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Abstract A key question in neuroscience is how cortical organisation relates to experience.

Previously we showed that amputees experiencing highly vivid phantom sensations maintain

cortical representation of their missing hand (Kikkert et al., 2016). Here, we examined the role of

sensory hand experience on persistent hand representation by studying individuals with acquired

and congenital hand loss. We used representational similarity analysis in primary somatosensory

and motor cortex during missing and intact hand movements. We found that key aspects of

acquired amputees’ missing hand representation persisted, despite varying vividness of phantom

sensations. In contrast, missing hand representation of congenital one-handers, who do not

experience phantom sensations, was significantly reduced. Across acquired amputees, individuals’

reported motor control over their phantom hand positively correlated with the extent to which

their somatosensory hand representation was normally organised. We conclude that once cortical

organisation is formed, it is remarkably persistent, despite long-term attenuation of peripheral

signals.

DOI: https://doi.org/10.7554/eLife.37227.001

Introduction
A fundamental organising principle in the primary somatosensory cortex (SI) is somatotopic map-

ping, where adjacent body parts are represented more proximally on the cortical sheet than those

further apart (Penfield and Rasmussen, 1950). In the cortical hand area, this topographic organising

principle results in a detailed digit map (Kaas et al., 1979; Penfield and Rasmussen, 1950), where

neighbouring digits on the hand are represented closer together on the neocortex than non-neigh-

bouring digits, as can be shown with functional MRI (fMRI) (Kolasinski et al., 2016). More generally,

cortical activity patterns for neighbouring fingers overlap more – and are therefore more similar –

than non-neighbouring fingers, independent of the exact spatial arrangement of these patterns

(Ejaz et al., 2015). The representational structure (i.e. the relative dissimilarity of activity patterns for

different movements) is thought to reflect the natural statistics of hand use over one’s life course

(Graziano and Aflalo, 2007; Overduin et al., 2012): Concurrent inputs to neighbouring digits will

increase representational similarity (Wang et al., 1995), while greater individuation of inputs will

induce greater representational dissimilarity (Ejaz et al., 2015). Some have even suggested that
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alterations of these inter-digit representational boundaries after the hand map has been formed,

for example due to digit overuse, can disrupt (musician’s dystonia [Elbert et al., 1998], but see

Ejaz et al., 2016) or improve perception and action (tactile discrimination [Recanzone et al., 1992;

Pleger et al., 2003]).

We (Kikkert et al., 2016) and others (Flesher et al., 2016; Bruurmijn et al., 2017) recently chal-

lenged the view that structured input from the periphery is required for preserving sensorimotor

hand representation (Dempsey-Jones et al., 2016; see also Davis et al., 1998, Mercier et al.,

2006, Garbarini et al., 2018 for related brain stimulation and behavioural findings). We took advan-

tage of a well-documented phenomenon whereby some amputees report being able to volitionally

move their phantom hand, resulting in kinaesthetic phantom sensations (Henderson and Smyth,

1948). Phantom limb movements have been shown to elicit both central and peripheral motor sig-

nals that are different from those found during movement imagery (Reilly et al., 2006; Raffin et al.,

2012a; Raffin et al., 2012b; Makin et al., 2013b). Using 7T imaging we explored whether three

amputees experiencing exceptionally vivid phantom sensations maintained the canonical hand repre-

sentation, exemplified by somatotopically organised representation of individual digits. We found

that although digit selectivity was reduced, digit order and the extent of the missing hand maps in

SI were similar to what is observed in controls.

Our previous findings demonstrate the stability of SI hand organisation despite decades of ampu-

tation. It remains unknown, however, whether hand representation after amputation reflects phan-

tom sensations, and as such only persists in individuals with highly vivid phantom sensations. Here,

we asked whether persistent representation of a missing hand reflects an organisational principle in

the sensorimotor cortex, and thus will even be observed in amputees with little phantom sensations.

To address this question, we measured cortical hand representation in 18 acquired amputees with

varying vividness of their phantom sensations (hereafter amputees). To test the idea that the devel-

opment of a hand representation requires sensory experience, we also tested 13 individuals missing

one hand from birth (due to congenital amelia; hereafter congenital one-handers). All participants

underwent fMRI while performing a visually cued motor task involving individual digit movements (of

both the missing hand and the intact hand). Activity patterns in the missing hand of SI and M1 were

analysed using representational similarity analysis (Walther et al., 2016; Diedrichsen et al., 2016).

We hypothesised that normal peripheral input is necessary to establish normal sensory hand repre-

sentation, but not to maintain it.

Results

Phantom hand movements elicit typical hand representation in the
missing hand area of acquired amputees
We first focused our analysis on the representation of the missing hand, as revealed by instructing

individuals to move individual digits of their missing hand (or nondominant hand in controls). We

interrogated fMRI activity in the SI hand area contralateral to the missing/nondominant hand (see

Materials and methods for regions of interest (ROI) definition). We examined univariate task-related

activity, as quantified by averaging the BOLD response across all the digit conditions within the miss-

ing hand ROIs (Figure 1A, see Figure 1—figure supplement 1 for M1 ROI results). Overall, all par-

ticipants, including congenital one-handers, were able to engage the missing/nondominant hand

area to some degree. Although activity was reduced in SI for the congenital one-handers’ missing

hand compared to controls (t(23)=3.5, p=0.002), activity was significantly greater than baseline (t(12)

=2.6, p=0.02).

To investigate digit discriminability in the hand area, we next estimated the dissimilarity between

activity patterns for individual digit movements, measured using the cross-validated Mahalanobis

distance (Nili et al., 2014). By comparing all possible pairs of digit-specific activity patterns, we

obtained the representational structure (Figure 1D–E). The resulting inter-digit dissimilarity values

were averaged across digit pairs and participants within each group (Figure 1B). Small inter-digit

dissimilarity indicates that voxels in the hand area are similarly activated across individual digits;

larger dissimilarity implies individuated digit representation. In amputees, mean dissimilarity was
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Figure 1. Similar representation in primary somatosensory cortex (SI) for amputees’ missing hand and controls’ nondominant hand, but not for

congenital one-handers’ missing hand. (A) Activity (averaged digit movement versus rest) in SI for amputees (n = 18), two-handed controls (n = 12), and

congenital one-handers (n = 13). (B–C) Mean dissimilarity and typicality of the representational structure of contralateral SI activity for the three groups.

(D) Representational dissimilarity matrices for the three groups. D1-D5 correspond to the five digits (thumb-little finger). (E) Two-dimensional projection

of the representational structure (D) (using multi-dimensional scaling; note that this is included for visualisation purposes only and was not used for

statistical analysis). Dissimilarity is reflected by distance in the two dimensions; individual digits are reflected by different colours (see colour key,

bottom right); and ellipses reflect the between-subject standard error after Procrustes alignment. Please note the different scale for one-handers

compared to amputees and controls. Abbreviations: a.u.: arbitrary unit; *: significant difference, after accounting for multiple comparisons.

DOI: https://doi.org/10.7554/eLife.37227.002

The following figure supplement is available for figure 1:

Figure supplement 1. Similar representation in primary motor cortex (M1) for amputees’ missing hand and controls’ nondominant hand, but not for the

congenital one-handers’ missing hand.

DOI: https://doi.org/10.7554/eLife.37227.003
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slightly, though inconclusively, reduced compared to controls (t(28)=1.13, p=0.27, BF = 0.772), but

significantly greater than in congenital one-handers (t(29)=3.54, p=0.001). Congenital one-handers

showed no differentiation between digits of their missing hand (mean dissimilarity not different from

0; t(12)=.73, p=0.48) and dissimilarity was significantly reduced compared to controls (t(23)=4.86,

p<0.001).

While the extent of discriminability is greater in amputees than congenital one-handers, it is pos-

sible that the pattern of individuated digit activity is atypical in amputees. To determine whether the

inter-digit organisation of a missing hand is normal, we next studied the representational structure’s

typicality, that is the correlation of the representational dissimilarity matrix (RDM) with a dataset of

hand RDMs in 2-handed controls drawn from a different study (Wesselink et al., 2018; see

Figure 1C and Materials and methods). In amputees, on average, typicality was high (rho = 0.75)

and was not significantly different from controls (t(28)=.991, p=0.33, BF = 0.128). Hence, the organi-

sation of digit representation after hand-loss remained statistically unchanged, after an average of

18 years of handlessness. As expected, congenital one-handers’ missing hand representation did not

correlate with a normal hand pattern, reflected in diminished representational typicality (mean

rho = 0.29) compared to both controls (t(23)=5.86, p<0.001) and amputees (t(29)=6.09, p<0.001).

The results in M1 were generally in line with our findings in SI, but, as expected (Ejaz et al.,

2015; Bruurmijn et al., 2017), digit individuation was weaker (see Figure 1—figure supplement 1).

Univariate activity in congenital one-handers’ M1 was not significantly reduced compared to controls

(t(23)=2.00, p=0.058) and greater than baseline (t(12)=4.60, p=0.001). Congenital one-handers

showed significantly lower dissimilarity compared to controls (t(23)=4.23, p<0.001). In amputees,

mean dissimilarity was slightly reduced compared to controls, but these differences were not signifi-

cant (t(28)=.53, p=0.60, BF = 0.325). Typicality was also significantly lower in congenital one-handers

than in either controls (t(23)=3.42, p=0.002) or amputees (t(29)=3.50, p=0.002), while the latter

groups were not different from each other (t(28)=.11, p=0.91, BF = 0.253).

Although the inter-digit representational structure of congenital one-handers is atypical with

respect to canonical hand representation, it is possible that it is still consistent within participants.

To explore this idea, we split individual participants’ data to odd and even scans. For each partici-

pant, we calculated an RDM in the missing/nondominant hand area using the odd and even runs,

and correlated the two RDMs. The correlation between odd and even RDMs was significantly lower

in congenital one-handers (rho = -.02) compared to both amputees (rho = 0.41; p1H-AMP=.001) and

controls (rho = 0.52; p1H-CTR=.001). We note that by splitting the data we are reducing the effective-

ness of our analysis. Nevertheless, the relative reduction in split-half consistency indicates that there

is no strongly consistent digit information in the missing hand area of congenital one-handers during

this task.

Missing hand representation in acquired amputees is persistent even
after phantom sensations have diminished
Next, we evaluated whether the consistency of hand representation in SI during missing hand move-

ments correlates with amputees’ subjective reports of phantom sensations. We first carried out an

exploratory forward stepwise regression with typicality as the dependent variable. The following fac-

tors were tested as independent variables: kinaesthesia of phantom sensations - the number of

phantom digits perceived as independently moving during the phantom movement task; vividness

of nonpainful phantom sensations as experienced both during the study and chronically; intensity of

phantom limb pain, as experienced both acutely during the study and chronically; time since ampu-

tation; age at amputation, and; typicality of the intact hand (calculated from the intact hand SI area).

The final model (F = 19.9, p<0.001, adjusted R2 = 0.645 included only kinaesthesia of phantom sen-

sations (b = 0.07, t = 4.46, p<0.001) and the intercept (b = 0.52, t = 8.89, p<0.001). This regression

was submitted to a bootstrapping analysis, allowing us to estimate the consistency of the final model

(see Materials and methods). This bootstrapping analysis returned kinaesthesia as the final variable

in 96.3% of the iterations (final model fit: median adjusted R2 = 0.645; 95% CI: 30-99%). The propor-

tion of the other included factors in the final model was: typicality of the intact hand (7.0%); time

since amputation (9.5%); age at amputation (9.6%); vividness of nonpainful phantom sensations

(acute: 12.2%; chronic: 20.8%); phantom limb pain, acute: 22.7%; chronic: 10.1%).

Post-hoc analysis confirmed a significant correlation between typicality and kinaesthesia in ampu-

tees (Figure 2A; rho = 0.72, df = 16, p=0.001). No significant correlation was found with nonpainful
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phantom vividness (the chronicity of experiencing the missing hand as existing; Figure 2B;

rho = 0.13, df = 16, p=0.61), or years since amputation (rho = 0.17, df = 16, p=0.49). The correlation

between kinaesthesia and dissimilarity in SI approached significance (rho = 0.447, p=0.063).

Further analysis confirmed that the correlation between kinaesthesia and typicality remained sig-

nificant in SI after accounting for typicality in M1 (mean rho = 0.44) as a covariate (F = 17.73,

p<0.001, Adjusted R2 = 0.51; bKinaesthesia =.74, p<0.001). This analysis suggests that although better

recruitment of M1 is expected in individuals with clearer kinaesthetic sensations, the strong correla-

tion between kinaesthesia and typicality in SI does not merely reflect information in M1.

Regardless of the positive relationship between kinaesthesia and typicality, amputees with little

to no kinaesthetic sensations still showed missing hand representation. As stated above, the regres-

sion line between kinaesthesia and typicality had an intercept of bintercept=.52. This was also the case

when phantom vividness was the (non-significant) dependent variable (F = 0.021, p=0.89, Adjusted

R2 = -.061; bintercept=.75, p<0.001). These results predict that even amputees who do not experience

any phantom sensations will retain some typical missing hand representation. To test this prediction

directly, we examined the three amputees in our dataset showing weak to no chronic phantom vivid-

ness (below 10/100). Despite not being able to experience clearly their phantom hand when per-

forming the phantom movements task, these individuals showed high typicality (average typicality

(rho) = 0.83). Moreover, when comparing their typicality to that found in the congenital one-handers

(who were arguably better matched to this sub-group in terms of task demands), the amputees with

diminished phantom sensations showed significantly stronger correlations with the canonical hand

structure (Mann-Whitney U = 38, p=0.007). Typicality was not different between these three ampu-

tees and controls (Mann-Whitney U = 29, p=0.52, BF = 0.089). Together, these additional analyses

Figure 2. Kinaesthetic sensations during individuated phantom hand movements in amputees correlate with typicality in the missing hand’s primary

somatosensory cortex (SI). Typicality is the correlation coefficient of the representational dissimilarity matrix (RDM) with an independent hand RDM in

controls. Phantom kinaesthesia (A) shows the number of digits that produced a sensation of movement during volitional phantom digit movements,

based on amputees’ self-reports. Grey and orange ranges show the mean and confidence intervals for typicality in one-handers and controls,

respectively. The regression line is only presented for visualisation. Nonpainful phantom vividness (B) conveys the chronicity of the experience of the

existence of a missing hand, where 0 indicates no sensations and 100 sensations identical to the intact hand.

DOI: https://doi.org/10.7554/eLife.37227.004
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confirm that the representational structures’ typicality in SI of amputees is still present in those with

little to no phantom or kinaesthetic sensations.

Diminished missing hand representation in congenital one-handers even
when task performance is matched
While the task involving phantom hand movements was suitable to test the persistence of missing

hand representation in individuals with phantom sensations, it was not designed to rule out the exis-

tence of missing hand representation in congenital one-handers. Indeed, it is possible that congeni-

tal one-handers have typical sensorimotor representation of their missing hand, but they did not

access it due to unnatural task demands (see Striem-Amit et al., 2015 for analogous results regard-

ing visual cortex organisation in congenitally blind individuals).

To probe digit structure in the missing hand cortex using an alternative task, we examined

whether we could observe a representation of the ipsilateral (intact) hand in the missing hand cortex.

In two-handed controls, finger movements lead to individuated digit representation in specific corti-

cal patches in ipsilateral M1 and SI, which tightly correspond to the activity patches engaged in the

movement of the mirror-symmetric contralateral finger (Diedrichsen et al., 2013). Importantly, this

ipsilateral digit representation fully overlaps with the representation of the contralateral hand

(Diedrichsen et al., 2018). Furthermore, ipsilateral representation disappears completely during

asymmetric bimanual finger movements, during which activity in M1 and SI is fully determined by

the contralateral hand (Diedrichsen et al., 2013). As such, the ipsilateral representation of one hand

is likely elicited due to recruitment of the representation of the contralateral hand

(Diedrichsen et al., 2018; Berlot et al., 2018). Ipsilateral representation of the intact hand can

therefore provide an indirect assay into the representation of the missing hand, while controlling for

task demands across groups. Importantly, all three groups were able to perform the individuated

digit movement task equally well and contralateral representation of the intact hand was typical in

all groups (see Materials and methods). We compared the intact/dominant inter-digit representa-

tional structure in the missing/nondominant hand area of one-handers/controls (respectively). We

predicted that persistent missing hand representation in amputees should result in similar ipsilateral

representation in their missing hand cortex as controls. If missing hand representation is diminished

in congenital one-handers, then ipsilateral representation of their intact hand (in the missing hand

area) should show reduced representational features compared to those found in amputees (see Dis-

cussion for an alternative mechanism, where the deprived cortex develops separate representations

for both the contralateral (missing) and ipsilateral (intact) hands).

Mean (intact hand) ipsilateral digit dissimilarity and typicality were not significantly different

between amputees and controls (Figure 3; dissimilarity: t(28)=1.42, p=0.166, BF = 0.209; typicality:

t(28)=.69, p=0.498, BF = 0.244). In contrast, ipsilateral representation in congenital one-handers was

significantly lower than in amputees (dissimilarity: t(29)=3.81, p<0.001; typicality: t(29)=3.05, p=0.005)

and showed similar trends versus controls (dissimilarity: t(23)=2.20, p=0.038; typicality: t(23)=2.19,

p=0.039). Together, these findings provide additional support for the reduced existence of inter-

digit representational difference in the missing hand cortex of congenital one-handers versus ampu-

tees, independent of missing hand motor skill.

It is important to consider that we found some potential support for the existence of an ipsilateral

digit representation in the missing hand cortex of congenital one-handers. The cross-validated dis-

similarity measurement in this group was significantly larger than zero (t(12)=2.51, p=0.027), indicat-

ing that there were significant differences between the activity patterns associated with each finger.

We therefore wished to determine whether the dissimilarity measures reflect meaningful (though

reduced) sensorimotor digit information, or rather the increased sensitivity of RSA to other (not sen-

sorimotor) inter-digit differences (e.g. visual task differences). For example, a recent study demon-

strated that visual information about touch on the hand is sufficient to induce some residual digit-

selective activity patterns in SI (Kuehn et al., 2018). We therefore compared representational meas-

urements between SI and visual area V5, previously shown not to contain individual sensorimotor

digit representation (Beauchamp et al., 2009). Although it is difficult to set a benchmark at a partic-

ular dissimilarity value, we suggest that representation crucial to somatosensation in SI should at

least outperform V5. Congenital one-handers showed no significant differences in representation

between SI and V5 (dissimilarity: t(12)=-1.03, p=0.322; typicality: t(12)=.78, p=0.448), whereas both

amputees and controls showed significant differences (all p’s < 0.02), resulting in a significant group
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x area interaction (dissimilarity: F(2,85)=4.25, p=0.018; typicality: F(2,85)=4.42, p=0.015; Figure 3).

These findings corroborate that the digit dissimilarity values in congenital one-handers are likely not

specifically indicative of sensorimotor representation, but may rather reflect other task demands.

Discussion
Here, we demonstrated long-term stability of SI hand representation in a group of acquired ampu-

tees with diverse phantom sensations, including those experiencing limited phantom sensations.

Using RSA, we find that amputees show individuated digit representation for their missing hand, as

exemplified by significantly greater inter-digit dissimilarity values in amputees versus congenital one-

handers. The inter-digit pattern comprising the missing hand representation was typical to SI hand

representation in amputees and was not significantly different from controls (as supported by a

Bayesian analysis). Importantly, by studying individuals with a varying range of phantom sensations,

we were able to confirm stable hand representation even after phantom sensations have diminished.

This result confirms the persistence of hand representation as a general principle in amputees, con-

trary to recent reports (Serino et al., 2017). Using the same task, we were unable to identify similar

digit representation for the missing hand of congenital one-handers, demonstrated by significantly

reduced pattern typicality compared to amputees (and even in comparison to those few amputees

with little phantom sensations), as well as controls. This result confirms that the persistent hand

representation observed in amputees does not reflect mere cognitive task demands (e.g. visual feed-

back, Kuehn et al., 2018; or attention, Puckett et al., 2017).

We also explored whether we could activate the representation of the missing hand indirectly by

movements of the fingers of the intact hand. Previous studies in two-handers have demonstrated

that contralateral and ipsilateral hand movements produce identical representational patterns

(Diedrichsen et al., 2018). Since this ipsilateral representation is completely overwritten by the

Figure 3. Similar ipsilateral hand representation in primary somatosensory cortex (SI) for amputees’ and controls’ intact hand. (A–B) Mean dissimilarity

and typicality of the representational structure of ipsilateral SI activity for the three groups. Both dissimilarity and typicality of ipsilateral hand

representation indicate a difference between missing hand representation in congenital one-handers and amputees, independent of missing hand

motor skill. The red error bars indicate the dissimilarity and typicality values (standard error of the mean) in a visual control area V5 for the same groups,

designed to capture visuomotor representation that is not strictly somatosensory. While amputees and controls showed significantly greater digit

representation in SI than V5 (both in terms of dissimilarity and typicality), congenital one-handers did not, further indicating reduced SI digit

representation. Abbreviations: a.u.: arbitrary unit; *: significant difference; #: trending difference (.02 < p < 0.05).

DOI: https://doi.org/10.7554/eLife.37227.005
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contralateral hand if the two hands are engaged in dissociated movements (Diedrichsen et al.,

2013, Exp. 2), it has been proposed that the ipsilateral hand reactivates the cortical resources asso-

ciated with the contralateral hand. Based on this evidence, the ipsilateral digit representation can

serve as an indirect measure of the contralateral hand representation. This discovery provides us

with a unique and novel opportunity to interrogate the information content underlying the

‘deprived’ hand cortex despite the physical absence of the hand. This approach provided converg-

ing evidence, but using different task demands, for similar (missing) hand representation for ampu-

tees and controls, but not for congenital one-handers. It might be worth considering whether

congenital one-hander’s deprived cortex could have developed separate representations for both

the contralateral (missing) and ipsilateral (intact) hand, which are uncorrelated due to anatomical or

behavioural differences from two-handers. If this were possible, we would predict maintained, or

even stronger, ipsilateral representation of the intact hand. Yet, our data does not reflect this

hypothesis. Moreover, poor ipsilateral representation in the deprived cortex does not seem to stem

from reduced inter-hemispheric connectivity, which appears to be functionally and structurally pre-

served in congenital one-handers, depending on lateralisation strategies in daily behaviour

(Hahamy et al., 2015; Hahamy et al., 2017; Makin et al., 2013a). Finally, it is still possible that rudi-

mentary missing hand representation, for example determined by genetic factors (Miyashita-

Lin et al., 1999; Rubenstein et al., 1999), has originally formed in congenital one-handers but later

diminished due to lack of consistent sensorimotor input. Bearing this caveat in mind, our findings

suggest that early-life experience is potentially necessary to create typical functional sensory organi-

sation, but not to maintain it.

It has previously been shown that restored peripheral input, for example via hand transplantation

(Frey et al., 2008) or targeted reinnervation (Serino et al., 2017) can reinstate sensorimotor hand

representation, indicating that the canonical hand representation is, to an extent, immutable to

change. Moreover, we reported that the SI hand map can persist independently of the original

peripheral input, as observed in a patient sustaining a brachial plexus avulsion injury, abolishing com-

munication between the periphery and the central nervous system (Kikkert et al., 2016). Similarly,

in the current study amputees showed, on average, persistent SI representation despite suffering

diverse nerve injuries spanned varying degrees of amputation (Table 1). It is therefore necessary to

consider alternative inputs that might contribute to the stability of the missing hand map in ampu-

tees. Considering that our task required active phantom movements, it is likely that the SI represen-

tation pattern is driven by motor efferent inputs. Indeed, while motor signals can no longer reach

their final output muscle terminal, the motor cortex in amputees remains functional (Raffin et al.,

2012a; see Kokotilo et al., 2009 for similar results in spinal cord injury patients). When a motor

command is sent out (e.g. in the form of an attempted hand movement), efference signals are

thought to reach SI and generate corollary discharge, suggested to resemble the expected sensory

feedback activity pattern, resulting from the movement (London and Miller, 2013; Adams et al.,

2013). Since congenital one-handers have never operated a hand, it is likely that this sensorimotor

predictive coding architecture never formed in the first place, explaining the lack of inter-digit dis-

similarity found in the present study.

It is important to consider how the finding of robust persistence of hand representation, despite

the physical absence of a hand, conceptually aligns with other reports of brain reorganisation. Since

the pioneering work of Hubel and Wiesel, demonstrating that input loss to visual cortex in early

development leads to profound physiological changes (Wiesel and Hubel, 1965b; Hubel and Wie-

sel, 1965; Wiesel and Hubel, 1965a), it has long been established that sensory deprivation causes

cortical reorganisation. Later seminal electrophysiological studies in monkeys further demonstrated

that deprivation-driven reorganisation following peripheral input-loss also occurs in adults

(Kaas et al., 1983). For example, following peripheral deafferentation of the hand and arm, the

missing hand SI area becomes responsive to touch applied to the monkey’s lower face (Pons et al.,

1991), likely due to subcortical re-routing of inputs (Kambi et al., 2014; Liao et al., 2016). Recent

research in humans indicates extensive reorganisation of multiple body-part representations onto

the deprived hand area of congenital one-handers (Hahamy et al., 2017; Striem-Amit et al., 2018;

Stoeckel et al., 2009). In amputees sustaining input loss in adulthood, original reports emphasised

facial remapping in SI, akin to the reorganisation observed in monkeys (Flor et al., 1995), as a driv-

ing mechanism for phantom limb pain (maladaptive plasticity; Flor et al., 2006). Later research chal-

lenged the notion that the deprived hand area gets taken over by facial inputs (Makin et al., 2013b;
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Table 1. Summary demographic details and phantom sensations.

Data is shown for amputees (AMP), controls (CTR) and congenital one-handers (1H). Congenital one-handers did not feel any phantom

limb sensations. All controls have full kinaesthetic sensations. F: female, M: male. Side: side of missing hand; L: left, R: right. Amputa-

tion level: 1: shoulder, 2: above elbow; 3: at elbow; 4: below elbow; 5: at wrist. Kin: Phantom limb kinaesthesia (number of independent

controllable parts of the hand), Viv: Chronic phantom limb vividness (0: no sensation, 100: intact hand’s vividness), Pain: Chronic phan-

tom limb pain (0: no pain, 100: worst pain imaginable), AViv/APain: Acute Viv/Pain (on the scanning day), Std: standard deviation, ND:

nondominant.

AMP
Age
(years) Sex

Amputation Phantom sensations

Side Years since
Age at
(years) Level

Kin
(0-5)

Viv
(0-100)

Pain
(0-100)

AViv
(0-100)

APain
(0-100)

Mean 50.4 17.6 32.9 3 58 46 65 21

St. dev. 12.1 10.4 11.8 2 38 37 30 23

A01 44 M R 15 29 2 5 100 100 100 50

A02 53 M L 32 21 2 5 50 100 60 70

A03 40 M L 11 29 2 4 100 50 100 20

A04 51 M L 32 19 2 5 100 0 100 0

A05 27 F R 7 20 4 2 50 40 60 0

A06 71 M R 16 55 2 1 20 85 60 20

A07 46 M R 18 28 2 3 70 90 70 50

A08 56 M L 26 30 4 5 6 40 10 0

A09 64 M L 31 33 2 4 100 40 100 10

A10 58 M L 2 56 2 3 90 0 80 0

A11 28 M L 8 20 5 4 40 40 20 0

A12 57 M R 29 28 2 1 80 90 80 40

A13 50 F L 1 49 4 0 0 0 0 0

A14 52 M R 27 25 2 5 100 80 80 50

A15 68 M R 26 42 4 1 16 0 80 0

A16 39 F R 9 30 3 4 35 40 50 30

A17 58 M L 12 46 4 5 2 0 65 0

A18 46 F L 14 32 4 3 80 30 50 30

CTR
Age
(years) Sex

ND hand

1H
Age
(years) Sex

Missing hand

Side Side Level

Mean 45.3 Mean 45.7

St. dev. 14.9 St. dev. 10.4

C01 29 M R H01 41 M L 4

C02 24 F L H02 37 M R 4

C03 47 F L H03 31 F L 4

C04 39 M L H04 60 M L 4

C05 32 M R H05 39 F L 4

C06 53 F R H06 54 F L 4

C07 38 F R H07 34 M L 4

C08 67 M R H08 63 M L 4

C09 42 M R H09 44 F R 4

C10 41 M R H10 55 F L 4

C11 69 M L H11 46 M R 4

C12 63 F L H12 37 M R 4

H13 53 F L 4

DOI: https://doi.org/10.7554/eLife.37227.006
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Makin et al., 2015; Raffin et al., 2016) and instead emphasised increased representation of the

intact hand in the missing hand cortex as a potential neural correlate of adaptive plasticity

(Makin et al., 2013a; Philip and Frey, 2014; see further discussion below). More recently, we have

suggested that functional reorganisation is more limited than originally considered (Makin and Ben-

smaia, 2017). Regardless of the ongoing debate over the functional role of SI reorganisation in the

adult (Andoh et al., 2018; Kuner and Flor, 2017) and developing brain (Hahamy et al., 2017;

Striem-Amit et al., 2018), common to all these previous studies of reorganisation is that to activate

the deprived cortex researchers studied representations of the spared body parts (e.g. the face or

the intact hand). While this approach is suitable for documenting cortical remapping, it leaves unex-

plored the possibility that the original functional organisation of the now-deprived area may be pre-

served, though latent. We propose that reorganisation in the missing hand cortex does not

necessarily abolish the original functional layout in sensory cortex. For example, persistent represen-

tation, in the form of efferent cortico-cortical input would engage a separate cortical layer

(Felleman and Van Essen, 1991; Adams et al., 2013) than brainstem and thalamic facial inputs to

the deprived cortex (Kambi et al., 2014). It still remains to be determined whether these two forms

of persistent representation and reorganisation are functionally orthogonal, or interactive

(Andoh et al., 2018).

As mentioned above, the missing hand cortex in amputees, but not in congenital one-handers,

has been previously shown to respond to inputs from the intact hand (Bogdanov et al., 2012;

Makin et al., 2013a; Hahamy et al., 2017; Philip and Frey, 2014), presumably through functional

reorganisation. Here, we used RSA to dissect the information content underlying ipsilateral activity

of the intact hand. We find that amputees, but not congenital one-handers, showed similar measures

of dissimilarity and typicality as controls. However, the fact that ipsilateral dissimilarity was not signif-

icantly greater in amputees than in controls is inconsistent with the interpretation of increased intact

hand activity as a neural correlate of adaptive reorganisation (Makin et al., 2013a). Regardless, the

existence of ipsilateral digit-specific organisation in the missing hand cortex of amputees might pro-

vide an alterantive mechanism for the preservation of the missing hand digit maps. While we previ-

ously showed that the phantom hand map is activated by phantom hand movements independently

of the intact hand (Kikkert et al., 2016; Philip and Frey, 2014), it is still possible that structured

inputs from the intact hand (via ipsilateral pathways) sustains the missing hand map, despite the loss

of the original peripheral inputs.

To conclude, here we show that once sensorimotor hand-representation is formed, it is generally

immutable to change: We identified stable hand representation in amputees’ sensorimotor cortex

using representational similarity analysis, despite years (and even decades) of amputation and irre-

spective of their phantom sensations vividness. In contrast, individuals born with a missing hand

(congenital one-handers) did not show normal representation of their nonexisting hand. We there-

fore suggest that consistent sensory representation despite input loss may be a common organising

principle (Striem-Amit et al., 2015; Collignon et al., 2013; Baseler et al., 2011). How can our find-

ings of persistent representation, despite massive and long-lasting input change, be resolved with

multiple observations of updated hand representation due to altered experience (e.g. due to nerve/

digit deafferentation [Merzenich et al., 1983; Merzenich et al., 1984], increased usage

[Jenkins et al., 1990], syndactyly [Allard et al., 1991; Wang et al., 1995], or mobile phone usage

[Gindrat et al., 2015])? Here we show that amputees with greater phantom kinaesthetic sensations

better retained their missing hand representation. In light of this, we suggest that daily life experi-

ence could shape the fine-grained aspects of hand representation, but the large-scale functional

organisation of the hand area is fundamentally stable.

Materials and methods

Participants
We tested 18 acquired amputees with an average of 18 years since amputation (mean age: 50 ± 12;

eight left-handed; four female), 13 congenital one-handers (mean age: 46 ± 10; four left-handers; six

female), and 12 two-handed control participants (mean age: 45 ± 15; five left-handers; five female).

All amputees reported experiencing phantom sensations after amputation, but vividness of these

sensations varied across participants at the time of the study (mean chronic vividness score 58 ± 38
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on a 0–100 scale, as assessed using questionnaires [Makin et al., 2013b; Makin et al.,

2015; Makin et al., 2013a; see Table 1 and Questionnaires section below for further details]). Three

participants in the amputees group tested here also took part in our previous study (Kikkert et al.,

2016). The congenital one-handers had never experienced any phantom sensations. In addition, we

also recruited and excluded a further congenital one-hander (due to technical difficulties during data

pre-processing) and two control participants (due to incomplete data collection and due to abnor-

mal digit selectivity, i.e. more than three standard deviations from the mean).

Recruitment was carried out in accordance with the University of Oxford’s Medical Sciences inter-

divisional research ethics committee (MS-IDREC-C2-2015-012). Informed consent and consent to

publish was obtained in accordance with ethical standards set out by the Declaration of Helsinki.

Control participants were recruited as to match the other two groups in term of age, gender and

handedness (with respect to the intact hand). When possible, control participants were friends and

family of the one-handed participants. All participants were compatible with local magnetic reso-

nance imaging (MRI) safety guidelines.

Experimental procedures
The experimental procedures described in this manuscript were run as part of a larger study (the full

study protocol can be found on https://osf.io/gmvua/). Here we focus on procedures related to the

representation of the missing hand in amputees and congenital one-handers.

Questionnaires
To measure phantom sensations, as well as other demographic and clinical details of potential rele-

vance to the missing hand representation, amputees and congenital one-handers completed a range

of questionnaires (as summarised in Table 1). Amputees rated intensities of phantom sensations,

using a 0–100 scale, as experienced during the last week (or in a typical week involving such sensa-

tions). Chronic phantom sensation was calculated by dividing intensity by sensations frequency (1- all

the time; 2- daily; 3- weekly; 4- several times per month; and 5- once or less per month), as previ-

ously implemented (Makin et al., 2013b; Makin et al., 2015). Having used this measure in multiple

studies with partly overlapping participant pools (Makin et al., 2013b; Kikkert et al., 2016;

van den Heiligenberg et al., 2017) we can assess the consistency of this measure within participants

and across studies (i.e. measure reliability). We found excellent inter-study consistency (intra-class

correlation coefficient: 0.79, 95% CI: .48-.93, F(13,13)=8.46, p<0.001), when considering all ampu-

tees that participated in at least one other study (n = 14, earlier questionnaire taken 1–4 years

before current study). In addition, participants reported the number of phantom digits that afford

kinaesthetic sensations during volitional control of movements (kinaesthesia). This report was further

validated by a demonstration of afforded phantom movements during the study’s main task with the

intact hand, as detailed below.

MRI tasks
All participants underwent one experimental session with four fMRI runs, using a block-design. The

task involved individual digit-movement blocks for each of the five digits (12 s blocks) of either hand,

as well as no movement (rest) blocks. Each condition was repeated three times in a semi-counterbal-

anced order within each run. Each run comprised a different block order.

To probe somatosensory digit representation, we used a visually cued active (motor) task. In an

intact sensorimotor system, movement recruits a combination of peripheral receptors, encoding a

range of somatosensory modalities (e.g. surface and deeper mechanoreceptors; proprioceptors), as

well as efferent information from the motor system. Using an active task, we have previously shown

high consistency of SI digit topography across multiple scanning sessions (Kolasinski et al., 2016,

see also Ejaz et al., 2015 for validation using RSA). Participants were presented with five vertical

bars, corresponding to the five digits, shown on a visual display projected into the scanner bore. To

cue the participant which digit should be moved, the bar corresponding to this digit changed (i.e.

by flashing in a different colour).

On ‘missing hand blocks’, participants were instructed to perform individual digit movements (1

Hz) with their nondominant (controls), phantom (amputees), or missing hand (congenital one-hand-

ers). Handless individuals were instructed to attempt performing actual movements with the digits of
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their missing hand, even when not being able to feel their digits, rather than using motor imagery.

Controls moved their nondominant hand digits in mid-air. To ensure good understanding of these

instructions, outside the scanner, the amputees were asked to demonstrate to the experimenter the

extent of volitional movement they felt they were able to carry out in each of their phantom digits,

by mirroring each movement onto their intact hand.

On ‘intact hand blocks’, all participants performed a comparable task with their intact/dominant

hand by exerting force on a button box. Participants received real-time visual feedback of how much

force each digit exerted by means of moving vertical bars on ‘intact hand blocks’, but not on ‘miss-

ing hand blocks’. The dominant hand of controls was paired up with the intact hand because,

through intensive use, amputees’ and congenital one-handers’ intact hand becomes their de facto

dominant hand (Philip and Frey, 2014). All groups were able to carry this task equally well, as veri-

fied in post-hoc analysis: each trial was assigned to the digit whose force output correlated most

strongly with the instructed time course and the percentage of correctly performed trials,

that is trials that were assigned to the instructed digit, was not different between congenital one-

handers and amputees (74.2%, t(29)=1.13, p=0.266), or between congenital one-handers (81.1%)

and controls (75.3%; t(23)=.93, p=0.362). This behaviour brought forth high representational typical-

ity in intact SI for all three groups (controls: rho = 0.85; amputees: rho = 0.81; and congenital one-

handers: rho = 0.89; group comparisons all p’s > 0.11).

MRI acquisition
MRI images were acquired using a 3T MAGNETON Prisma MRI scanner (Siemens, Erlangen, Ger-

many) with a 32-channel head coil. Functional images were collected using a multiband T2*-

weighted pulse sequence with a between-slice acceleration factor of 4 and no in-slice acceleration.

This provided the opportunity to acquire data with high spatial (2 mm isotropic) and temporal (TR:

1500 ms) resolution, covering the entire brain. The following acquisition parameters were used: TE:

32.40 ms; flip angle: 75˚, 72 transversal slices. Field maps were acquired for field unwarping. A T1-

weighted sequence was used to acquire an anatomical image (TR: 1900 ms, TE: 3.97 ms, flip angle:

8˚, spatial resolution: 1 mm isotropic).

MRI analysis
MRI analysis was implemented using tools from FSL, SPM and Connectome Workbench software

(Smith et al., 2004; Jenkinson et al., 2012, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/, https://www.fil.ion.

ucl.ac.uk/spm/, humanconnectome.org) in combination with other Matlab scripts (version R2016a),

both developed in-house (Wesselink and Maimon-Mor, 2017) and as part of the RSA Toolbox

(Nili et al., 2014). Cortical surface reconstructions were produced using FreeSurfer (Dale et al.,

1999; Fischl et al., 2001, freesurfer.net).

fMRI pre-processing
Functional data was first pre-processed in FSL 5.0. The following steps were included: Motion cor-

rection using MCFLIRT (Jenkinson et al., 2002), brain extraction using BET (Smith, 2002), and high

pass temporal filtering with a cut-off of 100 s. Co-registration to each individual anatomical T1 scan

was accomplished using FLIRT and, where needed, manual adjustments were performed to ensure

precise co-registration around the hand knob of the central sulcus.

Anatomical T1 images were used to reconstruct the pial and white-grey matter surfaces using

Freesurfer. Surface co-registration across hemispheres and participants was done using spherical

alignment. Individual surfaces were nonlinearly fitted to a template surface, first in terms of the sulcal

depth map, and then in terms of the local curvature, resulting in a nearly perfect overlap of the fun-

dus of the central sulcus across participants (Fischl et al., 2008).

Regions of Interest (ROI) definition
Since the focus of the study was on persistent sensory representation, our main analysis was

restricted to the individualised hand-selective ROIs in SI. Further analysis was focused on the M1

hand areas. The ROIs were always in the hemisphere contralateral to the missing/nondominant

hand. The anatomical ROIs were defined on the group surface using probabilistic cytotectonic maps

aligned to the average surface (see Wiestler and Diedrichsen, 2013). These regions were then
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projected into the individual brains via the reconstructed individual anatomical surfaces. For the

hand area of SI, we selected all surface nodes with the highest probability for any of BA3a, 3b, 1,

and 2, surrounding the anatomical hand knob (Yousry et al., 1997). The hand area of M1 was

selected similarly using BA 4. We note that given the probabilistic nature of these masks, the dissoci-

ation between SI and M1 is only an estimate. For one acquired amputee, surface alignment failed;

for this subject, the ROIs were drawn manually within the surface ribbon using the above anatomical

definitions. The ROIs were not significantly different in size across groups (one-way ANOVA on area

volume: SI: F = 1.27, p=0.29; M1: F = 1.37, p=0.27). In addition, for control purposes, we also used

an ROI of visual area V5 which we defined anatomically, based on the parameters previously pub-

lished by Wiestler and Diedrichsen (2013). The ROI was constructed bilaterally and RSA outcome

measures were averaged across both hemispheres.

fMRI analysis
Voxel-wise General Linear Model (GLM) analysis was carried out, as implemented in SPM12. In brief,

each of the experimental conditions was modelled for each run separately against rest. Regressors

were created by convolving stimulus presentation (as a boxcar function) with a double-gamma

hemodynamic response function (HRF). In the GLM estimation, the functional data was weighted

using the robust Weighted Least Squares approach (Diedrichsen and Shadmehr, 2005), which esti-

mates the heteroscedasticity of the time series and then ‘soft’-excludes noisy image volumes (e.g.

due to movement). Task-related activity was quantified by averaging the BOLD response, averaged

across all digits, versus baseline within each ROI. The voxel-wise parameter estimates (hereafter:

activity patterns) and residuals from this analysis were also used to calculate the dissimilarity, as

detailed below.

The dissimilarity between activity patterns within each ROI was measured for each digit pair using

the cross-validated squared Mahalanobis distance, or ‘crossnobis’ distance (Nili et al., 2014). We

calculated the distances using each possible pair of imaging runs and then averaged the resulting

distances. Before estimating the dissimilarity for each digit pair, the activity patterns were pre-whit-

ened using the residuals from the GLM. Due to cross-validation, the expected value of the distance

is zero (but can go below 0) if two patterns are not statistically different from each other, and larger

than zero if there is differentiation between the digits of the hand.

We extracted two measures from the resulting inter-digit representational dissimilarity matrix

(RDM). As a measure of strength of the representation, we used the mean dissimilarity, the average

dissimilarity between the ten unique digit pairs (excluding the diagonal). The typicality of the repre-

sentational structure was assessed by calculating the Spearman’s rho correlation between the mea-

sured RDM and the average RDM of the dominant hand of two-handed controls (independently

acquired; see below). Because the representational structure can be related to behavioural aspects

of hand use and is highly invariant in controls (average correlation r = 0.9, Ejaz et al., 2015), this

measure serves as a proxy for how ‘normal’ the hand representation is. Being able to study this mea-

sure was a main reason for using RSA in this study.

As an aid to visualise the RDMs, we also used classical multidimensional scaling (MDS). MDS proj-

ects the higher-dimensional RDM into a lower-dimensional space, while preserving the inter-digit

dissimilarity values as well as possible (Borg and Groenen, 2005). MDS was performed on data from

individual participants and averaged after Procrustes alignment to remove arbitrary rotation induced

by MDS. Note that MDS is presented for intuitive visualisation purposes only, and was not used for

statistical analysis.

As mentioned above, to determine typicality we correlated RDM from the current study with the

average representational structure of the dominant hand of two-handed controls, in an indepen-

dently acquired cohort of participants. The full details of the acquisition parameters are described in

Wesselink and Maimon-Mor, 2017. In short, eight two-handed participants performed an active

digit tapping task using a button box (four repetitions per digit of 8 s blocks of 1 Hz single-digit

presses), without online visual feedback. The data was acquired at 7T (TR: 2000 ms, TE: 25 ms, voxel

size: 1 � 1�1 mm). The ROI was defined similarly to the SI ROI used in the current study.
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Statistical analysis
Statistics were calculated using Matlab R2016a. Subsequent to normality validation (using the Sha-

piro-Wilk test), we used paired/independent-sample two-tailed Student’s t-tests to compare activity

levels and distance measures within/between groups, and one-sample t-tests to compare group

measures to zero. Correlations were calculated as Spearman’s rho. Partial correlation effects were

calculated using linear regression. For the main analysis concerning RSA, within each ROI, group

t-tests were adjusted to three comparisons, using the Bonferroni correction (a = 0.05/3), to account

for the three inter-group comparisons. Post-hoc correlations between SI typicality and key clinical

measurements (phantom sensations, phantom kinaesthesia and time since amputation) were also

corrected for three comparisons (a = 0.05/3). One post-hoc comparison involving a small subset of

amputees was done using a Mann-Whitney U test (see Results - section 2). For a control analysis,

involving visual and somatosensory ROIs, we also used a mixed-design analysis of variance (ANOVA)

to identify interactions across groups and ROIs.

In order to assess whether any aspect of the representational structure in the amputees was not

different from that in controls, we used Bayesian statistics as implemented in Javascript

(Dienes, 2014; Singh, 2018). Our alternative hypothesis is that amputees have no preserved hand

representation. To construct our prior (i.e. to quantify the effect of having hand representation) we

calculated the effect size of controls’ nondominant hand representation vs. congenital one-handers

missing hand representation. We then compared the effect size of amputees’ missing hand repre-

sentation (compared to controls) against that prior. More specifically, our alternative hypothesis

assumes an effect size following a one-tailed t-distribution centred at 0 and a width of the difference

between congenital one-handers and controls. The measured difference between amputees and

controls (also modelled as a t-distribution) are tested against this hypothesis. Support for the null

hypothesis was interpreted as supporting preserved hand representation. While it is generally

agreed that it is difficult to establish a cut-off for what consists sufficient evidence, we used the

threshold of BF<1/3 as positive evidence in support of the null, consistent with others in the field

regarding this threshold as providing substantial evidence (Wetzels et al., 2011; Dienes, 2014).

Note, however, that this threshold is not considered as providing strong evidence by all accounts

(Kass and Raftery, 1995).

In order to gauge which aspects of phantom sensation and key demographics may relate to the

amputees’ representational structure’s typicality, we performed an exploratory forward stepwise

regression. The dependent variable was SI typicality in amputees. The following factors were used as

independent variables (see also Table 1): typicality of the intact hand (rho; calculated from the intact

hand SI area; time since amputation (in years); age at amputation (in years); vividness of nonpainful

phantom sensations, as experienced during the study (on a 0–100 scale) and chronically (accounting

for both intensity and frequency; Makin et al., 2013b); intensity of phantom limb pain, as experi-

enced acutely during the study, and chronically (as detailed for nonpainful sensations). Only linear

factors were considered, that is no interaction terms, and the criterion for inclusion was an increase

in R2 >0.1. As a large number of predictor variables were included in the model and stepwise regres-

sion is generally only recommended for exploratory analysis, we aimed to establish internal replica-

bility using bootstrap resampling (e.g. Thompson, 1995). In particular, we randomly sampled (with

replacement) the full data matrix and repeated the stepwise regression 1000 times. We subse-

quently computed the proportion of bootstrap samples in which each factor was included in the final

model, as well as confidence bounds on the model’s adjusted R2. We interpreted high proportion of

inclusion (p>0.75) as evidence for internal replicability (Thompson, 1995).
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Data availability

The data analysed in this study has been shared as a major dataset.
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