velocity over the

range of experimental parameters, as estimated by a linear extrapolation of the particle tracking data

to the wall position) with the flow profile largely maintaining the same form as with treated plates.

A related concern was the potentially destructive impact on the wall treatment by the introduction

and rearrangement of obstacles placed in the cell, which was achieved by moving magnets

and involved dragging the obstacles over the tightly fitting walls. To avoid any possibility that

mechanical contact might interfere with the surface treatment, when we explored flows around

squares, stadia, or multiple disks, we resorted to the use of cells with untreated walls, notably in

reconstructing the full flow field (cf. Fig. 4). Before proceeding down this path, we did, however,

verify that, for isolated cylinders inserted through drilled holes in the walls, there were no significant
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FIG. 3. Experimentally measured velocity profiles for 0.06% Carbopol in a uniform cell with chemically

treated plates at the three Bingham numbers (flow rates) indicated (red). The solid black lines show

corresponding theoretical predictions given the fluxes and the rheological parameters in Table I. A profile

from a cell with untreated plates for B = 1.2 (green) is also shown.

differences with results for flows down cells with treated walls [see Fig. 7(c) and the relevant

discussion in Sec. III B].

III. RESULTS

A. Plug phenomenology

Sample experimental results for cells with different obstacles are presented in Fig. 4, while a

selection of complementary numerical solutions are presented in Fig. 5. Figure 4(a) shows a control

experiment in which a Newtonian fluid (a glycerol-water solution) was pumped around a disk. The

flow pattern is fore-aft symmetric and compares well with the potential-flow theoretical solution

that is also plotted.

The symmetry is preserved when test is repeated with the PEO solution [Fig. 4(b)]. For the

unconfined configuration, the flow pattern in such a fluid is expected to become asymmetrical owing

to viscoelastic relaxation, which pushes the maximum shear stresses downstream of the top and

bottom of the obstacle [10]. For the experiment shown in Fig. 4(b), one might expect that a similar

relaxational effect arises and suppresses the plug in the wake. However, no asymmetry is observed

for PEO, a result that extends to a range of flow rates and polymer concentrations. On further

consideration [14], the absence of fore-aft asymmetry in this viscoelastic flow is not surprising:

for the sheared flow in the narrow geometry of our Hele-Shaw cell, the extensional stresses are

suppressed and the Weissenberg number is relatively small [typical shear rates are 0.1 s−1, in

comparison to the O(1 s) relaxation time].

Figure 4(c) shows the analogous experiment with Carbopol, which differs in two ways to the

Newtonian and PEO tests. First, unyielded plugs spanning the cell appear at the front and rear

of the disk, and this feature of the flow is mirrored in the theoretical solutions [Fig. 5(a)]. In

detail, however, the structures in the flow field, and in particular the dimensions and shapes of

the experimental plugs, differ from their theoretical counterparts. Notably, the experimental plugs

have a roughly right-angular form, whereas their theoretical counterparts thin to a pronounced

cusplike nose. This discrepancy may arise because the Hele-Shaw theory breaks down on length

013301-5



MASOUD DANESHI et al.

FIG. 4. PIV images showing speed, normalized by the incident speed Uc = Q/W H , and streamlines (all

flowing left to right) along the midplane of the slot around various obstacles. (a) The flow around a disk for a

glycerol-water solution (31 wt/wt%) at Q = 0.05 ml/min; dashed lines show the corresponding potential-flow

solution. (b) Flow field for a viscoelastic PEO solution (0.75 wt/wt%) with Q = 0.16 ml/min. (c)–(k) Flow

fields for a Carbopol solution (0.06 (wt/wt%), untreated walls) with B = 3.1 (c), (g), (h) and B = 2.7 (d), (e),

(f), (i), (j), (k). The upper limit of the color bar was set at X = 2.8 for (a), (b), X = 2 for (j), (k), and X = 1.6

for (c)–(i). (l) An average image near the plug at the front of a disk (0.075% Carbopol solution, B = 2.3, treated

walls). The solid lines indicate the edge of the plug according to edge detection (green) or a velocity threshold

(red); the dashed line shows the estimated plug length ℓp. White lines in (c)–(k) show the yield surfaces detected

using a velocity threshold of 0.0005 mm/s.
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FIG. 5. Speed (shading; scaled by the incident speed Uc) and representative streamlines (solid black lines)

along the midplane of the slot for computations of Herschel-Bulkley fluid around the gray-shaded obstacles,

for n =
1

2
and B = 4. The range of the color bar matches that used in Figs. 4(c)–4(k). The white lines show

yield surfaces, given by the threshold U/Uc = 1 × 10−3.

scales comparable to the height of the slot (here H ∼ 1 mm, which is comparable in size to the

discrepancy between theory and experiment) or by the complications in defining the edge of the plug

due to undetectable velocities. Such possibilities cannot, however, rationalize the second difference

between the Carbopol and earlier tests, which is that there is a marked fore-aft asymmetry in the

flow pattern, with the plug at the front being larger than that at the rear, and mirrors findings for

unconfined flows [7,8].

Figures 4(d)–4(k) show more experiments with different shapes or combinations of obstacles (all

with the 0.06% Carbopol). Plugs again appear in almost all cases, except when the front or rear of the

obstruction has the form of a relatively sharp corner [Fig. 4(h)]. Once again, there is some qualitative

agreement with complementary theoretical results for different obstacles [see Figs. 5(b)–5(f)].

However, in every case the experimental flow patterns display a clear fore-aft asymmetry that is

absent in the theoretical predictions. There are also quantitative differences with the theoretical

predictions for the plugs that are again suggestive of inadequacies in the Hele-Shaw approximation

(for example, there are small plugs at the front and back corners of the diamond-shaped obstacle in

the computations, but not the experiments).

The limitation of the Hele-Shaw approximation is certainly responsible for the substantially

faster flows that arise against the top and bottom of the obstacles in the theoretical solutions; see

Fig. 6(a). In particular, in this approximation, fluid is permitted to slide along the boundary of the

obstacle, whereas in reality any slip is either much reduced or eliminated entirely, depending on the

degree of surface interaction. Consequently, to correct the theory a boundary layer of thickness H

is needed that sheathes the obstacle and adjusts the surrounding velocity field to accommodate the

true surface condition. The boundary layer is visible in all the experimental images of Fig. 4, as are

the excessive high-speed regions in the solutions of Fig. 5. The maximum speeds attained in the

theory are therefore too high in comparison to the experiments. In fact, as shown in Fig. 6, because
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FIG. 6. (a) Scaled theoretical (top) and experimental (bottom) speeds, U/Uc, for flow around a disk with

n = 0.57 and B = 2.3, corresponding to panel (l) in Fig. 4 (and using the same scheme for the color map as

that figure). In (b), the theoretical (solid lines) and PIV (dots) speeds are plotted along the sections indicated

by the vertical dotted lines in (a). The notable disagreement in the velocity profiles past the top and bottom of

the disk is a result of a local breakdown of the Hele-Shaw approximation over a distance of the order of the

slot thickness from the disk, as discussed in the main text.

the experimental slot is not that narrow (H/D ≈ 0.1), the high-speed regions predicted theoretically

are almost completely smeared out, rendering the faster flows more distant and broader. Otherwise,

the sections of speed across the slot shown in Fig. 6(b) compare fairly well between theory and

experiment (modulo the fore-aft asymmetry in the latter).

Note that, for multiple disks and stadia, both the experiments and theoretical computations

display a “cloaking” effect similar to that reported in Ref. [23]: when such obstacles are orientated

broad-side on, the unyielded plugs at the front and back mask the precise differences in shape, such

that the surrounding flow field becomes essentially the same [cf. Figs. 4(j) and 4(k) or Figs. 5(d)

and 5(f)]. Only when the yield stress (i.e., B) is sufficiently small do the plugs fail to cloak the front

or back surface, unveiling the true shape differences. [This feature is seen particularly clearly in the

theoretical plots of Fig. 8(a) below.] If the broad side of the obstacles is orientated either with the

flow or at 45◦, no such cloaking effect is possible as the surface of the obstacle is always exposed to

unyielded fluid. Nevertheless, in the Hele-Shaw geometry, the yield surface of the plugged-up cavity

for the double disks acts somewhat like the straight sides of the stadium, shielding the surrounding

flows and rendering similar their patterns [compare panels (d) and (e), or (f) and (i), of Fig. 4].

The Carbopol experiments also display weak symmetry-breaking in the direction transverse to

the flow for obstacles with a symmetry plane along the midline of the cell [i.e., up-down symmetry

in Fig. 4; compare the magnification of the forward plug in Fig. 4(l) and the speed sections in

Fig. 6]. We interpret the broken symmetry to arise from imperfections in the cell geometry and

inflow, which apparently become accentuated by the yield stress of the fluid (neither the Newtonian

nor viscoelastic experiments were noticeably asymmetrical). These imperfections are not systematic

from experiment to experiment, and separate velocimetry measurements across the slot upstream of

the obstacle indicate that the incident flow is fully developed.

B. Plug lengths

To quantify the plug size for the bluff obstacles, we measure the perpendicular distance ℓp from

the apex of the triangular plug to the obstacle surface; see Fig. 4(l). This measure is unambiguous

and convenient for all but the double disks aligned perpendicular to the flow in Fig. 4(k); for

those, we define ℓp as the shortest distance from the apex of the plug to the vertical line drawn

013301-8



OBSTRUCTED VISCOPLASTIC FLOW IN A HELE-SHAW …

FIG. 7. (a) Dimensional plug lengths ℓp of the configurations shown in Fig. 4, with the conventions

indicated by the legend. The walls of the cell are treated to remove slip for the isolated disks, but for the

squares, stadia, and multiple disks, the walls are untreated in view of the potentially destructive method of

insertion or rearrangement. (b) Scaled plug lengths ℓp/ℓc, where ℓc is chosen as indicated in the main text

for the three groupings of obstacles. The lines show theoretical results for isolated disks, calculated using

the numerical method of Ref. [13] for the Herschel-Bulkley model with n = 0.5 (black solid) and n = 1 (red

dashed). (c) A comparison of the plug size for flow of 0.06% Carbopol around disks with treated and untreated

acrylic sheets. In all three panels, we plot ℓp as positive for the plugs at the front, and ℓp < 0 for those at the

back. The error bars indicate the standard deviation from three repetitions of each experiment.

between the frontmost or rearmost points of the disks. The plug itself is identified either from edge

detection in the average of the images recorded (in which stationary tracer particles appear as bright

points whereas moving tracers become blurred into gray streaks) or from a noise-based threshold

in the velocimetry. The two methods give comparable results [see Fig. 4(l)]. To further reduce any

experimental uncertainty, tests were usually repeated three times, and we report error bars based on

the resulting standard deviations which can be as large as 15%.

A systematic survey of plug length as a function of Carbopol concentration, inlet flow rate,

and blockage configuration is shown in Fig. 7, with analogous theoretical computations shown in

Fig. 8. All the experimental results for disks, squares, and stadia, spanning roughly two decades

of Bingham number (0.1 � B � 10), are assembled in Fig. 7(a). The fore-aft asymmetry is very

clear in these results, with the plug lengths roughly fall into three groups. In particular, the plug

lengths for single disks are similar to those of two disks or stadia that are either aligned with or

at 45◦ to the flow. The plug lengths for double disks or for a stadium aligned perpendicular to the

flow are somewhat different but are similar to one another. The square is different again, with a plug

length somewhere between those of the other two groups. Although there is no fore-aft asymmetry

in the theory, the plug-length data do again fall into the same three groups, with the computations

otherwise qualitatively capturing the trend of the experimental measurements. More quantitatively,

the prediction of the plug length is somewhat low, curiously aligning more with the data for the rear

plugs than those at the front [see Fig. 7(b)].

We achieve some collapse of all the data for the 0.06% Carbopol by scaling the plug length

according to a simple algorithm, which crudely identifies the length of the obstacle over which

the incident flow forms an angle greater than 45◦: for obstacles with rounded leading or trailing

faces [Figs. 4(c)–4(f) and 4(i)] we scale ℓp with the radius of curvature of the front or rear; i.e.,

ℓc = R ≡ D/2. For obstacles with a square front or rear face, we scale ℓp by the length of that

face; for the square obstacle in Fig. 4(g); this corresponds to a scaling of ℓc = 2R. For double disks

and stadia aligned perpendicular to the flow [Figs. 4(j)–4(k)], we compose a scaling length from

the radius of curvature of the top and bottom of the obstacle plus the square length of the section
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FIG. 8. Theoretical predictions of the plug lengths from numerical simulations for the obstacle arrange-

ments indicated by the legends, and following the experimental results in Fig. 7, showing (a) ℓp/R and (b) ℓp/ℓc.

These computations have n =
1

2
; in (c) data are shown for isolated disks and the three values of n for the

experimental fluids, as well as results for n =
1

2
and for a Bingham fluid (n = 1) [13], for reference.

in between;, i.e., ℓc = 3R. Figure 7(b) shows the scaled plug lengths, ℓp/ℓc. The success of the

collapse is reinforced by Fig. 8(b), which performs the same scaling of the theoretical results. The

simple algorithm also rationalizes the lack of plugs in the tilted square in Fig. 4(h), where no part

of the obstacle is sufficiently inclined against the incident flow.

For different Carbopol concentrations and isolated disks, Figs. 8(a) and 8(b) also indicate that

the plug length is fairly insensitive to the power-law index n. Nevertheless, at the higher Bingham

numbers, the plug lengths for the highest concentration are noticeably lower, suggesting that the

plug size may increase with decreasing n. Indeed, such a trend is demonstrated by the results of

theoretical computations, as shown in Fig. 8(c).

Finally, we report the results of experiments for a single disk in a cell with untreated plates

and a range of flow speeds to examine the importance of effective slip. Poumaere et al. [22]

have previously suggested that wall slip can create complexity in the flow dynamics down narrow

conduits. As illustrated in Fig. 7(c), although there is a small quantitative effect on plug lengths,

the degree of fore-aft asymmetry remains unchanged, implying that surface interaction is not the

cause of this asymmetry, and that wall slip does not appear to introduce qualitatively different flow

dynamics in our Hele-Shaw cells.

C. Constraining the origin of asymmetry

To further constrain the origin of the fore-aft asymmetry, we conducted some additional tests.

First, we examined steady flow around two disks aligned with the flow, but with varying separations

(Fig. 9). The varying separation implies that fluid elements progress along Lagrangian trajectories

of different lengths as they deflect around the disks, such that any rheological evolution of fluid

elements should be reflected in differences in the overall flow pattern. An increase in the separation

distance between the disks leads to no observable effect on either the length of the plug at the front

of the first disk or that at the rear of the second disk. Furthermore, once the intervening distance

between the plugs is sufficiently long that the stagnant plug bridging the gap has broken up, the

front and rear plugs of the second disk are essentially the same length as those of the first. These

observations limit the rheological changes that must occur along the streamlines to those that occur

over distances of order the diameter of the disks; that is, the distance between the top of the disk

and its front or back, which is a few millimeters and corresponds to a typical transit time of 10 or so

seconds, given that typical inlet flow speeds are order 10−4 m/s.

Despite this, the data in Fig. 9 demonstrate that the plug bridging the gap can be longer

than the combined length of the plugs at the front and back of an isolated disk. The leading
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FIG. 9. Plug lengths for two disks aligned with the flow as a function of the center-to-center separation L,

for experiments with untreated sheets and numerical computations; B = 2.7 and n = 0.57 (0.06% Carbopol),

The images (i)–(iv) below correspond to the separations identified in the main panel, with the symbols

corresponding to the plug locations indicated, and show scaled speed maps (with color bars as in Fig. 4) and

streamlines. Given the lack of any apparent trend with L, the scatter in the experimental data for the leading

plug length (filled red circles), with a standard deviation of about 15%, gives a sense of the overall uncertainty

in the measurements.

obstacle must therefore cast a shadow on its follower, which increases the length of the front plug

attached to that second obstacle just after the bridge is broken. These more quantitative details

of the flow adjustments induced by the interaction of the obstacles are obscured by the scatter in

the experimental measurements, but are more clearly identified in theoretical computations [see

Fig. 9(b)]. Note that such interactions are very different from those occurring in unbounded flows

around cylinders, where the yielded regions are localized to the obstacles and the surrounding plugs

can sometimes (though not always) suppress any interaction [24].

Next, we conducted tests designed to constrain, in a different way, any microstructural ageing

or relaxation: for the flow around an isolated disk, we varied the inlet flux Q in a stepwise fashion

over time and extracted the time-dependent plug length at the front of the disk. As seen in Fig. 10,
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FIG. 10. Time dependency of the plug size on the front and back of an isolated disk subject to a flow

rate Q(t ). The tests were performed with 0.06% Carbopol solution and treated sheets. The solid and dashed

horizontal lines represent the average and standard deviation of the steady-state values reported in Fig. 7(b).

this length adopts its steady value after an undetectably rapid adjustment to the switch in flow rate.

We repeated this test using a number of different protocols to increase or decrease the flow rate and

found similar results. Thus, the characteristic relaxation time for rheological changes must be less

than about 10 s, the interrogation time for determining the plug size. This is consistent with both

the lack of any larger-scale asymmetry in the flow patterns around separated disks and the absence

of any noticeable hysteresis above the yield stress in the up-down flow curves of Fig. 2.

To emphasize this last point, we also prepared a different viscoplastic suspension by vigorously

stirring 0.1% wt/wt Carbopol gel with a sharp blade at 1200 rpm for around two and a half

minutes, motivated by previous observations of the development of significant thixotropic behavior

from a similar method of preparation [17]. Flow curves measured for this suspension did, indeed,

exhibit significant hysteresis [Fig. 11(a)]. With this second type of Carbopol in the obstructed

FIG. 11. (a) Thixotropic flow curves for an 0.1% Carbopol suspension that was very highly sheared during

mixing (measured using the same rheometer as in Fig. 2, but with an up-down ramp controlling the shear rate).

(b) Time series of the plug length after a step change in flow rate behind a circular obstruction in the Hele-Shaw

cell using the same fluid (with flow rate Q = 0.05 ml/min after the step change).
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Hele-Shaw cell, the flow patterns were still fore-aft asymmetric, and the plug lengths were strongly

time-dependent after step changes in flow rate [Fig. 11(b)]. In fact, experiments with this fluid were

generally unreproducible and depended on the stress history of the fluid, in clear contrast to the

main results reported in this paper. Similar unreproducible results and stress-history dependence

were found when pumping Laponite (another widely documented thixotropic fluid) through the

cell, further suggesting that thixotropy is not playing a significant role in the main results of this

paper.

IV. DISCUSSION

In this paper, we have provided an experimental study of the flow of a yield-stress fluid around

obstructions in a thin slot. We also complemented these experiments with theoretical computations

that generalize our previous analysis of flows of Bingham fluid in Hele-Shaw cells [13]. Both the

experiments and theory demonstrate the appearance of stagnant plugs spanning the slot attached to

the front and back of the obstacles, together with high-speed flows to either side. A number of trends

observed in the experiments are successfully predicted by the theory. The theory also confirms an

algorithm to estimate the size of the stagnant plugs attached to differently shaped obstacles, which

may have practical application when controlling plug size is of importance. However, the experi-

ments are strikingly different from the theoretical predictions in the fore-aft asymmetry of both the

flow field and the size of the unyielded plugs. The asymmetry is not present in experiments with

either a Newtonian fluid or, unlike in an unconfined geometry, a simple viscoelastic fluid. We find

that the asymmetry is insensitive to effective slip over the walls of the slot and must be connected

to some sort of rheological hysteresis of the Carbopol suspension that was used. The experiments

suggest that the hysteresis arises over flow distances of a few millimeters given the typical flow rates

through the cell [O(10−4) m/s], which translates to transit times of 10 or so seconds.

Carbopol suspensions have been observed to possess nonideal rheology in previous studies,

either close to the yield stress or across a wider range of shear rates [7,16,17,25]. Nevertheless, the

viscoelastic relaxation times expected for our Carbopol suspensions (given by the measurements of

G′ and G′′ provided in Table I) are about a second or less. Thus, linear viscoelasticity below the

yield stress does not appear to be capable of generating any fore-aft asymmetry, much as seen for

an experiments conducted with a standard viscoelastic liquid (a PEO solution). Moreover, when we

prepared a different suspension of Carbopol by vigorous mixing (Fig. 11), a pronounced thixotropy

arose that significantly affected the flow patterns observed in the Hele-Shaw cell. However, the

Carbopol that we used in most of our experiments exhibited no discernible hysteresis above the

yield stress (Fig. 2), while still showing strong fore-aft asymmetry.

A key detail of viscoplastic Hele-Shaw flow is the flow structure across the cell: the yield stress

establishes shear layers against the walls of the cell which border a central pluglike flow spanning the

midplane of the slot (Fig. 1). Material inside that pseudoplug region is held slightly above the yield

stress in order to accommodate the weak extension or shearing in the plane of the cell that permits

flow around an obstruction [1,13]. This feature aside, strain rates and stresses in the plane of the

cell are less significant than the shear rates and stresses across it. A significant fraction of the fluid

across the slot is therefore always close to its yield stress throughout the quasi-two-dimensional flow

pattern. Indeed, the thickness of the pseudoplug at any point is dictated by the local shear stresses

across the slot, which can be directly inferred from the midplane velocity. The measurements in

Fig. 4 imply that the pseudoplug thickens as fluid approaches the front of an obstacle, then thins

more substantially as the material is swept through the high-speed regions at the top and bottom of

the obstacle, before thickening once more in the wake. The lack of any noticeable hysteresis above

the yield stress in the flow curves of the Carbopol suggests that relaxation over the shear layers is

not responsible for the pronounced fore-aft asymmetry of the flow patterns. Instead, this asymmetry

most plausibly arises from hysteresis near the yield stress, which becomes embedded in the erosion

or growth of the central pseudoplug. However, further rheological work is required to identify the

precise origin.
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