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LIFTING REPRESENTATIONS OF FINITE REDUCTIVE

GROUPS I: SEMISIMPLE CONJUGACY CLASSES

JEFFREY D. ADLER AND JOSHUA M. LANSKY

Abstract. Suppose that G̃ is a connected reductive group defined over a

field k, and Γ is a finite group acting via k-automorphisms of G̃ satisfying a
certain quasi-semisimplicity condition. Then the identity component of the

group of Γ-fixed points in G̃ is reductive. We axiomatize the main features

of the relationship between this fixed-point group and the pair (G̃,Γ), and

consider any group G satisfying the axioms. If both G̃ and G are k-quasisplit,

then we can consider their duals G̃∗ and G∗. We show the existence of and
give an explicit formula for a natural map from the set of semisimple stable

conjugacy classes in G∗(k) to the analogous set for G̃∗(k). If k is finite, then
our groups are automatically quasisplit, and our result specializes to give a
map of semisimple conjugacy classes. Since such classes parametrize packets

of irreducible representations of G(k) and G̃(k), one obtains a mapping of such
packets.

0. Introduction

Motivation. Suppose that F is a p-adic field with residue field k; E/F is a finite,

tamely ramified Galois extension; H is a connected, reductive F -group; and H̃ =
RE/FH is formed from H via restriction of scalars. Then one expects to have a base
change lifting that takes L-packets of smooth, irreducible representations of H(F )

to L-packets for H(E) = H̃(F ). We would like to gain an explicit understanding, in
terms of compact-open data, of base change for depth-zero representations, and this
problem requires us to construct a new lifting from (packets of) representations of

G(k) to those of G̃(k), for various connected reductive k-groups G and G̃ attached

to parahoric subgroups of H(F ) and H̃(F ), respectively. Here Γ = Gal(E/F ) acts

on G̃, and the identity component of its group of fixed points is G. (In most cases,
this new lifting cannot itself be base change. For more details, see [1, 3].) Since
representations of G(k) can be parametrized by data associated to the dual group

G∗, it is enough to construct an appropriate lifting of such data from G∗ to G̃∗.

This paper. In the course of creating a candidate for this new lifting, we realized
that we could work in greater generality without much difficulty. Namely, let k

denote an arbitrary field, G̃ and G connected reductive k-groups, and Γ a finite
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2 JEFFREY D. ADLER AND JOSHUA M. LANSKY

group. Instead of assuming that G = (G̃Γ)◦, the identity component of the group of

fixed points of Γ in G̃, we make the more general assumption that G is a parascopic

group for (G̃,Γ) (see Definition 7.1). There are several reasons to do this. First,
it clarifies our proofs. Second, while our original motivation was to improve our
explicit understanding of base change for representations of p-adic groups, we hope
that our more general formulation will be applicable to the understanding of a wider
collection of correspondences of representations, including endoscopic transfer. We
will take this up elsewhere.

Under our hypotheses, we have the following results.

(A) Suppose G̃ and G are k-quasisplit. Then we obtain a natural map N̂ from
the k-variety of semisimple geometric conjugacy classes of the dual G∗ to the

analogous variety for G̃∗ (Proposition 10.1).

(B) By restricting and refining N̂, one obtains a map N̂ st from the set of semisimple

stable conjugacy classes (in the sense of Kottwitz [9]) in G∗(k) to that in G̃∗(k)
(Theorem 11.1).

(C) If k is perfect of cohomological dimension ≤ 1 (e.g., k is finite), then N̂ is a

map from the set of semisimple conjugacy classes in G∗(k) to that in G̃∗(k)
(Corollary 11.3).

Before proving the above results, we show that the situation that motivated our

notion of parascopy really is a special case of it: that in which Γ acts on G̃ via

k-automorphisms that all preserve a common Borel subgroup of G̃ and a common

maximal torus in the Borel subgroup, and G = (G̃Γ)◦. This “Borel-torus pair”
need not be defined over k. Under the above hypotheses, we prove a strong form
of the following:

(D) G is a reductive k-group (Proposition 3.5).

Although we assume that G̃ and G are k-quasisplit in Statements (A) and (B)
(it is automatic in Statement (C)), weaker hypotheses would suffice. See Remark
9.1.

Outline of this paper. After establishing some basic notation (§1), we consider

in §2 how the action of a finite group on a torus T̃ gives rise to a norm map

N : T̃ −→ T (where T is the identity component of the group of fixed points of

T̃ ), and also corresponding maps on the modules of characters and cocharacters of
these tori. In fact, we deal with the more general situation where we may replace
T by any isogenous image of it (see Condition P1 of Definition 4.1). We then prove

a strong version of Statement (D) above (§3). Suppose G and G̃ are connected
reductive k-groups, and Γ is a finite group. In §4, we say what we mean by a

parascopic datum for the triple (G̃,Γ, G), and say that G is weakly parascopic for

the pair (G̃,Γ) if such a datum exists. Given such a datum, we have associated

maximal tori T ⊂ G and T̃ ⊂ G̃, an action of Γ on the Weyl group W (G̃, T̃ ),

and a canonical embedding W (G, T ) −→ W (G̃, T̃ )Γ, which we describe explicitly
in §5. Using standard cohomological arguments, we classify in §6 the set of stable
conjugacy classes of maximal k-tori in a reductive k-group. In §7, we call a weakly
parascopic group G parascopic if a compatibility condition between the maximal

k-tori of G and G̃ is satisfied, a condition that is automatic in many important cases
(see Examples 7.2). We then define and prove some basic results on equivalence of
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parascopic data. For example, if (φ, j∗) is a datum for (G̃,Γ, G) with respect to the

maximal k-tori T̃ ⊆ G̃ and T ⊆ G, and G is parascopic with respect to this datum,
then given any maximal k-torus T ′ ⊆ G, there is an equivalent datum associated
to T ′. This is crucial in showing that all of our constructions are independent of
the choice of a maximal k-torus in G. If G is quasisplit over k, then we can form
its dual group G∗, and we are then in a position to prove strong duality results
(§8) between maximal k-tori in G and in G∗. In particular, up to stable conjugacy,
we have a canonical one-to-one correspondence of tori, and this correspondence

preserves Weyl groups and much more. If G̃ is also quasisplit over k, then we can

use this correspondence and our norm map N : T̃ −→ T above to define a conorm

map N̂T∗ : T ∗ −→ T̃ ∗ for dual maximal k-tori T ∗ ⊆ G∗ and T̃ ∗ ⊆ G̃∗, and can

obtain explicit embeddings of Weyl groups W (G∗, T ∗) −→ W (G̃∗, T̃ ∗) (§9). In
particular, we show (Proposition 9.4) that such embeddings have good restriction
properties with respect to centralizer subgroups of G∗. We then have all of the
ingredients in place to prove Statement (A) in §10. Using our cohomological results
in §6, we can then prove Statement (B) in §11, and it is a simple matter to observe
that Statement (C) is just a special case.

In a future work, we will address the problem of lifting other pieces of the
parametrization of irreducible representations of finite reductive groups, such as
unipotent conjugacy classes in dual groups.

Acknowledgements. We have benefited from conversations with Jeffrey Adams,
Brian Conrad, Stephen DeBacker, Jeffrey Hakim, Robert Kottwitz, and Jiu-Kang
Yu. Thanks also to Bas Edixhoven for pointing out an error in an earlier version
of §3, to Brian Conrad for advice on fixing it, to Avner Ash for coining the term
“parascopy”, and to an anonymous referee for suggesting several improvements.

1. General notation and terminology

Let k denote a field, and ksep denote the separable closure of k in an algebraic
closure k̄ of k. We will abbreviate Gal(ksep/k) by Gal(k). Given a connected
reductive k-group G and a maximal torus T of G, let Φ(G, T ) (resp. Φ∨(G, T ))
denote the absolute root (resp. coroot) system of G with respect to T . Let W (G, T )
denote the Weyl group of G with respect to T .

For g ∈ G(ksep), let Int denote the natural homomorphism G −→ Inn(G) given
by Int(g)(x) = gxg−1. If x ∈ G(ksep) (resp. Y ⊆ G), we will also denote Int(g)(x)
(resp. Int(g)(Y )) by gx (resp. gY ). For an algebraic k-group G, let G◦ denote its
identity component. A geometric conjugacy class of G is an orbit for the action
of G on itself via conjugation. Following Kottwitz [9], we say that two elements
s1, s2 ∈ G(k) are stably conjugate if there is some g ∈ G(ksep) such that gs1 = s2,
and for all σ ∈ Gal(k), we have that g−1σ(g) ∈ CG(s1)

◦(ksep). Moreover, we say
that two maximal k-tori T1, T2 ⊆ G are stably conjugate in G if there is some
element g ∈ G(ksep) such that Int(g) restricts to a k-isomorphism from T1 to T2.
Let Tst(G, k) denote the set of stable conjugacy classes of maximal k-tori in G.

If φ is a homomorphism from a group Γ to the group of automorphisms of some
object, then we will denote the operation of taking φ(Γ)-fixed points by ( )φ(Γ), or
just by ( )Γ when φ is understood.

For any ksep-torus T , let X∗(T ) and X∗(T ) respectively denote the character and
cocharacter modules of T . Let 〈 , 〉 denote the natural bilinear pairing between
X∗(T ) and X∗(T ). Let V

∗(T ) = X∗(T )⊗Q and V∗(T ) = X∗(T )⊗Q. Then 〈 , 〉
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extends to a nondegenerate pairing between the Q-vector spaces V ∗(T ) and V∗(T ).
Any homomorphism f : T −→ T ′ of tori determines maps f∗ : X∗(T ′) −→ X∗(T )
and f∗ : X∗(T ) −→ X∗(T

′), and hence maps V ∗(T ′) −→ V ∗(T ) and V∗(T ) −→
V∗(T

′) that we will also denote by f∗ and f∗, respectively.
For i = 1, 2, let Ti be a maximal k-torus of G, and suppose that gT1 = T2 for

some g ∈ G(ksep). Then Int(g) gives an isomorphism T1 → T2 (not necessarily
defined over k). For χ ∈ X∗(T1) and λ ∈ X∗(T1), define

gχ := Int(g)∗−1χ, gλ := Int(g)∗λ.

For a root datum (X∗,Φ, X∗,Φ
∨) and a root α ∈ Φ, we denote by α∨ the

corresponding coroot in Φ∨.

2. Finite-group actions on character and cocharacter modules

Let X̃∗ be a lattice of finite rank equipped with an action of a finite group Γ.

Then Γ also acts on the dual X̃∗ of X̃∗, as well as on Ṽ∗ = X̃∗ ⊗ Q and its dual

Ṽ ∗ = X̃∗ ⊗Q.
Let X∗ be another lattice with dual X∗, and let V∗ = X∗⊗Q and V ∗ = X∗⊗Q.

We will denote by 〈 , 〉 the natural bilinear pairings between V ∗ and V∗, and

between Ṽ ∗ and Ṽ∗. Suppose that j∗ : V∗ −→ Ṽ Γ
∗ is an isomorphism such that

j∗(X∗) ⊇ X̃Γ
∗ . Composing j∗ with the natural inclusion Ṽ Γ

∗ −→ Ṽ∗, and taking
duals, we obtain maps i∗, j

∗, and i∗ as follows:

V∗

i∗

$$j∗

∼
// Ṽ Γ

∗
�

�

// Ṽ∗

π

dddd
V ∗

� r

ι

::Ṽ ∗
Γ

j∗

∼
oo Ṽ ∗oooo

i∗

zz

where ι and π are to be described below. Here Ṽ ∗
Γ denotes the space of coinvariants

for the action of Γ on Ṽ ∗.
Define π : Ṽ∗ −→ V∗ to be

j−1
∗ ◦

(
1

|Γ|

∑

γ∈Γ

γ

)
.

We have that π ◦ i∗ = id, so π is a projection of Ṽ∗ onto V∗.

Let ι : V ∗ −→ Ṽ ∗ be the transpose of π. More explicitly, one can show that if

ṽ ∈ Ṽ ∗ is any preimage under i∗ of v, then

(2.1) ι(v) =
1

|Γ|

∑

γ∈Γ

γ · ṽ.

The image of ι is clearly the subspace Ṽ ∗Γ of Γ-fixed vectors in Ṽ ∗. Moreover,
ι is injective (since π is surjective) and respects the bilinear pairings V ∗ × V∗ −→

Q and Ṽ ∗ × Ṽ∗ −→ Q in the sense that for all v ∈ V ∗ and w ∈ V∗, we have
〈ι(v), i∗(w)〉 = 〈v, w〉. Using ι (resp. j∗), we may therefore identify V ∗ (resp. V∗)

with Ṽ ∗Γ (resp. Ṽ Γ
∗ ). We note that

(2.2) i∗ = ι−1 ◦

(
1

|Γ|

∑

γ∈Γ

γ

)
.
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Define a map N∗ : Ṽ∗ −→ V∗ by

(2.3) N∗ = j−1
∗ ◦

(∑

γ∈Γ

γ

)
= |Γ|π.

Taking duals, we obtain the adjoint map N ∗ : V ∗ −→ Ṽ ∗. Because of our as-

sumption on j∗, we have that N∗ takes X̃∗ to X∗, and thus that N ∗ takes X∗ to

X̃∗.
Suppose that X̃∗ and X∗ (and hence X̃∗ and X∗) are equipped with Gal(k)-

actions. Further, suppose that the action of Gal(k) on X̃∗ commutes with that of
Γ. It follows that if j∗ is equivariant with respect to these actions of Gal(k), then
so are all of the other maps above.

Example 2.1. Let T̃ be a k-torus and let Γ be a finite group that acts on T̃ via k-

automorphisms. Then Γ acts on both X∗(T̃ ) and X∗(T̃ ) (and thus on Ṽ ∗ = V ∗(T̃ )

and Ṽ∗ = V∗(T̃ )) via the rules

γ · χ = γ∗−1χ, γ · λ = γ∗λ

for χ ∈ X∗(T̃ ) and λ ∈ X∗(T̃ ).

Let T be the k-torus (T̃ Γ)◦. Then we have the inclusion map i : T −→ T̃ and a

norm map NT = N : T̃ −→ T given by

(2.4) N(t) =
∏

γ∈Γ

γ(t),

both of which are defined over k. Let V ∗ = V ∗(T ) and V∗ = V∗(T ). The map

i : T −→ T̃ induces an inclusion i∗ : V∗ −→ Ṽ∗, which gives rise to an isomorphism

j∗ : V∗ −→ Ṽ∗
Γ. Then the maps i∗ and i∗ (resp. N∗ and N ∗) constructed from

j∗ in this section coincide with those induced by i and N. They are all Gal(k)-
equivariant.

3. Finite-group actions on reductive groups

In this section, we establish a strong form of Statement (D) from the Introduc-
tion.

Definition 3.1. We say that an automorphism γ of a connected reductive algebraic

group G̃ is quasi-semisimple if γ preserves a Borel subgroup B̃• of G̃ and a maximal

torus T̃• in B̃•.

Remark 3.2. If both G̃ and γ are defined over k, then the groups B̃• and T̃• can be
chosen to be defined over ksep. We prove this in almost all cases in Lemma A.1. A
general proof of Lemma A.1, as well as proofs of Lemmas 3.3 and 3.4, can be found
in a preprint of Lemaire [11, §4.6]. Our proofs are different.

Lemma 3.3. Suppose G̃ is a connected reductive algebraic group, and γ is a quasi-

semisimple automorphism of G̃. Let B̃• be a γ-invariant Borel subgroup of G̃, and

T̃• ⊆ B̃• a γ-invariant maximal torus of G̃. Then the group G := (G̃γ)◦ is reductive,

T• := (T̃ γ
• )

◦ = G∩T̃• is a maximal torus in G, and B• := (B̃γ
• )

◦ is a Borel subgroup
of G containing T•.
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Proof. Let G̃′ be the simply connected cover of the derived group of G̃, and let

Z̃ be the identity component of the center of G̃. Then we have a central isogeny

φ : Z̃ × G̃′ −→ G̃. By [17, §9.16], the restriction of γ to the derived group of G̃ lifts

uniquely to an automorphism of G̃′, and thus γ lifts uniquely to an automorphism

of Z̃ × G̃′. Moreover, G̃′ contains a maximal torus T̃ ′
• and Borel subgroup B̃′

•

such that Z̃ × T̃ ′
• and Z̃ × B̃′

• are the inverse images under φ of T̃• and B̃•. Note

that γ preserves T̃ ′
• and B̃′

•. From Steinberg [17, Theorem 8.2], we know that

G′ := G̃′γ is a connected reductive group, and it is clear [loc. cit., Remark 8.3(a)]

that T ′
• := T̃ ′

•
γ = G′∩T̃ ′

• is a maximal torus in G′ and B′
• := B̃′

•
γ is a Borel subgroup

of G′ containing T ′
•. We obtain our desired result by considering φ((Z̃γ)◦×T ′

•) and

φ((Z̃γ)◦ ×B′
•). �

Lemma 3.4. Suppose G̃ is a connected reductive k-group, and γ is a quasi-semisimple

k-automorphism of G̃. Then the group G := (G̃γ)◦ is defined over k.

Proof. Let T̃• and B̃• be as in Definition 3.1. From Remark 3.2, we may assume
that these groups are defined over ksep. Since γ is defined over k, we have that
Gal(k) preserves G. Therefore, it will be enough to show that G is defined over
ksep (see [16, Prop. 11.2.8(i)]). We may therefore assume that k = ksep.

Let T• and B• be as in Lemma 3.3. Consider the free part of the module of

γ-coinvariants in the lattice X∗(T̃•). Since this is a lattice, and it is a quotient

of X∗(T̃•), it is the character lattice of a k-subtorus of T̃•, and this subtorus is

precisely T•. That is, T• is defined over k. Since T̃• is split over k, the root groups

Uα for each α ∈ Φ(G̃, T̃•) are defined over k, and there exist k-isomorphisms xα

from the additive group to each Uα. Moreover, if α is a root whose γ-orbit has size
r, then since γ is defined over k, we may select the automorphisms xγiα so that

γi ◦xα = xγiα for i = 0, . . . , r−1. It follows from the description of the root groups
for G with respect to T• given, say, in part (2′′′′) of the proof of [17, Theorem 8.2],
that each such root group Uβ (β ∈ Φ(G, T•)) inherits a k-structure from that of

G̃. Thus, the product Y = T•

∏
Uβ of T• with all of the root groups Uβ (in any

order) is an open k-variety in G. As a result, Y (k) ⊂ G(k̄) ∩ G̃(k) is dense in Y
by [16, Theorem 11.2.7], and hence dense in G. It follows [loc. cit., Lemma 11.2.4(ii)]
that G is defined over k. �

Note that if γ is not quasi-semisimple, then G need not be reductive. For exam-

ple, suppose G̃ = GL(2), g ∈ G̃(k) is a nontrivial unipotent element of finite order,
and γ = Int(g).

We now restrict our attention to automorphisms of finite order.

Proposition 3.5. Suppose G̃ is a connected reductive k-group, and Γ is a finite

group that acts on G̃ via k-automorphisms that preserve a common Borel subgroup

B̃• of G̃ and maximal torus T̃• in B̃•. Let G = (G̃Γ)◦. Then:

(i) G is a reductive k-group.

(ii) For every Borel-torus pair (B̃, T̃ ) in G̃ preserved by Γ, we have that ((B̃Γ)◦, (T̃ Γ)◦)
is a Borel-torus pair for G.

(iii) Let T be a maximal torus in G, and let T̃ = CG̃(T ). Then T̃ is a maximal

torus in G̃.
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(iv) Let T and T̃ be as in (iii). Then each root in Φ(G, T ) is the restriction to T

of a root in Φ(G̃, T̃ ).

(v) Let T̃ be as in (iii). Then there is some Borel subgroup B̃ of G̃ containing T̃

such that (B̃, T̃ ) is a Borel-torus pair preserved by Γ.

Remarks 3.6.

(i) The reductivity of G is proved by Prasad and Yu [12] under somewhat different
hypotheses. Rather than assuming that Γ fixes a Borel-torus pair, they assume
that |Γ| is not divisible by char k. When chark > 0, their hypotheses are
neither stronger nor weaker than ours.

(ii) One can choose T in part (iii) to be defined over k, in which case the torus T̃
is also defined over k.

Proof. As in the proof of Lemma 3.4, if G is defined over ksep, then it is defined
over k. Therefore, it will be enough to prove this result under the assumption that
k = ksep.

Let Z̃ denote the identity component of the center of G̃, and G̃′ the derived

subgroup of G̃. Then we obtain an action of Γ on Z̃ × G̃′ via k-automorphisms.

Let C be the kernel of the central k-isogeny Z̃ × G̃′ −→ G̃. Then the image of

((Z̃ × G̃′)Γ)◦ under the isogeny is a normal subgroup of G̃Γ; that its index is finite
follows from the finiteness of H1(Γ, C(k̄)) (see [18, Cor. 6.5.10]). It follows that this

image is precisely G. Thus, it is enough to prove the proposition with Z̃ × G̃′ in

place of G̃. Since the proposition is clear for Z̃, we may replace G̃ by G̃′. That is,

we may and do assume that G̃ is semisimple. Moreover, we note that the action of

Γ on G̃ can be lifted to an action on the simply connected cover of G̃ that satisfies
all of the hypotheses of this theorem. It follows from reasoning similar to that

above that we may further assume that G̃ is simply connected. In particular, G̃ is
a direct product of almost-simple groups, and Γ permutes these.

Let (B̃•, T̃•) denote a Γ-invariant Borel-torus pair in G̃.

We first prove (iii) and (v). Let T• be the torus (T̃ Γ
• )

◦. We first show that

T• is maximal in G and CG̃(T•) = T̃•. We prove the latter by showing that the

root system Φ(CG̃(T•), T̃•) is empty. Let Φ+ denote the positive subsystem of

Φ(CG̃(T•), T̃•) determined by B̃•. Suppose for a contradiction that Φ+ is nonempty,

and choose α ∈ Φ+. Let χ =
∑

γ∈Γ γ · α. Since Γ preserves B̃•, we have that Γ

preserves Φ+, so χ is a positive linear combination of elements of Φ+, and is thus
nonzero.

The canonical pairing 〈 , 〉 between V ∗(T̃•) and V∗(T̃•) is invariant under the

action of Γ. Thus, for all λ ∈ X∗(T•) = X∗(T̃•)
Γ, 〈χ, λ〉 =

∑
γ〈γ · α, λ〉 = |Γ|〈α, λ〉,

which is 0 since α is a root of the centralizer of T•. Since χ is clearly Γ-invariant,
we may identify it with a vector χ0 ∈ V ∗(T•) via the map ι−1 as discussed in §2.
(In fact, χ0 = |Γ| i∗α by (2.2).) Then 〈χ0, λ〉 = 〈χ, λ〉 = 0 for all λ ∈ X∗(T•). Since
〈 , 〉 is nondegenerate, it follows that χ0 = 0 and hence χ = 0, a contradiction.

To see that T• is maximal in G, consider a maximal torus T ′
• containing T•.

Then

T ′
• ⊆ CG̃(T

′
•) ⊆ CG̃(T•) = T̃ .

Taking identity components of groups of Γ-fixed points, we see that T ′
• ⊆ T•, and

thus the two tori are equal.
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Now let T denote an arbitary maximal torus in G. We can write T = gT• for

some g ∈ G(k̄). Thus, CG̃(T ) =
gT̃•, which is a maximal torus in G̃. Also, gB̃• is

a Γ-invariant Borel subgroup of G̃ containing T̃ . This proves (iii) and (v).
We now prove the other statements of the theorem simultaneously by a series of

reductions.
Suppose G̃ = G̃1 × G̃2, a direct product of connected reductive k-groups, each

preserved by Γ. By induction on the dimension of G̃, we see that each statement

holds for each G̃i, and thus for G̃. It thus only remains to consider the case where G̃

has no such decomposition. Recall that we may assume that G̃ is simply connected.

In particular, we may assume that G̃ =
∏r

i=1 G̃i, a direct product of almost simple
k-groups which are permuted transitively by Γ.

Let Γ1 = stabΓ(G̃1). For 1 ≤ i ≤ r, choose γi ∈ Γ such that γi(G̃1) = G̃i. Let

H̃ =
∏r

i=1 G̃1. Then we have a k-isomorphism ~γ = (γ1, . . . , γr) : H̃ −→ G̃. Since Γ
is generated by Γ1 and {γ1, . . . , γr}, we have that

G̃Γ = ~γ
(
diag(G̃Γ1

1 )
)
= ~γ

(
(H̃)Sr×Γ1

)
,

where diag : G̃1 −→ H̃ is the diagonal embedding, and Sr is the symmetric group

acting on H̃ by permutation of coordinates. Thus, we may replace G̃ by H̃ and Γ
by Sr × Γ1.

Using induction on |Γ| and working in stages, we see that we may always replace
Γ with the successive subquotients that occur in any subnormal series for Γ. Thus,
we may assume that Γ is simple. Furthermore, from the previous paragraph, we
may assume either Γ either acts via permutations of coordinates, or preserves the

simple factors of G̃ and acts in the same way on each. In the former case, the
proposition is clear. Thus, we assume that we are in the latter case, and we may

assume from above that G̃ is almost simple.
Since Γ is simple, it either consists of inner automorphisms (in which case it

embeds in an isogenous image of T̃•), or it embeds in the symmetry group of the

Dynkin diagram of G̃. In each case, Γ is solvable, and thus cyclic. Thus, (i) and
(ii) follow from Lemma 3.3 and Lemma 3.4, and (iv) follows from the description
of the root groups of G in [17, §8.2(2′′′′)]. �

Definition 3.7. If G̃ and Γ are as in Proposition 3.5, we say the action of Γ on G̃
is quasi-semisimple.

4. Parascopy: Definition

We now axiomatize the essential properties of the relationship between the group

G and the pair (G̃,Γ) of §3.

Definition 4.1. Let Ψ = (X∗,Φ, X∗,Φ
∨) and Ψ̃ = (X̃∗, Φ̃, X̃∗, Φ̃

∨) be root data
with Gal(k)-actions, and Γ a finite group. Let V ∗ = X∗ ⊗ Q, V∗ = X∗ ⊗ Q,

Ṽ ∗ = X̃∗ ⊗ Q, Ṽ∗ = X̃∗ ⊗ Q. A parascopic datum for the triple (Ψ̃,Γ,Ψ) is a pair
(φ, j∗), where

• φ is a homomorphism from Γ to Aut(Ψ̃), such that φ(Γ) commutes with

the action of Gal(k) and preserves some system of positive roots in Φ̃; and

• j∗ : V∗ −→ Ṽ
φ(Γ)
∗ is a Gal(k)-equivariant isomorphism

satisfying the following two conditions.



LIFTING 9

P1. j∗(X∗) ⊇ X̃
φ(Γ)
∗ .

Composing j∗ with the inclusion map Ṽ
φ(Γ)
∗ −→ Ṽ∗, we obtain a map i∗ : V∗ −→ Ṽ∗

whose transpose i∗ : Ṽ ∗ −→ V ∗ is assumed to satisfy:

P2. i∗
(
Φ̃
)
⊇ Φ.

Let G and G̃ be connected reductive k-groups, and Γ a finite group. Let T (resp. T̃ )

be a maximal k-torus of G (resp. G̃). Let Ψ(G, T ) (resp. Ψ(G̃, T̃ )) be the root

datum of G (resp. G̃) relative to T (resp. T̃ ). These root data come equipped
with an action of Gal(k). We will refer to a parascopic datum (φ, j∗) for the triple

(Ψ(G̃, T̃ ),Γ,Ψ(G, T )) as a parascopic datum for (G̃,Γ, G) relative to the tori T̃ ⊆ G̃

and T ⊆ G. We will say that G is a weakly parascopic group for the pair (G̃,Γ)
if such a parascopic datum exists, and we will feel free not to specify a particular
datum if it is clear from the context.

Examples 4.2.

(a) Suppose Γ acts quasi-semisimply on G̃, and G = (G̃Γ)◦, as in §3. From
Proposition 3.5 and Remark 3.6(ii), we can choose maximal k-tori T ⊆ G

and T̃ ⊆ G̃ such that Γ preserves T̃ , and T = (T̃ Γ)◦. Then the given action

φ : Γ −→ Autk(T̃ ), together with the map j∗ : V∗(T ) −→ V∗(T̃ ) induced by the

inclusion T −→ T̃ , form a parascopic datum.

(b) If G is a Levi subgroup of G̃, then G is weakly parascopic for (G̃, 1) with respect
to an obvious parascopic datum.

(c) If G is the image under a central k-isogeny of a weakly parascopic group for

(G̃,Γ), then G is itself weakly parascopic for (G̃,Γ).

(d) Our definition does not refer to any action of Γ on G̃, but if G̃ is k-quasisplit

then one can indeed lift φ to a map Γ −→ Autk(G̃). Different choices of lifting

can lead to groups of fixed points G̃φ(Γ) whose identity components are non-
isomorphic. We will show elsewhere [2] that a particular lifting φ0 : Γ −→

Autk(G̃), one that fixes a pinning, has the following property. If φ denotes
any lifting, then (Gφ(Γ))◦ is weakly parascopic for ((Gφ0(Γ))◦, 1) in a natural
way. For example, considering two actions of Z/2Z on GL(2n), we will see that
SO(2n) is parascopic for (Sp(2n), 1).

In §7, we will define and study a natural notion of equivalence between parascopic
data.

5. Finite-group actions and Weyl groups

Suppose that Ψ̃ = (X̃∗, Φ̃, X̃∗, Φ̃
∨) and Ψ = (X∗,Φ, X∗,Φ

∨) are root data with
Gal(k)-action, and Γ is a finite group. Let (φ, j∗) be a parascopic datum for

(Ψ̃,Γ,Ψ). As indicated in §1, to ease notation, we will suppress reference to φ
when considering the action of Γ. From now on, use the map j∗ to to identify V∗

with Ṽ Γ
∗ , and the map ι of §2 to identify V ∗ with (Ṽ ∗)Γ. Since Γ preserves the root

system Φ̃, it acts on the Weyl group W̃ of Ψ̃.

In the particular situation where Γ acts on G̃ and G = (G̃Γ)◦, there is an obvious

embedding W (G, T ) −→W (G̃, T̃ )Γ. Here w ∈ W (G, T ) corresponds to the unique

element of W (G̃, T̃ )Γ whose action when restricted to T coincides with that of
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w. We now show that we have such an embedding in the more general setting of
parascopy.

Let α be a root in Φ. Then α = i∗α̃ for some root α̃ in Φ̃ by Condition P2 in
the definition of parascopic datum. There are two cases to consider:

(1) The roots in Γ · α̃ are mutually orthogonal.
(2) The roots in Γ · α̃ are not mutually orthogonal.

In case (1), let Ξ = Γ · α̃.
In case (2), [10, §1.3] implies that for each θ ∈ Γ · α̃, there exists a unique root

θ′ 6= θ in Γ · α̃ such that θ and θ′ are not orthogonal. Moreover, θ + θ′ is a root in
Φ and does not belong to Γ · α̃. Let Ξ = {θ + θ′ | θ ∈ Γ · α̃}.

Remark 5.1. Although it is assumed in [10] that Γ is cyclic, there is only one case in
which the action of the stabilizer in a general group Γ of an irreducible component
of Φ need not factor through a cyclic quotient (recall that Γ must preserve a positive
system of roots): namely, when the component is of type D4. One easily checks
that in this situation, case (1) holds.

Remark 5.2. We note that in both cases, Ξ is an orbit of mutually orthogonal roots.

Lemma 5.3. Suppose that α ∈ Φ. Then with α̃ and Ξ as above, we have
∑

β∈Ξ

β∨ =
|Ξ|

|Γ · α̃|
α∨.

Proof. By (2.1), we have

(5.1)
∑

β∈Ξ

β =
∑

β∈Γ·α̃

β = |Γ · α̃|α.

Since
∑

Ξ β is a multiple of α, and the roots in Ξ all have the same length, it follows
that

∑
Ξ β∨ is a multiple of α∨. To determine this multiple we let β0 ∈ Ξ, and

compute
〈
α,
∑

β∈Ξ

β∨
〉
=

1

|Γ · α̃|

〈∑

β′∈Ξ

β′,
∑

β∈Ξ

β∨
〉

(by (5.1))

=
|Ξ|

|Γ · α̃|
〈β0, β

∨
0 〉 (by Remark 5.2)

=
|Ξ|

|Γ · α̃|
〈α, α∨〉 .

Our result follows. �

Lemma 5.4. The natural action of W̃Γ on (Ṽ ∗)Γ is faithful.

When Γ is cyclic, this is [17, §1.32(a)].

Proof. Let w be a nontrivial element of W̃Γ. Let ∆̃ be a Γ-invariant set of simple

roots in Φ̃ (guaranteed to exist by Definition 4.1). Then there exists α̃ ∈ ∆̃ such

that w(α̃) ∈ −∆̃. It follows that w(γ · α̃) = γ · (wα̃) belongs to −∆̃ for every

γ ∈ Γ. Let v =
∑

γ · α̃ ∈ Ṽ ∗Γ, where the sum runs over all γ ∈ Γ. Then w(v) is a

linear combination of roots in ∆̃ in which all of the coefficients are nonpositive. In
particular, w(v) 6= v. �

Let W denote the Weyl group of Ψ.
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Proposition 5.5. There is a natural Gal(k)-equivariant embedding W −→ W̃Γ.
Under this map, the image of the reflection wα through the root α ∈ Φ is

(5.2) w̃ =
∏

β∈Ξ

wβ ,

where Ξ is as above and the product is taken in any order.

Proof. We may identify AutQ(V
∗) with AutQ(Ṽ

∗Γ), and thus identify W with a
subgroup of the latter. By Lemma 5.4, there is a natural injection

W̃Γ −→ AutQ(Ṽ
∗Γ).

To construct an embedding W −→ W̃Γ, it is therefore enough to show that the
image of this injection contains W . Thus, given w ∈ W , we will show that there

exists w̃ ∈ W̃Γ whose action on Ṽ ∗Γ coincides with that of w. It suffices to prove
the existence of w̃ only in the case in which w is a reflection wα through a root
α ∈ Φ. In this case, our candidate for w̃ is given by (5.2).

Let v ∈ V ∗ = Ṽ ∗Γ. Since the roots in the orbit Ξ are orthogonal, we have

(5.3) w̃(v) = v −
∑

β∈Ξ

〈v, β∨〉β.

Since the pairing 〈 , 〉 is Γ-invariant and v is Γ-fixed, the right-hand side of (5.3)
is equal to

(5.4) v − 〈v, β∨
0 〉
∑

β∈Ξ

β.

for any root β0 ∈ Ξ. From (5.1),

〈v, β∨
0 〉
∑

β∈Ξ

β = |Γ · α̃|〈v, β∨
0 〉α

=
|Γ · α̃|

|Ξ|

〈
v,
∑

β∈Ξ

β∨
〉
α

= 〈v, α∨〉α (by Lemma 5.3).

Hence by (5.3) and (5.4), we have that w̃(v) = wα(v). It follows that w̃α = w̃.
The Gal(k)-equivariance of this embedding follows from the explicit formula (5.2).

�

6. Stable conjugacy classes of maximal k-tori

The statement and proof of the next result are essentially the same as those for
[14, Proposition 6.1]. We include a proof here only because our hypotheses and
conclusion are slightly different. Similar proofs can be found in [8, §2] and [13].

Proposition 6.1. Let G denote a connected reductive group over a field k. Let
S be a maximal k-torus of G. Then there is a natural injection Tst(G, k) −→
H1(k,W (G,S)). This map is a surjection when G is k-quasisplit.

Proof. Let T be a maximal k-torus of G. Then there exists g ∈ G(ksep) such that
gS = T . Let f ∈ Z1(k,NG(S)) be the the cocycle σ 7→ g−1σ(g), and let f̄ be the
image of f in Z1(k,W (G,S)). Associate to T the class of f̄ inH1(k,W (G,S)). This
class is independent of the particular element g. The proof that this cohomology
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class uniquely determines and is determined by the stable conjugacy class of T is a
standard exercise (cf. [13, §1.1]). Thus, we have the desired injection.

Suppose that G is k-quasisplit. Then G contains a maximal k-torus T0 that is
the centralizer of a maximal k-split torus. Applying the above paragraph to the
case of S = T0, we obtain an injection Tst(G, k) −→ H1(k,W (G, T0)), and this map
is a surjection from [13, Thm. 1.1]. (Although this surjectivity result is stated only
for semisimple groups, it is easily extended to the reductive case.)

Now suppose S is an arbitrary maximal k-torus of G. There is some element
h ∈ G(ksep) such that hT0 = S. The map Int(h) then induces a natural bijection (of
sets, though not of pointed sets)H1(k,W (G, T0)) −→ H1(k,W (G,S)) (cf. [15, Ch I,
Prop. 35]); one sees easily that this bijection does not depend on the choice of h.
Composing the map from the preceding paragraph with this bijection yields the
desired bijection. �

7. Parascopy: Basic properties

We are now equipped to state and prove the basic properties of parascopy. In

this section, let G̃ and G denote connected reductive k-groups, Γ a finite group, and

T̃ and T maximal k-tori in G̃ and G. Suppose that (φ, j∗) is a parascopic datum

for (G̃,Γ, G) relative to T̃ and T . Thus, G is weakly parascopic for (G̃,Γ).

Definition 7.1. Identify Tst(G, k) and Tst(G̃, k) with subsets of H1(k,W (G, T ))

and H1(k,W (G̃, T̃ )), respectively, via the injection of Proposition 6.1. Consider

the map H1(k,W (G, T )) −→ H1(k,W (G̃, T̃ )) induced by the embedding given in

Proposition 5.5. If this map restricts to give a map Tst(G, k) −→ Tst(G̃, k), then

we will say that G is a parascopic group for (G̃,Γ).

In other words, a weakly parascopic group G is parascopic if every maximal

k-torus in G determines a unique one in G̃, up to stable conjugacy.

Examples 7.2.

(a) If G is weakly parascopic for (G̃,Γ), and G̃ is quasisplit over k, then G is
parascopic by the surjectivity statement in Proposition 6.1.

(b) In the situation of Proposition 3.5, G is parascopic by part (iii) of this result.

(c) In Examples 4.2(a,b), G is parascopic for G̃.

Definition 7.3. Let (φ′, j′∗) denote another parascopic datum for (G̃,Γ, G), this

time relative to the maximal k-tori T ′ ⊆ G and T̃ ′ ⊆ G̃′. We say that the parascopic
data (φ, j∗) and (φ′, j′∗) are equivalent if there exist elements g ∈ G(ksep) and

g̃ ∈ G̃(ksep) satisfying:

(a) gT = T ′ and g̃T̃ = T̃ ′.
(b) For all γ ∈ Γ, φ′(γ) = Int(g̃)∗ ◦φ(γ) ◦ Int(g̃)

−1
∗ , where φ(γ) and φ′(γ) are taken

to be automorphisms of X∗(T̃ ) and X∗(T̃
′).

(c) j′∗ = Int(g̃)∗ ◦ j∗ ◦ Int(g)−1
∗ .

In this case, we will say that (φ, j∗) is equivalent to (φ′, j′∗) via the elements g and
g̃.

It is straightforward to verify that this is indeed an equivalence relation on the

set of parascopic data for (G̃,Γ, G).
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Let g and g̃ be as in Definition 7.3. For σ ∈ Gal(k), we have that g−1σ(g) ∈

NG(T )(k
sep) and g̃−1σ(g̃) ∈ NG̃(T̃ )(k

sep). In the following lemma and the remain-
der of the paper, we will use bars to represent the natural maps from normalizers
to Weyl groups of maximal tori.

Lemma 7.4. Let (φ, j∗) be a parascopic datum for (G̃,Γ, G) relative to T̃ and T .

Let g ∈ G(ksep) and g̃ ∈ G̃(ksep), and suppose that the maximal tori T ′ := gT and

T̃ ′ := g̃T̃ are defined over k. Define φ′ : Γ −→ Aut(X∗(T̃
′)) and j′∗ : V∗(T

′) −→

V∗(T̃
′) as in Definition 7.3(b,c). Then (φ′, j′∗) is a parascopic datum for (G̃,Γ, G)

relative to T̃ ′ and T ′ (necessarily equivalent to (φ, j∗)) if and only if

i
(
g−1σ(g)

)
= g̃−1σ(g̃)

for all σ ∈ Gal(k), where i : W (G, T ) −→ W (G̃, T̃ )φ(Γ) is the embedding given in
Proposition 5.5.

Proof. Suppose (φ′, j′∗) is a parascopic datum for (G̃,Γ, G). Fix σ ∈ Gal(k), and

let w = g−1σ(g) ∈ W (G, T ) and w̃ = g̃−1σ(g̃) ∈ W (G̃, T̃ ). Let γ ∈ Γ. Since φ(γ)
and φ′(γ) are Gal(k)-equivariant, we have

Int(g̃)∗ ◦ φ(γ) ◦ Int(g̃)
−1
∗ = φ′(γ) = Int(σ(g̃))∗ ◦ φ(γ) ◦ Int(σ(g̃))

−1
∗ .

It follows that Int(g̃−1σ(g̃))∗ is φ(Γ)-equivariant and hence that w̃ ∈ W (G̃, T̃ )φ(Γ).
By Lemma 5.4, to show that i(w) = w̃, it suffices to show that the actions of w

on V∗(T ) and of w̃ on V∗(T̃ ) correspond under the identification j∗ : V∗(T ) −→

V∗(T̃ )
φ(Γ), i.e., that

(7.1) j∗ ◦ w = w̃ ◦ j∗

as maps V∗(T ) −→ V∗(T̃ )
φ(Γ). But since j∗ and j′∗ are Gal(k)-equivariant, we have

Int(g̃)∗ ◦ j∗ ◦ Int(g)
−1
∗ = j′∗ = Int(σ(g̃))∗ ◦ j∗ ◦ Int(σ(g))

−1
∗ ,

and (7.1) follows immediately.
The converse is proved similarly. �

The next result addresses the question: how large is the equivalence class of the
parascopic datum (φ, j∗)?

Proposition 7.5. (i) If G is parascopic for (G̃,Γ) via the datum (φ, j∗), then
for every maximal k-torus T ′ ⊆ G, and every element g ∈ G(ksep) such that

T ′ = gT , there exists a maximal k-torus T̃ ′ ⊆ G̃′ and a parascopic datum

(φ′, j′∗) for (G̃,Γ, G) relative to T̃ ′ and T ′, such that (φ′, j′∗) is equivalent to

(φ, j∗) via g and some g̃ ∈ G̃(ksep).

(ii) For a maximal k-torus T̃ ′ ⊆ G̃, there exists a parascopic datum equivalent to

(φ, j∗) relative to T̃ ′ and T if and only if T̃ ′ is stably conjugate to T̃ in G̃.

(iii) Suppose (φ′, j′∗) is another parascopic datum for (G̃,Γ, G) relative to T̃ and
T . Then the two data are equivalent if and only if there is an element w̃ ∈
W (G̃, T̃ )Gal(k) such that φ′(γ) = w̃ ◦φ(γ) ◦ w̃−1 for all γ ∈ Γ, and j′∗ = w̃ ◦ j∗.

Proof. (i) Since G is parascopic for (G̃,Γ), we have a map Tst(G, k) −→ Tst(G̃, k)

induced by the map H1(k,W (G, T )) −→ H1(k,W (G̃, T̃ )φ(Γ)). Let T̃ ′ be a

torus in the image of the class of T ′. Pick g̃ ∈ G̃(ksep) such that g̃T̃ = T̃ ′.

The function f (resp. f̃) on Gal(k) given by f : σ 7−→ g−1σ(g) (resp. f̃ : σ 7−→
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g̃−1σ(g̃)) is a cocycle in Z1(k,W (G, T )) (resp. Z1(k,W (G̃, T̃ )φ(Γ))). By the

definition of the map Tst(G, k) −→ Tst(G̃, k), f̃ is cohomologous to the image

of f in Z1(k,W (G̃, T̃ )). Moreover, by adjusting g̃ by an appropriate element

ofNG̃(T̃ )(k
sep), one can arrange for these cocycles to coincide. In other words,

i
(
g−1σ(g)

)
= g̃−1σ(g̃) for all σ ∈ Gal(k). But then Lemma 7.4 implies that

the pair (φ′, j′∗) is a parascopic datum for (G̃,Γ, G) relative to T̃ ′ and T ′, and
that it is equivalent to (φ, j∗).

(ii) Suppose such a datum exists, equivalent to (φ, j∗) via g ∈ NG(T )(k
sep) and

g̃ ∈ G̃(ksep). We may choose ñ ∈ NG̃(T̃ )(k
sep) such that ñ = i(ḡ)−1. Since

i
(
g−1σ(g)

)
= g̃−1σ(g̃) by Lemma 7.4, it follows that (g̃ñ)−1σ(g̃ñ) = 1 in

W (G̃, T̃ ) for all σ ∈ Gal(k). Thus the map Int(g̃ñ) : T̃ −→ T̃ ′ is defined over

k, and so T̃ and T̃ ′ are stably conjugate. The converse is proved similarly.

(iii) Suppose that the equivalence is via the elements g ∈ G(ksep) and g̃ ∈ G̃(ksep).

Then g and g̃ normalize T and T̃ , so we have elements w = g and w̃′ = g̃

in W (G, T ) and W (G̃, T̃ ). Then Lemma 7.4 implies that σ(w̃′ · i(w)−1) =

w̃′ · i(w)−1 for all σ ∈ Gal(k). Thus w̃ := w̃′ · i(w)−1 ∈ W (G̃, T̃ )Gal(k).

Moreover, since i(w) ∈W (G̃, T̃ )φ(Γ), it follows that for any γ ∈ Γ,

φ′(γ) = w̃′ ◦ φ(γ) ◦ w̃′−1 = w̃ ◦ φ(γ) ◦ w̃−1.

By the definition of the embedding i,

j′∗ = w̃′ ◦ j∗ ◦ w
−1 = (w̃′ · i(w)−1) ◦ j∗ = w̃ ◦ j∗.

The converse is proved similarly. �

8. Duality

Let G be a quasisplit connected reductive k-group. Let B0 denote a Borel k-
subgroup of G, and T0 a maximal k-torus in B0. Suppose that (G∗, B∗

0 , T
∗
0 ) is

another triple of such groups. We say that the two triples are in k-duality if
there is a Gal(k)-equivariant isomorphism δ0 : X

∗(T0) −→ X∗(T
∗
0 ) that induces

an isomorphism from the based root datum of (G,B0, T0) to the dual of that of
(G∗, B∗

0 , T
∗
0 ); that is,

• δ0 maps the simple roots in Φ(G, T0) with respect to B0 onto the simple
coroots in Φ∨(G∗, T ∗

0 ) with respect to B∗
0 .

• The transpose δ∗0 : X
∗(T ∗

0 ) −→ X∗(T0) of δ0 maps the simple roots in
Φ(G∗, T ∗

0 ) with respect to B∗
0 onto the simple coroots in Φ∨(G, T0) with

respect to B0.

Given a triple (G,B0, T0), such a triple (G∗, B∗
0 , T

∗
0 ) always exists, and is unique

up to k-isomorphism. In this situation, we will say that G∗ is the k-dual of G. We
will say that a pair of maximal k-tori T ⊆ G and T ∗ ⊆ G∗ are in k-duality if there
is a Gal(k)-equivariant isomorphism δ : X∗(T ) −→ X∗(T

∗) such that

(8.1) δ(Φ(G, T )) = Φ∨(G∗, T ∗) and δ∗(Φ(G∗, T ∗)) = Φ∨(G, T ),

where δ∗ : X∗(T ∗) −→ X∗(T ) is the transpose of δ. (Note that this notion of
duality of tori depends on the ambient groups G and G∗.) The isomorphism δ will
be referred to as a duality map.
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Remark 8.1. Note that a duality map δ determines a Gal(k)-equivariant isomor-
phism, also denoted δ, from W (G, T ) to W (G∗, T ∗) under which, for each α ∈
Φ(G, T ), the reflection wα is sent to wδα. Then for every w ∈ W (G, T ) and every
χ ∈ X∗(T ), wχ = δ(w)δ(χ). In other words, if we identify W (G, T ) and W (G∗, T ∗)
via wα ←→ wδα, then δ : X∗(T ) −→ X∗(T

∗) is a W (G, T )-equivariant map.
We note that when k is a finite field, it is standard (see [5–7]) to work with

an anti-action of W (G, T ) on X∗(T ) (satisfying w1w2χ = w2(w1χ)). This, in turn,
makes the natural map W (G, T ) −→ W (G∗, T ∗) an anti-isomorphism and forces
the geometric Frobenius element F to act on the Weyl group W (G∗, T ∗) via the
inverse of its usual action on W (G, T ). However, we consider the standard action
of W (G, T ) on X∗(T ), which results in the isomorphism δ of Weyl groups in the
preceding paragraph. Using this map to identify W (G, T ) and W (G∗, T ∗), one sees
easily that Gal(k) acts in the same way on these groups.

Proposition 8.2. There is a canonical one-to-one correspondence Tst(G, k) ←→
Tst(G∗, k). If T ⊆ G and T ∗ ⊆ G∗ correspond, then they are in k-duality, and
the duality map δ : X∗(T ) −→ X∗(T

∗) is uniquely determined up to the action of
W (G, T )Gal(k).

Proof. Fix maximal k-tori T0 ⊆ G and T ∗
0 ⊆ G∗ and a duality map δ0 : X

∗(T0) −→
X∗(T

∗
0 ) of based root data as in the definition of k-duality above. As described

in Proposition 6.1, we have a bijection between the set of stable conjugacy classes
of maximal k-tori of G (resp. G∗) and H1(k,W (G, T0)) (resp. H

1(k,W (G∗, T ∗
0 ))).

Since δ0 : W (G, T0)
∼
−→ W (G∗, T ∗

0 ) induces an isomorphism H1(k,W (G, T0))
∼
−→

H1(k,W (G∗, T ∗
0 )) we have the desired correspondence between the sets of stable

conjugacy classes of maximal k-tori in G and G∗.
Let T ⊆ G and T ∗ ⊆ G∗ be maximal k-tori whose stable conjugacy classes

correspond as in the preceding paragraph. Then T = gT0 and T ∗ = g∗

T ∗
0 for

some g ∈ G(ksep) and g∗ ∈ G∗(ksep). The function f (resp. f∗) on Gal(k) given

by f : σ 7−→ g−1σ(g) (resp. f∗ : σ 7−→ g̃∗
−1

σ(g̃∗)) is a cocycle in Z1(k,W (G, T ))
(resp. Z1(k,W (G∗, T ∗))). Since T and T ∗ correspond as above, the image of f
in Z1(k,W (G∗, T ∗)) under the isomorphism induced by δ0 is cohomologous to f∗.
Moreover, by adjusting g∗ by an appropriate element of NG∗(T ∗

0 )(k
sep), one can

arrange for these cocycles to coincide.
To show that T and T ∗ are in k-duality, define an isomorphism δ : X∗(T ) −→

X∗(T
∗) as follows. An element of X∗(T ) can be written in the form gχ for a unique

χ ∈ X∗(T0). Let

(8.2) δ(gχ) = g∗

(δ0χ).

It is easily verified that δ satisfies (8.1).
We need to show that δ is Gal(k)-equivariant. Suppose σ ∈ Gal(k). Then

δ(σ(gχ)) = δ
(
σ(g)(σχ)

)
= δ
(
gg−1σ(g)(σχ)

)
= g∗(

δ0(
g−1σ(g)(σχ))

)
= g∗(

δ0(
f(σ)(σχ))

)
.

On the other hand,

σ(δ(gχ)) = σ(g
∗

(δ0χ)) =
σ(g∗)(σ(δ0χ)) =

σ(g∗)(δ0(σχ)).

It follows that δ will be Gal(k)-equivariant if and only if

δ0(
f(σ)(σχ)) = g∗−1σ(g∗)(δ0(σχ)) =

f∗(σ)(δ0(σχ))
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for all σ ∈ Gal(k) and χ ∈ X∗(T0). But this equality follows from the equivariance
of δ0 with respect to the action of W (G, T0) = W (G∗, T ∗

0 ) (see Remark 8.1) and the
fact that f∗(σ) = δ0(f(σ)). Thus, δ is a duality map. Finally, note that varying
the choices of the above elements g and g∗ has the effect of altering δ by an element
of W (G, T )Gal(k). �

Remark 8.3. Given a maximal k-torus S ⊆ G, let S∗ ⊆ G∗ correspond to S via
Proposition 8.2. Repeating the proof with S and S∗ in place of T0 and T ∗

0 , we see
the following. If the maximal k-torus T ⊆ G corresponds to T ∗ ⊆ G∗, and we write
T = gS with g ∈ G(ksep), then there exists g∗ ∈ G∗(ksep) such that T ∗ = g∗

S∗, and
the cocycle that sends σ ∈ Gal(k) to the image in W (G,S) of g−1σ(g) corresponds
to the analogous cocycle determined by g∗ under the identification betweenW (G,S)
and W (G∗, S∗). Thus, this latter identification leads to the same correspondence
Tst(G, k)←→ Tst(G∗, k) of Proposition 8.2. Moreover, if δS and δT are duality maps
for S and T , then there is some w ∈W (G,S)Gal(k) such that for all χ ∈ X∗(S), we
have g∗wδS(χ) = δT (

gχ). Since χ 7→ wδS(χ) is another duality map for S, we may

replace δS by it and then we can write g∗

δS(χ) = δT (
gχ) in analogy with (8.2).

9. The conorm map

In this section, let G̃ and G be quasisplit connected reductive k-groups. Let Γ be

a finite group, and suppose that (φ, j∗) is a parascopic datum for (G̃,Γ, G) relative

to the maximal k-tori T̃ ⊆ G̃ and T ⊆ G.

Remark 9.1. We assume that our groups are quasisplit only to assure that they
have duals satisfying Proposition 8.2. But such duals exist for some other groups
(a matter that we will take up elsewhere), and in such cases we only need to make

the weaker assumption that G is parascopic for (G̃,Γ) via the datum (φ, j∗).

Remark 9.2. Given a maximal k-torus S ⊆ G, one has from Proposition 7.5(i,ii) a

maximal k-torus S̃ ⊆ G̃, uniquely determined up to stable conjugacy. By Proposi-

tion 8.2, S and S̃ determine maximal k-tori S∗ ⊆ G∗ and S̃∗ ⊆ G̃∗ (up to stable

conjugacy), and duality maps δ : X∗(S) −→ X∗(S
∗) and δ̃ : X∗(S̃) −→ X∗(S̃

∗) (up

to conjugacy by W (G,S)Gal(k) and W (G̃, S̃)Gal(k), respectively). Similarly, given a
maximal k-torus S∗ ⊆ G∗, one obtains S ⊆ G and thus all of the other data above.

Using T and T̃ , choose T ∗, T̃ ∗, δ, and δ̃ as in the preceding Remark. From §2, the
parascopic datum (φ, j∗) determines a Gal(k)-equivariant mapN ∗ = N ∗

T : X∗(T ) −→

X∗(T̃ ). Define

N̂T∗,∗ := δ̃ ◦ N ∗ ◦ δ−1 : X∗(T
∗) −→ X∗(T̃

∗).

Then N̂T∗,∗ determines a conorm homomorphism

N̂T∗ : T ∗ −→ T̃ ∗.

Since both δ and δ̃ are Gal(k)-equivariant, so is N̂T∗,∗. Hence N̂T∗ is defined over

k. We also have a corresponding map N̂ ∗
T∗ : X∗(T̃ ∗) −→ X∗(T ∗). More explicitly,

N̂ ∗
T∗ = δ∗−1 ◦ N∗ ◦ δ̃

∗,

where N∗ : X∗(T̃ ) −→ X∗(T ) is the adjoint of N ∗.

From Remark 8.1, the duality maps δ and δ̃ determine identificationsW (G, T ) −→

W (G∗, T ∗) and W (G̃, T̃ ) −→ W (G̃∗, T̃ ∗). Thus, the embedding i of W (G, T ) in
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W (G̃, T̃ ) (see §5) determines an embedding (which we will also denote by i) of

W (G∗, T ∗) in W (G̃∗, T̃ ∗).

Remark 9.3. If we identify W (G∗, T ∗) = W (G, T ) with its image in W (G̃∗, T̃ ∗) =

W (G̃, T̃ ) under i, it is clear that N ∗ is W (G, T )-equivariant. Since δ and δ̃ are
W (G, T )-equivariant (given the identifications in the preceding paragraph), it fol-

lows that N̂T∗ is as well.

Let s ∈ T ∗(k̄) and let s̃ = N̂T∗(s) ∈ T̃ ∗(k̄). Let H∗ = CG∗(s) and H̃∗ = CG̃∗(s̃).

Proposition 9.4. The embedding i : W (G∗, T ∗) −→ W (G̃∗, T̃ ∗) restricts to give

embeddings of W (H∗, T ∗) in W (H̃∗, T̃ ∗) and of W (H∗ ◦, T ∗) in W (H̃∗ ◦, T̃ ∗).

Proof. Suppose that w ∈W (H∗, T ∗). Then by Remark 9.3,

(i(w))(s̃) = (i(w))(N̂T∗ (s)) = N̂T∗(w(s)) = N̂T∗(s) = s̃.

Thus i gives an embedding of W (H∗, T ∗) in W (H̃∗, T̃ ∗).
Now suppose w ∈W (H∗ ◦, T ∗). According to [5, Theorem 3.5.3], w is a product

of reflections through roots α∗ ∈ Φ(G∗, T ∗) such that α∗(s) = 1. For such a root
α∗, let α be the corresponding root in Φ(G, T ): α = δ−1(α∗∨). Then

i(wα∗) = i(wα) =
∏

β∈Ξ

wβ

in the notation of Proposition 5.5. For each β ∈ Ξ, let β∗ be the corresponding root

in Φ(G̃∗, T̃ ∗): β∗ = δ̃∗
−1

(β∨). Then i(wα∗) =
∏

Ξ wβ∗ , and by loc. cit., to show

that i(w) lies in W (H̃∗ ◦, T̃ ∗), it suffices to show that β∗(s̃) = 1 for all β ∈ Ξ. For
such a root β∗,

β∗(s̃) = β∗(N̂T∗(s)) = (N̂ ∗
T∗β∗)(s),

so it is enough to show that N̂ ∗
T∗β∗ is an integer multiple of α∗.

Recall the identifications of V∗(T ) with V∗(T̃ )
Γ and V ∗(T ) with V ∗(T̃ )Γ described

at the beginning of §5. We have

NT,∗β
∨ =

∑

γ∈Γ

γ · β∨ (by (2.3))

= | stabΓ β|
∑

β′∈Ξ

(β′)∨ (by Remark 5.2)

=
|Ξ|| stabΓ β|

|Γ · α̃|
α∨ (by Lemma 5.3).

But the constant |Ξ|| stabΓ β|/|Γ · α̃| is always integral. Indeed, (in the terminology
of §5) in case (1), we have Ξ = Γ · α̃, while in case (2), |Γ · α̃| = 2|Ξ| and | stabΓ β| is

even. Translating this to the dual setting, we have that N̂ ∗β∗ is an integer multiple
of α∗, and the proposition follows. �

10. Lifting of semisimple geometric conjugacy classes

We now prove Statement (A) from the Introduction. Let G̃, G, Γ, T̃ , T , and
(φ, j∗) be as in §9.

Given a maximal k-torus S∗ of G∗, choose corresponding maximal k-tori S̃, S∗,

and S̃∗, and and duality maps δS and δS̃ as in Remark 9.2. From Proposition 7.5(i),
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there exists a parascopic datum (φ′, j′∗) for (G̃,Γ, G) with respect to S̃ and S that
is equivalent to (φ, j∗). Thus from §9, corresponding to these arbitrary, implicit

choices, we have a W (G∗, S∗)-equivariant k-morphism N̂S∗ : S∗ −→ S̃∗.

Proposition 10.1. There is a canonical k-morphism N̂ from the k-variety of geo-

metric semisimple conjugacy classes in G∗ to the analogous variety for G̃∗. More-
over, if S∗ is a maximal k-torus of G∗ and s ∈ S∗(k̄), then

N̂S∗(s) ∈ N̂([s])(k̄),

where [s] is the geometric conjugacy class of s in G∗. That is, N̂ is compatible with

the conorms N̂S∗ on all maximal k-tori in G∗.

Proof. Let S∗ be a maximal k-torus in G∗. As noted above, implicit in the con-

struction of N̂S∗ are k-tori S, S̃, and S̃∗, and duality maps δS and δS̃ (as in Remark

9.2), as well as a parascopic datum (φ′, j′∗) for (G̃,Γ, G) with respect to S̃ and S

that is equivalent to (φ, j∗). Since N̂S∗ : S∗ −→ S̃∗ is a W (G∗, S∗)-equivariant
k-morphism, we obtain a k-morphism

N̂ : S∗/W (G∗, S∗) −→ S̃∗/W (G̃∗, S̃∗).

But these latter two varieties are k-isomorphic to the varieties of geometric semisim-

ple conjugacy classes in G∗ and G̃∗, respectively.

From the maximal k-tori T ⊆ G and T̃ ⊆ G̃, Proposition 8.2 gives us maximal

k-tori T ∗ ⊆ G∗, and T̃ ∗ ⊆ G̃∗, and duality maps δT and δT̃ . We now show that N̂ is
independent of the choice of the torus S∗ by showing that we would have obtained
the same map had we chosen S∗ = T ∗ and (φ′, j′∗) = (φ, j∗).

Suppose (φ′, j′∗) is equivalent to (φ, j∗) via g ∈ G(ksep) and g̃ ∈ G̃(ksep). Then
gT = S, g̃T̃ = S̃, φ′(γ) = Int(g̃)∗ ◦ φ(γ) ◦ Int(g̃)−1

∗ for all γ ∈ Γ, and j′∗ =
Int(g̃)∗ ◦ j∗ ◦ Int(g)−1

∗ . It follows from this and the definition of N ∗ in §2 that

(10.1) N ∗
S = Int(g̃−1)∗ ◦ N ∗

T ◦ Int(g)
∗.

Choose g∗ ∈ G∗(ksep) and g̃∗ ∈ G̃∗(ksep) such that g∗

T ∗ = S∗ and g̃∗

T̃ ∗ = S̃∗ and
such that g∗ and g̃∗ are compatible with g and g̃ (respectively) as in Remark 8.3.
Then there exist duality maps δT and δT̃ such that the top and bottom faces of the
following diagram commute:

X∗(S̃)
δ
S̃ //

OO

N
∗

S

X∗(S̃
∗)

OO

N̂S∗,∗X∗(T̃ )

Int(g̃−1)∗
;;
✈
✈
✈
✈
✈
✈
✈
✈
✈

δ
T̃ //

OO

N
∗

T

X∗(T̃
∗)

Int(g̃∗)∗

::
✉
✉
✉
✉
✉
✉
✉
✉
✉

OO

N̂T∗,∗

X∗(S)
δS

// X∗(S
∗)

X∗(T )
δT

//

Int(g−1)∗
::
✉
✉
✉
✉
✉
✉
✉
✉
✉

X∗(T
∗)

Int(g∗)∗
99
t
t
t
t
t
t
t
t
t

The front and back faces also commute by the definitions of N̂T∗,∗ and N̂S∗,∗. The
left face commutes by (10.1). Since all of the horizontal maps are isomorphisms,
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the right face must also commute. That is, we have the equality

N̂S∗,∗ = Int(g̃∗)∗ ◦ N̂T∗,∗ ◦ Int(g
∗)−1

∗

of maps X∗(S
∗) −→ X∗(S̃

∗). Therefore, the corresponding homomorphisms S∗ −→

S̃∗ must be equal, i.e.,

(10.2) N̂S∗ = Int(g̃∗) ◦ N̂T∗ ◦ Int(g∗)−1.

It follows immediately that the definition of N̂ is independent of the particular
choice of torus S∗. �

11. Main Theorem

Let G̃, G, Γ, T̃ , T , and (φ, j∗) be as in §9 and §10.

Theorem 11.1. Let s1, s2 ∈ G∗(k) be semisimple elements that are stably con-
jugate, and let T ∗

i be maximal k-tori in G∗ containing si. Then the elements

N̂T∗

i
(si) ∈ G̃∗(k) are stably conjugate.

Remark 11.2. That is, there is a well-defined map N̂ st from the set of semisimple

stable conjugacy classes in G∗(k) to the set of such classes in G̃∗(k), such that for
every semisimple s ∈ G∗(k) and every maximal k-torus T ∗ in G containing s, we

have that N̂T∗(s) ∈ N̂ st([s]st), where [s]st is the stable conjugacy class of s.

Proof of Theorem 11.1. From T ∗
i , choose Ti, δi, T̃i, T̃

∗
i , and δ̃i as in Remark 9.2,

and a parascopic datum (φi, ji,∗) for (G̃,Γ, G) with respect to T̃i and Ti that is

equivalent to (φ, j∗). (These choices are implicit in the definition of N̂T∗

i
.) Let

s̃i = N̂T∗

i
(si) ∈ G̃∗(k). According to Proposition 10.1, s̃1 is geometrically conjugate

to s̃2 in G̃∗. We want to show that the stable conjugacy classes of s̃1 and s̃2 in

G̃∗(k) coincide.

Let H∗
1 = CG∗(s1) and H̃∗

1 = CG̃∗(s̃1). We have that g∗

s1 = s2 for some

g∗ ∈ G∗(ksep) such that g∗−1σ(g∗) ∈ H∗
1
◦(ksep) for all σ ∈ Gal(k). Moreover, by

replacing g∗ by g∗h∗ for an appropriate element h∗ ∈ H∗
1
◦(ksep), we may assume,

in addition, that g∗

T ∗
1 = T ∗

2 . It follows that g∗−1σ(g∗) ∈ NH∗

1

◦(T ∗
1 )(k

sep) for all
σ ∈ Gal(k).

Choose g ∈ G(ksep) compatible with g∗ as in Remark 8.3 such that gT1 = T2. By

Proposition 7.5(i) and Lemma 7.4, there exists g̃ ∈ G̃(ksep) such that g̃T̃1 = T̃2 and

i
(
g−1σ(g)

)
= g̃−1σ(g̃). Choose g̃∗ ∈ G(ksep) compatible with g̃ as in Remark 8.3

such that g̃∗

T̃ ∗
1 = T̃ ∗

2 .
Since (φ1, j1,∗) and (φ2, j2,∗) are equivalent to (φ, j∗), they are equivalent to

each other. By Lemma 7.4, g and g̃ implement an equivalence of (φ1, j1,∗) with a

parascopic datum for (G̃,Γ, G) with respect to T̃2 and T2. The latter datum must
therefore be equivalent to (φ2, j2,∗), and hence is related to (φ2, j2,∗) as in Propo-

sition 7.5(iii). It follows that the conorms T ∗
2 −→ T̃ ∗

2 corresponding to these data

differ by the action of an element of W (G̃∗, T̃ ∗
2 )

Gal(k). Thus the stable conjugacy
classes of the images of s2 under these conorms coincide. Hence we may assume
that (φ1, j1,∗) and (φ2, j2,∗) are equivalent via the particular elements g and g̃.

As in (10.2), we have N̂T∗

2
= Int(g̃∗) ◦ N̂T∗

1
◦ Int(g∗)−1. Thus

(11.1) s̃2 = N̂T∗

2
(s2) =

g̃∗(
N̂T∗

1
(g

∗−1

s2)
)
= g̃∗(

N̂T∗

1
(s1)

)
= g̃∗

s̃1.
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It remains to show that g̃∗−1σ(g̃∗) ∈ H̃∗
1
◦(ksep) for all σ ∈ Gal(k). But g̃∗

was chosen so that the image of g̃∗−1σ(g̃∗) in W (G∗, T ∗
1 ) is i

(
g∗−1σ(g∗)

)
. Since

g∗−1σ(g∗) ∈ W (H∗
1
◦, T ∗

1 ), it follows that i
(
g∗−1σ(g∗)

)
lies inW (H̃∗

1
◦, T̃ ∗

1 ) by Propo-

sition 9.4. Therefore, g̃∗−1σ(g̃∗) ∈ NH̃∗

1
◦(T̃ ∗

1 )(k
sep) ⊆ H̃∗

1
◦(ksep), so s̃1 and s̃2 are

stably conjugate. �

Corollary 11.3. In the situation of Theorem 11.1 and Remark 11.2, suppose that k

is perfect and has cohomologial dimension ≤ 1. Then N̂ refines to a map N̂ st from
the set of semisimple, G∗(k)-conjugacy classes in G∗(k) to the set of semisimple,

G̃∗(k)-conjugacy classes in G̃∗(k).

Proof. From the Lang-Steinberg Theorem (see [15, §III.2.3]), H1(k,M) is trivial
for every connected reductive k-group M . Thus, from the first paragraph of [9, §3],
we see that semisimple stable conjugacy classes and semisimple rational conjugacy
classes coincide in the group of k-points of a connected reductive k-group, so our
result now follows from Theorem 11.1. �

Appendix A. When must a quasi-semisimple automorphism preserve a

Borel-torus pair defined over ksep?

We now offer a proof promised in Remark 3.2.

Lemma A.1. Suppose G̃ is a connected reductive k-group, and γ is a quasi-

semisimple k-automorphism of G̃. Suppose that at least one of the following holds:

(i) the characteristic of k is not two;
(ii) k is perfect;

(iii) no power of γ acts via a non-inner automorphism on any factor of G̃ of type
A2n.

Then γ preserves a Borel-torus pair defined over ksep.

Proof. Note that this statement is obvious when k is perfect.
We may assume that k = ksep is separably closed. It is enough to show that

G̃ has a γ-stable maximal k-torus T̃• contained in a γ-stable Borel subgroup B̃•.

For then T̃• must be split over k, so the root groups corresponding to the roots in

Φ(G̃, T̃•) must be defined over k, and hence so must B̃•.

Fix a Borel k̄-subgroup B̃∗ of G̃ and a maximal k̄-torus T̃∗ ⊆ B̃∗. The homoge-

neous space G̃/T̃∗ can be viewed, via the map gT̃∗ 7→ (gB̃∗,
gT̃∗), as the k̄-variety X

of all pairs (B̃, T̃ ), where B̃ is a Borel k̄-subgroup of G̃, and T̃ is a maximal k̄-torus

of B̃. Taking T̃∗ to be defined over k shows that X can be given the structure of a
k-variety; this structure is easily seen to be independent of the particular choice of

(B̃∗, T̃∗).

Assume for now that T̃∗ is defined over k. There is an obvious action of γ on
X . Let Xγ be the (nonempty) k̄-variety of γ-fixed points in X . A point x ∈ Xγ(k̄)

corresponds to a pair (B̃, T̃ ) as above such that B̃ and T̃ are γ-stable. Moreover,

if x ∈ X(k) ∩ Xγ(k̄) is represented by g ∈ G̃(k̄), then Int(g) : T̃∗ −→ T̃ := gT̃∗

is a k-isomorphism. Thus T̃ (and hence B̃) is defined over k [4, Cor. 14.5]. It
follows that the desired Borel-torus pair exists provided that X(k) ∩ Xγ(k̄) 6= ∅.
To prove this nonemptiness, it suffices to show that Xγ is defined over k, for then
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Xγ(k) = X(k)∩Xγ(k̄) must be dense in Xγ [4, Cor. 13.3]. By [16, Thm. 11.2.13],
this will follow in turn if we can prove the equality of tangent spaces

(A.1) Tx(X
γ) = Tx(X)γ for all x ∈ Xγ(k̄).

Let T̃• and B̃• be as in Definition 3.1. The Bruhat decomposition can be used

to express G̃ as a disjoint union

(A.2)
∐

w∈W (G̃,T̃•)

ŨŨwnwT̃• ,

where nw is a representative of w in NG̃(T̃•)(k̄), Ũ is the unipotent radical of B̃•,

and Ũw is the group generated by the root groups corresponding to α ∈ Φ−(G̃, T̃•)∩

wΦ+(G̃, T̃•), where positivity is with respect to B̃•.

Let z ∈ X(k̄) = (G̃/T̃•)(k̄) be the point corresponding to the coset T̃•. Since the

obvious map Ũ × Ũw × T̃• −→ Ũ ŨwnwT̃• is an isomorphism of varieties for each

w ∈ W (G̃, T̃•), it follows from (A.2) that

(A.3) (Ũ ŨwnwT̃• · z)
γ =

{
ŨγŨγ

wnw · z if w ∈W (G̃, T̃•)
γ ,

∅ otherwise.

From Lemma 3.3, G = (G̃γ)◦ is a reductive group, T• := (T̃ γ
• )

◦ = G ∩ T̃• is a

maximal torus in G, and B• := (B̃γ
• )

◦ is a Borel subgroup of G containing T•.
Observe that G acts on Xγ via left translation. It follows from (A.3) that Xγ

is the union of a finite number of G-orbits represented by some subset of {nw}.

(In fact, we show in Proposition 5.5 that W (G, T•) embeds in W (G̃, T̃•)
γ , implying

that one can take as representatives for G\Xγ any subset of {nw} corresponding

to representatives of W (G, T•)\W (G̃, T̃•)
γ in W (G̃, T̃•)

γ .) Moreover, the stabilizer
in G of nw · z is precisely T•. In particular, each G-orbit has dimension dimG −
dimT•. Since these orbits are irreducible and of the same dimension as Xγ , it
is straightforward to show that they are precisely the irreducible components of
Xγ. Since they are disjoint and finite in number, they must also be the connected
components of Xγ . It therefore suffices to verify (A.1) for x = nw · z.

Since the dimension of anyG-orbit inXγ is dimG−dimT•, we have dimTx(X
γ) =

dimTx(G·x) ≥ dimG−dim T•. On the other hand, there is a natural identification

Tx(X) = L(G̃)/L(T̃•), where L denotes the Lie algebra functor, so we have

Tx(X
γ) ⊆ Tx(X)γ =

(
L(G̃)/L(T̃•)

)γ
=

(
⊕

α∈Φ(G̃,T̃•)

L(Ũα)

)γ

.

It follows from [17, §8.2(2′′′′)] that if either assumption (i) or (iii) holds, the last
space is equal to ⊕

β∈Φ(G,T•)

L(Uβ),

which has dimension |Φ(G, T•)| = dimG − dimT•. Thus Tx(X
γ) = Tx(X)γ , as

desired. �
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