PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 142, Number 10, October 2014, Pages 3561–3568 S 0002-9939(2014)12128-9 Article electronically published on July 3, 2014

OBSTRUCTIONS TO THE EXISTENCE OF KÄHLER STRUCTURES ON COMPACT COMPLEX MANIFOLDS

IONUŢ CHIOSE

(Communicated by Lei Ni)

ABSTRACT. We prove that a manifold in the Fujiki class $\mathcal C$ which supports a $i\partial\bar\partial$ -closed metric is Kähler. This result implies that on a compact complex manifold in the Fujiki class $\mathcal C$ which is not Kähler there exists a nonzero $i\partial\bar\partial$ -exact, positive current of bidimension (1,1).

Introduction

In [HaLa], Harvey and Lawson proved that the obstruction to the existence of a Kähler metric on a given compact complex manifold X of dimension n is a positive, nonzero current of bidegree (n-1,n-1) which is the (n-1,n-1) component of a d-exact current on X. In general, such currents are not d-closed, therefore the theory of closed positive currents cannot be used to study them (although some results extending this theory to the case of $i\partial\bar{\partial}$ -closed, positive currents do exist). The main result of this paper is that, in the case when X is a manifold in the Fujiki class \mathcal{C} , the obstruction current can be chosen to be d-closed:

Theorem 0.1. Let X be a compact complex manifold of dimension n in the Fujiki class C and which is not Kähler. Then there exists a positive, nonzero current T of bidegree (n-1, n-1) which is $i\partial\bar{\partial}$ -exact.

Theorem 0.1 follows immediately from

Theorem 0.2. Let X be a compact complex manifold of dimension n in the Fujiki class C and suppose there exists ω a strictly positive (1,1) form on X such that $i\partial \bar{\partial} \omega = 0$. Then X is a Kähler manifold.

The two theorems are generalizations to the analytic case of the algebraic case which was proved by Peternell [Pe]. Theorem 0.2 is similar to Moishezon's theorem which states that a Moishezon manifold which is Kähler is in fact projective.

A (1,1) form ω as in Theorem 0.2 (i.e., positive defined, and $i\partial\partial$ -closed) is called a *strong Kähler with torsion* (SKT) metric. See for instance [FiTo] for an introduction to SKT metrics. Therefore, Theorem 0.2 states that a manifold in Fujiki class \mathcal{C} which supports an SKT metric is in fact Kähler.

On surfaces, Theorems 0.1 and 0.2 are vacuous since any surface in the Fujiki class C is Kähler. But on 3-folds, Theorem 0.1 implies that any closed obstruction contains a nonzero curve:

©2014 American Mathematical Society

Received by the editors November 6, 2012.

 $^{2010\} Mathematics\ Subject\ Classification.\ {\it Primary}\ 32 {\it J}27; \ {\it Secondary}\ 32 {\it Q}15.$

The author was supported by a Marie Curie International Reintegration Grant within the 7th European Community Framework Programme and the CNCS grant PN-II-ID-PCE-2011-3-0269.

Theorem 0.3. Let X be a compact complex 3-fold in class C which is not Kähler and let T be a positive, nonzero (2,2) current which is $i\partial\bar{\partial}$ -exact. Then there exist C an irreducible curve in X, $\lambda > 0$ and R a closed positive (2,2) current on X such that $T = \lambda[C] + R$.

Theorem 0.1, combined with a result of Lamari [La], Théorème 3.2 (see Theorem 1.5 below) implies the following general existence theorem, which is a refined version of the Harvey and Lawson theorem:

Theorem 0.4. Let X be a compact complex manifold of dimension n such that:

- (i) there is no nontrivial nef pluriharmonic current on X of bidegree (n-1, n-1), which is the (n-1, n-1) component of a boundary,
- (ii) there is no nontrivial positive, $\partial \bar{\partial}$ -exact current of bidegree (n-1,n-1) on X.

Then X is Kähler.

Therefore, on a non-Kähler manifold, the obstruction is either nef (when the manifold is not in \mathcal{C}) or closed (when the manifold is in the Fujiki class \mathcal{C}).

For the proof of Theorem 0.2, we first show that the cohomology class of the $i\partial\bar{\partial}$ -closed form satisfies the numerical conditions of a Kähler class. The main result of [DePă] then implies that the cohomology class contains a Kähler current. We then proceed by induction on the dimension of the manifold to show that the cohomology class contains a Kähler form.

Theorem 0.1 follows at once from Theorem 0.2 by using a result of Harvey and Lawson [HaLa].

1. Preliminaries

In this section we gather some results needed for the proof of the above results.

1.1. Intrinsic characterization of Kähler manifolds. The main result of [HaLa] is the following:

Theorem 1.1. Let X be a compact manifold of dimension n. Then X is non-Kähler iff there exists a nonzero positive current which is the (n-1, n-1) component of a boundary.

In the same paper, the authors prove that the obstruction to the closedness of the obstruction current involves a strictly positive, $i\partial\bar{\partial}$ -closed (1,1) form:

Theorem 1.2. Suppose X is a compact manifold of dimension n. Then X admits a closed real (1,1) form $\eta = \bar{\partial}\alpha + \omega + \partial\bar{\alpha}$, where ω is a strictly positive (1,1) form and α is a (1,0) form on X iff X does not support a nonzero, d-closed, positive current which is the (n-1,n-1) component of a boundary.

1.2. **Positive classes on compact manifolds.** The main result of [DePă] is the following:

Theorem 1.3. Let (X, λ) be a compact Kähler manifold and let $\{\eta\}$ be a (1, 1) cohomology class on X. Then $\{\eta\}$ is a Kähler cohomology class iff for every irreducible analytic set $Z \subset X$, dim Z = p, and every $k = \overline{1, p}$,

In order to construct a Kähler metric, we will need the following result from [DePă]:

Theorem 1.4. Let X be a compact complex space and let $\{\eta\}$ be a cohomology class of type (1,1) on X. Assume that $\{\eta\}$ contains a Kähler current T and that the restriction $\{\eta\}|Y$ to every irreducible component Y in the Lelong sublevel sets $E_c(T)$ is a Kähler cohomology class. Then $\{\eta\}$ is a Kähler cohomology class on X.

1.3. Manifolds in the Fujiki class C. The manifolds in class C were first introduced by Fujiki as manifolds which are meromorphic images of Kähler manifolds [Fu]:

Definition 1.1. A compact complex manifold X is in class \mathcal{C} if there exists a complex Kähler space Y and a surjective meromorphic map $h\colon Y\to X$.

There are several other ways of characterizing the manifolds in the Fujiki class. A current T of bidegree (n-1,n-1) on a compact complex manifold X of dimension n is nef pluriharmonic if it is a weak limit of Gauduchon metrics. A closed current of bidegree (1,1) is a Kähler current if it dominates some strictly positive, smooth (1,1) form. Then we have:

Theorem 1.5. Let X be a compact complex manifold of dimension n. Then the following are equivalent:

- (i) X is in the Fujiki class C,
- (ii) there exists Y a Kähler manifold and $h: Y \to X$ a proper transform of X ([Va]).
- (iii) there exists T a Kähler current on X ([DePă]),
- (iv) if R is an (n-1, n-1) nef pluriharmonic current on X which is the (n-1, n-1) component of a boundary, then R=0 ([La]).

The Fujiki class \mathcal{C} is stable under most natural operations, except under small deformations. The Hodge decomposition is valid on manifolds in the Fujiki class \mathcal{C} ; in particular, the $\partial\bar{\partial}$ lemma is valid on such manifolds.

2. Non-Kähler manifolds in the Fujiki class ${\cal C}$

In this section we prove Theorems 0.1 and 0.2. We first need the following lemma, which will be used later to show that a certain cohomology class satisfies the numerical inequalities of a Kähler class:

Lemma 2.1. Let X be a compact complex manifold of dimension n, $\eta = \partial \bar{\alpha} + \omega + \bar{\partial} \alpha$ be a closed (1,1) form where α is a (1,0) form on X and ω is a strictly positive (1,1) form on X, and λ be a closed real (n-k,n-k) form on X. Then

(2.1)
$$\int_X \eta^k \wedge \lambda = \sum_{2i+j=k} \binom{k}{j} \binom{2i}{i} \int_X \omega^j \wedge (\partial \alpha \wedge \bar{\partial} \bar{\alpha})^i \wedge \lambda.$$

Proof. Since η is closed, it follows that $\partial \omega = \bar{\partial} \partial \alpha$ and $\bar{\partial} \omega = \partial \bar{\partial} \bar{\alpha}$. We prove the statement by induction on k. For k = 1, the above equation becomes

$$\int_X \eta \wedge \lambda = \int_X \omega \wedge \lambda$$

and it follows from Stokes' theorem since λ is closed. Suppose the formula is true for k. Then for k+1 we have

$$\int_{X} \eta^{k+1} \wedge \lambda = \int_{X} \eta^{k} \wedge \eta \wedge \lambda$$

$$= \sum_{2i+j=k} \binom{k}{j} \binom{2i}{i} \int_{X} \omega^{j} \wedge (\partial \alpha \wedge \bar{\partial} \bar{\alpha})^{i} \wedge (\bar{\partial} \alpha + \omega + \partial \bar{\alpha}) \wedge \lambda$$

$$= \sum_{2i+j=k} \binom{k}{j} \binom{2i}{i} \int_{X} \omega^{j+1} \wedge (\partial \alpha \wedge \bar{\partial} \bar{\alpha})^{i} \wedge \lambda$$

$$+ \sum_{2i+j=k} \binom{k}{j} \binom{2i}{i} \int_{X} \bar{\partial} \alpha \wedge \omega^{j} \wedge (\partial \alpha \wedge \bar{\partial} \bar{\alpha})^{i} \wedge \lambda$$

$$+ \sum_{2i+j=k} \binom{k}{j} \binom{2i}{i} \int_{X} \partial \bar{\alpha} \wedge \omega^{j} \wedge (\partial \alpha \wedge \bar{\partial} \bar{\alpha})^{i} \wedge \lambda.$$

The third term in the above sum is the conjugate of the second term, so we focus only on the second term, call it I_2 . Stokes' theorem implies that it is equal to

$$I_{2} = \sum_{2i+j=k} j \begin{pmatrix} k \\ j \end{pmatrix} \begin{pmatrix} 2i \\ i \end{pmatrix} \int_{X} \alpha \wedge \partial \bar{\partial} \bar{\alpha} \wedge \omega^{j-1} \wedge (\partial \alpha \wedge \bar{\partial} \bar{\alpha})^{i} \wedge \lambda$$
$$+ \sum_{2i+j=k} i \begin{pmatrix} k \\ j \end{pmatrix} \begin{pmatrix} 2i \\ i \end{pmatrix} \int_{X} \alpha \wedge \partial \omega \wedge \omega^{j} \wedge \bar{\partial} \bar{\alpha} \wedge (\partial \alpha \wedge \bar{\partial} \bar{\alpha})^{i-1} \wedge \lambda,$$

where we have used $\bar{\partial}\omega = \partial\bar{\partial}\alpha$ and $\bar{\partial}\partial\alpha = \partial\omega$. Now notice that

$$\partial \left[\sum_{2i+j=k-1} \frac{j+1}{i+1} \binom{k}{j+1} \binom{2i}{i} \bar{\partial} \bar{\alpha} \wedge \omega^{j} \wedge (\partial \alpha \wedge \bar{\partial} \bar{\alpha})^{i} \right]$$

$$= \sum_{2i+j=k} j \binom{k}{j} \binom{2i}{i} \partial \bar{\partial} \bar{\alpha} \wedge \omega^{j-1} \wedge (\partial \alpha \wedge \bar{\partial} \bar{\alpha})^{i}$$

$$+ \sum_{2i+j=k} i \binom{k}{j} \binom{2i}{i} \partial \omega \wedge \omega^{j} \wedge \bar{\partial} \bar{\alpha} \wedge (\partial \alpha \wedge \bar{\partial} \bar{\alpha})^{i-1},$$

and again Stokes' theorem implies that the second term is equal to

$$I_2 = \sum_{2i+j=k-1} \frac{j+1}{i+1} \begin{pmatrix} k \\ j+1 \end{pmatrix} \begin{pmatrix} 2i \\ i \end{pmatrix} \int_X \omega^j \wedge (\partial \alpha \wedge \bar{\partial} \bar{\alpha})^{i+1} \wedge \lambda.$$

Therefore

$$\int \eta^{k+1} \wedge \lambda = \sum_{2i+j=k} \binom{k}{j} \binom{2i}{i} \int_X \omega^{j+1} \wedge (\partial \alpha \wedge \bar{\partial} \bar{\alpha})^i \wedge \lambda$$
$$+2 \sum_{2i+j=k-1} \frac{j+1}{i+1} \binom{k}{j+1} \binom{2i}{i} \int_X \omega^j \wedge (\partial \alpha \wedge \bar{\partial} \bar{\alpha})^{i+1} \wedge \lambda.$$

Now the formula for k + 1 follows from rearranging the terms of the sums, along with the trivial identity

$$\begin{pmatrix} k+1 \\ j \end{pmatrix} \begin{pmatrix} 2i \\ i \end{pmatrix} = \begin{pmatrix} k \\ j-1 \end{pmatrix} \begin{pmatrix} 2i \\ i \end{pmatrix} + 2\frac{j+1}{i} \begin{pmatrix} k \\ j+1 \end{pmatrix} \begin{pmatrix} 2i-2 \\ i-1 \end{pmatrix}$$
 for $2i+j=k+1$.

Now we can prove

Theorem 2.2. Let X be a compact complex manifold of dimension n in the Fujiki class C and suppose there exists ω a strictly positive (1,1) form on X such that $i\partial\bar{\partial}\omega=0$. Then X is a Kähler manifold.

Proof. Note that since X is in the Fujiki class \mathcal{C} , the $\partial\bar{\partial}$ lemma is valid on X, and therefore the condition $i\partial\bar{\partial}\omega=0$ implies the existence of α and η as in Lemma 2.1 (apply the $i\partial\bar{\partial}$ -lemma to the d-closed and ∂ -exact form $\partial\omega$). We prove by induction on n that $\{\eta\}$ is a Kähler cohomology class.

First assume that X can be made Kähler by a single blow-up along a smooth submanifold $Y \subset X$, $\dim Y \leq n-2$. Denote by $\pi: \widetilde{X} \to X$ the blow-up of X along Y, denote by $\widetilde{Y} \subset \widetilde{X}$ the exceptional divisor and suppose that $\widetilde{\lambda}$ is a Kähler form on \widetilde{X} . It is well-known that there exists a smooth d-closed (1,1) form \widetilde{u} on \widetilde{X} , in the cohomology class of $[\widetilde{Y}]$, such that $\widetilde{\omega} = \pi^*\omega - \varepsilon \widetilde{u}$ is strictly positive on \widetilde{X} for some small $\varepsilon > 0$. Moreover, $\widetilde{u} = [\widetilde{Y}] + i\partial\bar{\partial}\widetilde{\psi}$, where $\widetilde{\psi}$ is smooth on $\widetilde{X} \setminus \widetilde{Y}$. Set $\widetilde{\alpha} = \pi^*\alpha$ and $\widetilde{\eta} = \partial\widetilde{\alpha} + \widetilde{\omega} + \bar{\partial}\widetilde{\alpha}$. Then we can use Lemma 2.1 for $\widetilde{\eta}$ on \widetilde{X} .

Note that

$$(\partial \widetilde{\alpha} \wedge \bar{\partial} \bar{\widetilde{\alpha}})^i = (\partial \widetilde{\alpha})^i \wedge (\bar{\partial} \bar{\widetilde{\alpha}})^i$$

is a weakly positive (2i,2i) form on \widetilde{X} . Hence, when we multiply it with the strongly positive form $\widetilde{\omega}^j \wedge \widetilde{\lambda}^k$, we obtain a positive multiple of the volume form. Therefore we obtain that

(2.2)
$$\int_{\widetilde{Z}} \widetilde{\eta}^k \wedge \widetilde{\lambda}^{p-k} > 0$$

for every irreducible analytic subset $\widetilde{Z} \subset \widetilde{X}$, dim $\widetilde{Z} = p$ and every $k = \overline{1,p}$. Indeed, when \widetilde{Z} is smooth, this follows from Lemma 2.1.

In the case when \widetilde{Z} is not smooth, we use Hironaka's resolution of singularities, and we obtain a manifold \widetilde{X}' which is a sequence of blow-ups with smooth centers of \widetilde{X} , and a smooth submanifold \widetilde{Z}' which resolves the singularities of \widetilde{Z} . It is clear that the integral in (2.2) is equal to the corresponding integral over \widetilde{Z}' and hence is nonnegative.

Theorem 1.3 implies that $\{\widetilde{\eta}\}$ is a Kähler cohomology class on \widetilde{X} ; i.e., there exists $\widetilde{\varphi} \in \mathcal{C}^{\infty}(\widetilde{X}, \mathbb{R})$ such that $\widetilde{\eta} + i\partial\bar{\partial}\widetilde{\varphi} > 0$.

Now we push everything forward to X. At the cohomology level, we have on \widetilde{X} that

$$\{\widetilde{\eta}\} = \pi^*\{\eta\} - \varepsilon\{[\widetilde{Y}]\}.$$

The push-forward of $[\widetilde{Y}]$ is 0, so it follows that $\pi_*\{\widetilde{\eta}\} = \{\eta\}$ contains a Kähler current which is smooth on $X \setminus Y$.

Note that a smooth submanifold of a manifold in Fujiki class \mathcal{C} is also in Fujiki class \mathcal{C} . Hence, by induction, we obtain that the restriction of $\{\eta\}$ to Y is a Kähler cohomology class, and by Theorem 1.4 it follows that $\{\eta\}$ is a Kähler cohomology class.

In general, suppose that X can be made Kähler by a sequence of blow-ups with smooth centers $X_r \to X_{r-1} \to \ldots \to X_1 \to X_0 = X$, choose r to be minimal, and suppose $r \geq 1$. We can easily construct a strictly positive (1,1)-form ω_{r-1} on X_{r-1} such that $i\partial\bar{\partial}\omega_{r-1}=0$. Then X_{r-1} is Kähler, contradicting the minimality of r.

On 3-folds we can prove a stronger result:

Theorem 2.3. Let X be a 3-fold in the Fujiki class C and ω a strictly positive (1,1) form on X such that either $i\partial\bar{\partial}\omega \geq 0$ or $i\partial\bar{\partial}\omega \leq 0$. Then X is Kähler.

Proof. Since X is in the Fujiki class C, there exists $T \geq \gamma$ a Kähler current on X, where γ is a strictly positive (1,1) form on X. If $i\partial \bar{\partial} \omega \geq 0$, then

(2.3)
$$\langle i\partial\bar{\partial}\omega,\gamma\rangle \leq \langle i\partial\bar{\partial}\omega,T\rangle = \langle \omega,i\partial\bar{\partial}T\rangle = 0;$$

hence $i\partial\bar{\partial}\omega = 0$ and similarly when $i\partial\bar{\partial}\omega \leq 0$. Therefore $i\partial\bar{\partial}\omega = 0$ and the conclusion follows from Theorem 2.2.

Now we can easily prove

Theorem 2.4. Let X be a compact complex manifold of dimension n in the Fujiki class C and which is not Kähler. Then there exists a positive, nonzero current T of bidegree (n-1, n-1), which is $i\partial\bar{\partial}$ -exact.

Proof. By Theorem 1.2, it is enough to prove that if X supports a strictly positive, $i\partial\bar{\partial}$ -closed, (1,1) form, then X is Kähler. But this is just the statement of Theorem 2.2. The $i\partial\bar{\partial}$ -exactness of T follows immediately from the $\partial\bar{\partial}$ lemma. \Box

3. Non-Kähler 3-folds

In this section we show that on any 3-fold in class \mathcal{C} which is not Kähler there exists a curve which is part of the obstruction.

Theorem 3.1. Let X be a 3-fold in class C which is not Kähler and let T be a closed, positive, nonzero (2,2) current which is $i\partial\bar{\partial}$ -exact. Then there exist C an irreducible curve in X, $\lambda > 0$ and R a closed positive (2,2) current on X such that $T = \lambda[C] + R$.

Remark 3.1. The above theorem is no longer true in higher dimensions. For instance, let Y be the 3-fold constructed by Hironaka [Hi] which is a proper modification of the projective space \mathbb{P}^3 and which contains a positive linear combination of curves which is homologuous to 0. Denote this obstruction by C. Let S be an arbitrary Riemann surface and ω_S a positive (1,1) form on S. Let $X=Y\times S$ and let p_1 and p_2 the two projections. Set $T=p_1^*C\wedge p_2^*\omega_S$. Then T is a closed positive (3,3) current, which is $i\partial\bar\partial$ -exact, and it is a residual current.

Remark 3.2. Theorem 3.1 states that on 3-folds, any closed obstruction contains a curve. The above example shows that in higher dimensions there are obstructions which do not contain any curves. It is not clear whether on any manifold in class \mathcal{C} there are obstructions which contain curves.

Before we prove Theorem 3.1, we need the following:

Proposition 3.2. Let X be a compact complex manifold of dimension n in the Fujiki class C, let $\pi: \widetilde{X} \to X$ be the blow-up of X along a smooth submanifold Y of dimension $\leq n-2$ and let \widetilde{Y} the exceptional divisor. Let T be a closed positive (n-1,n-1) current on X such that $\chi_Y T=0$. Then there exists \widetilde{T} a closed positive (n-1,n-1) current on \widetilde{X} such that $\chi_{\widetilde{Y}}\widetilde{T}=0$ and $\pi_*\widetilde{T}=T$. Moreover, $\{\widetilde{T}\}=\pi^*\{T\}-\lambda\{[F]\}$, where F is a curve in the fibre of $\pi|\widetilde{Y}:\widetilde{Y}\to Y$ and $\lambda\geq 0$.

Proof. The existence of \widetilde{T} (the strict transform of T) is proved in [AlBa2]. Let F be a curve in a fibre of $\pi | \widetilde{Y} \to Y$. We prove that there exists $\lambda \in \mathbb{R}$ such that $\{\widetilde{T}\} = \pi^* \{T\} - \lambda \{[F]\}$ by duality. Let $\{\widetilde{\alpha}\} \in H^{1,1}(\widetilde{X})$; it is well-known that $\{\widetilde{\alpha}\} = \pi^* \{\alpha\} + \gamma \{[\widetilde{Y}]\}$, where $\{\alpha\} \in H^{1,1}(X)$. Then

$$\langle \{\widetilde{T}\} - \pi^* \{T\} - \lambda \{[F]\}, \{\widetilde{\alpha}\} \rangle = \gamma \left(\langle \{\widetilde{T}\}, \{[\widetilde{Y}]\} \rangle + \lambda \langle \{[F]\}, \{[\widetilde{Y}]\} \rangle \right).$$

It follows that for

$$\lambda = -\frac{\langle \{\widetilde{T}\}, \{[\widetilde{Y}]\}\rangle}{\langle \{[F]\}, \{[\widetilde{Y}]\}\rangle}$$

we have $\{\widetilde{T}\} = \pi^*\{T\} + \lambda\{[F]\}$. Since $\chi_{\widetilde{Y}}\widetilde{T} = 0$, it follows (see [AlBa1]) that $\langle\{\widetilde{T}\},\{[\widetilde{Y}]\}\rangle \leq 0$. Now $\langle\{[F]\},\{[\widetilde{Y}]\}\rangle < 0$ and therefore $\lambda \geq 0$.

Proof of Theorem 3.1. By Siu's decomposition theorem, T can be written T = $\sum_{j} \lambda_{j}[C_{j}] + R$, where C_{j} are curves in $X, \lambda_{j} > 0$ and R is a residual current; i.e., the Lelong sublevel sets $E_c(R)$ are 0 dimensional for every c>0. So it is enough to prove that T cannot be residual. Suppose T is residual. Then, if Y is a submanifold of X of dimension ≤ 1 , then $\chi_Y T = 0$. Now suppose that X can be made Kähler by a sequence of blow-ups with smooth centers $X = X_0 \leftarrow X_1 \leftarrow \ldots \leftarrow X_r$ where X_r is Kähler. Denote by Y_s the center of the blow-up $X_{s+1} \to X_s$. The centers of the blow-ups are either smooth curves or points. Start off with the current $T = T_0$ on $X = X_0$. Clearly $\chi_{Y_0}T = 0$. We construct by induction $i\partial\bar{\partial}$ -exact, positive currents T_s on X_s such that $\chi_{Y_s}T_s=0$ and $(\pi_s)_*T_s=T_{s-1}$. Suppose T_s has been constructed. From Proposition 3.2 we obtain a closed positive current T'_{s+1} on X_{s+1} and $\lambda_{s+1} \geq 0$ such that $T'_{s+1} + \lambda_{s+1}[F_{s+1}]$ is $i\partial\bar{\partial}$ -exact and its push-forward is T_s . If $Y_{s+1} \neq F_{s+1}$, we set $T_{s+1} = T'_{s+1} + \lambda_{s+1}[F_{s+1}]$. If $Y_{s+1} = F_{s+1}$, we set $T_{s+1} = T'_{s+1} + \lambda_{s+1}[F'_{s+1}]$, where $F'_{s+1} \neq F_{s+1}$ is another curve in the cohomology class $\{[F_{s+1}]\}$. It is clear that $\chi_{Y_{s+1}}T_{s+1} = 0$ and that $(\pi_{s+1})_*T_{s+1} = T_s$. On X_r we obtain a closed positive current T_r which is $i\partial\bar{\partial}$ -exact. Since X_r is Kähler, it follows that $T_r = 0$ and therefore $T_0 = T = 0$. Contradiction.

References

- [AlBa1] Lucia Alessandrini and Giovanni Bassanelli, Compact complex threefolds which are Kähler outside a smooth rational curve, Math. Nachr. **207** (1999), 21–59. MR1724291 (2001h:32026)
- [AlBa2] Lucia Alessandrini and Giovanni Bassanelli, Transforms of currents by modifications and 1-convex manifolds, Osaka J. Math. 40 (2003), no. 3, 717–740. MR2003745 (2004f:32046)
- [DePă] Jean-Pierre Demailly and Mihai Paun, Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. (2) 159 (2004), no. 3, 1247–1274, DOI 10.4007/annals.2004.159.1247. MR2113021 (2005i:32020)
- [FiTo] Anna Fino and Adriano Tomassini, A survey on strong KT structures, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 52(100) (2009), no. 2, 99–116. MR2521810 (2010h:53108)

- [HaLa] Reese Harvey and H. Blaine Lawson Jr., An intrinsic characterization of K\u00fchler manifolds, Invent. Math. 74 (1983), no. 2, 169–198, DOI 10.1007/BF01394312. MR723213 (85b:32013)
- [Fu] Akira Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), no. 3, 225–258. MR0481142 (58 #1285)
- [Hi] Heisuke Hironaka, An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures, Ann. of Math. (2) 75 (1962), 190–208. MR0139182 (25 #2618)
- [La] Ahcène Lamari, Courants kählériens et surfaces compactes (French, with English and French summaries), Ann. Inst. Fourier (Grenoble) **49** (1999), no. 1, vii, x, 263–285. MR1688140 (2000d:32034)
- [Pe] Thomas Peternell, Algebraicity criteria for compact complex manifolds, Math. Ann. **275** (1986), no. 4, 653–672, DOI 10.1007/BF01459143. MR859336 (88j:32036)
- [Va] Jean Varouchas, Kähler spaces and proper open morphisms, Math. Ann. 283 (1989),
 no. 1, 13–52, DOI 10.1007/BF01457500. MR973802 (89m:32021)

Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, Bucharest 014700, Romania

E-mail address: Ionut.Chiose@imar.ro