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Obtaining Cubatures for Rectangles and Other Planar
Regions by Using Orthogonal Polynomials*

By Richard Franke

Abstract. A. H. Stroud has recently shown the existence of cubature formulas for planar
regions which use m2 points and have polynomial precision 2m — 1. In this paper, the
author gives sufficient conditions for the existence of formulas using fewer than m2 points,
and having polynomial precision 2m — 1. An algorithm is given for computing such for-
mulas, and is shown to be useful in a more general setting than given in the theorem. Numer-
ical examples are given, both in terms of previously known and new cubature formulas.

1. Introduction. A number of authors have attempted to use the common zeros
of orthogonal polynomials in two variables as evaluation points in cubature formulas
for regions in the plane. A theorem given recently by Stroud [10] shows how to con-
struct formulas using orthogonal polynomials of degree m if they have exactly m2
distinct common zeros. These formulas approximate the integrals of polynomials of
degree g 2m — 1 exactly. The principal result of this paper is to give sufficient con-
ditions for the existence of similar formulas which use fewer than m2 points.

The following notation and definitions will be used in this paper.

R2 A region in the plane.
w A weight function defined, and nonnegative, on R2 such that the integrals

!b, wx"/ exist for all a, ß = 0.
Pd, Pi. i     Polynomials of degree d.
Qd, Qd. i    Polynomials of degree g d.
p(c»)        -che orthogonal polynomials of the form xay* + ßm_i(x, y).
Sd,2 A subset of pairs of nonnegative integers; {(a, ß): a + ß ^ d, a, ß ^ 0} .
SN A subset of Sd¡2 containing JV elements.
(*<> y.)       A common zero of two polynomials.
X(SN)        The matrix having rows (x".y?, xa2y\, • • • , x"ryßT), where (a, ß) G SN, and

the (Xi, y¡) are specified.
1(f) = Í*. "fi

The cubature formulas we obtain will have the form

(1) /(/) = E Akf(pk).
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804 RICHARD FRANKE

We say that Pd is an orthogonal polynomial, with respect to a given region R2 and
weight function w, if I(PdQd-i) = 0 for all Qd-i. A cubature formula is said to have
precision d if the approximation (1) is exact for all Qd and is not exact for all Pd+i. A
formula is said to he fully symmetric if the appearance of a point (a, b) in the formula
implies the appearance of the points (±a, ±b), (±b, ±a) with the same weight. The
set of points {(±a, ±b), (±b, ±a)J will be denoted by (a, b)FS.

2. Preliminary Discussion.   The following theorem was given by Stroud [10].
Theorem 1. Assume PmA and Pm>2 are two polynomials in two variables with the

following properties:
(i) Each Pm,i is orthogonal to all Qm-ù and

(ii) PmA and Pm¡2 have exactly m2 common zeros, vk, k = 1, • • • , m2, all of which
are distinct and none of which are at infinity.

Then there exist constants Ak such that

(2) /(02m-i) = ¿ AkQ2m-i(vk)
k-l

for all 02m-1.
Numerous examples of this theorem can be given, including both previously

known and new formulas. The cross product formulas for rectangles are a special case.
Some particularly interesting examples are those which effectively use fewer than m2
points by virtue of the fact that one or more of the weights are zero. The goal of this
investigation is to give conditions ensuring the existence of formulas using fewer
than m2 points. These formulas do not always occur as a consequence of zero weights
appearing in Theorem 1, however.

The weights of the cubature formula (2) can be found by solving the linear system
of equations obtained by making (2) exact for some set of m2 monomials of degree
^ 2m — 1. Let Sm, be the set of pairs of integers corresponding to such a set of mono-
mials. Then the only restriction on Sm, is that the coefficient matrix X(Sm.) be non-
singular. There is always such an Sm, when the hypothesis of Theorem 1 is satisfied.

Certain information about the zeros of a polynomial in one variable will be needed.
The following theorem may be found in Marden [7].

Theorem 2. Letf(z) = a0 + axz + • • • + zm = JI'-i (* - ^T', F(z) = (*o + ««) +
(fli + ti)z + • • • + zm and let 0 < rk < min \zk — z¡\, j = I, • • • , p, j y* k. Then
there exists a positive number e such that if\ei\ ^ e for i = 0, • • • , m — 1, then F(z)
has precisely m,- zeros in the circle ck with center at zk and radius rk.

Let P(f, z) be a polynomial in f and z. Consider P as a polynomial of degree m
in f with coefficients which are polynomials in z. A function f(z) such that
P(f(z), z) e= 0 is called an algebraic function. Algebraic functions are discussed by
Ahlfors [1], Bliss [3], and others. Briefly, the properties of f(z) we need are as follows,
f (z) is an wz-branched function, each branch of which is analytic at all points except a
finite number of branch points and poles of finite order. At a branch point, f(z) is
continuous, by Theorem 2, unless the coefficient of fm in P(f, z) vanishes, in which
case the function has a pole at the branch point. Algebraic functions form a field,
hence a rational function of algebraic functions is again an algebraic function. We
especially note that the only singularities that algebraic functions can have are branch
points which may be poles of finite order, and poles of finite order.
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CUBATURES FOR RECTANGLES AND OTHER PLANAR REGIONS       805

For a brief discussion of the number of common zeros of two polynomials in two
variables, and other algebraic geometry involved in Theorem 1, see Stroud [10].

3. The Main Result. For this section, let Lx denote the Legendre polynomial of
degree /, with leading coefficient one. We then note that for the square whose vertices
are (±1, ±1), and with unit weight function, the orthogonal polynomials p**'"1-" are
given by

(3) jds.m-i)
(x, y) = Lk(x)Lm.k(y).

Let us consider the orthogonal polynomials L3(y) and L3(x) + \Li(x)L2(y), where X
is a parameter. One can then solve for the common zeros as functions of X, obtaining
the points given in Table 1. One sees that for X £ (—9/5,9/4), one can apply Theorem
1, and obtain a cubature formula of precision 2m — 1 = 5, using those points. The
weights of the formula are also given in Table 1.

Table 1

Point Weight

(0,.0)

(+a,0)

(+b,  +c)

(0,+c)

16(4 + 5\)
9(9 + 5\)

40
9(9 + 5k)

25
9(9 - 4X)

40(1 - X)
9(9 - 4a)

2      9 + 5\3    "    15

u2      9 - 4ab    =-T5-

c    =5

^       (    9      9ïX e  (- j , p

For X = 0, we obtain the cross product Gauss formula, which has positive weights.
For X = 1, we obtain Radon's formula [8]. The 7 points in Radon's formula have
positive weights. For X = —4/5, we obtain an 8-point formula, which so far as the
author knows, was previously unknown, and which has positive weights. As X ap-
proaches an endpoint of the interval (—9/5, 9/4), two sets of weights become un-
bounded and common zeros coalesce.

This type of investigation partially motivated the following theorem.
Theorem 3. Let R2 = [a, b] X [c, d] and w(x, y) = u(x)v(y). Then, for m = 3, there

exists a cubature formula of precision 2m — 1 which uses fewer than m2 points. Further-
more, the weights are all positive.

Proof. Let Pi.i(x) denote the orthogonal polynomial of degree / over [a, b] with
respect to u(x). Let Pt ,2(y) denote the orthogonal polynomial of degree / over [c, d]
with respect to v(y). We now consider the two orthogonal polynomials over R2 with
respect to w(x, y),
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806 RICHARD FRANKE

(4) Pm.2(y).      Pm.i(x) + \Pk.i(x)Pm-k.2(y),

where X is a parameter, 0 < k < m, and m + k is an even integer. The common zeros
of the polynomials (4) are of the form (x¡¡, y¡), i, j = 1, • • • , m, where the y¡ are
independent of X, and the xti are continuous functions of X, by Theorem 2.

We first establish that there is an interval J containing the origin such that X G J
implies the (x,,, y¡) are real and distinct points. For X = 0, the (xi)t y¡) are real and
distinct by the properties of orthogonal polynomials in one variable (see Jackson [6],
for example). That the (x^, y¡) are real and distinct in an open neighborhood of the
origin follows from continuity of the x,, and the fact that complex xtl appear in
conjugate pairs. Thus, as X increases, or decreases, from X = 0, one encounters a
multiple zero before one obtains complex zeros.

We must show that multiple zeros occur for a finite value of X, i.e., that J is not
the entire real axis. For multiple zeros to occur, the equations in X and x,

(5) Pm.i(x) + \Pk.i(x)Pm-k.2(y¡) = 0,

PL.Áx) + \P'k.i(x)Pm.k,2(yi) = 0,

must have a solution for one of the y¡. By the properties of orthogonal polynomials in
one variable, Pm-ki2(y,) y± 0 for at least one of the y¡. We also know that no value of x
is a zero of both Pk,i(x) and P'k ¡(x). Eliminating X from the system (5), we obtain

P'm.i(x)Pk.i(x) - Pm,i(x)P'k.i(x) = 0.

The degree of the equation is m + k — 1, an odd number. Thus, the polynomial has
at least one real root, x*. Since one of P4>1(x*) or P'k,i(x*) is nonzero, we can solve for
the corresponding value of X, X* which is finite.

In practice, one might want to find the largest interval / containing zero for which
the common zeros of (4) are real and distinct. We need only be concerned here that
such an interval exists, and that it is not the entire real line.

Let J denote the largest interval (it is clearly open) such that \£7 implies the
polynomials (4) have real and distinct common zeros. We note that, for any finite value
of X, the common zeros are finite. By Theorem 1, there is a cubature formula of pre-
cision 2m — 1 which uses the points (xih y¡) as evaluation points.

We now prove a lemma which will allow us to explicitly state the form of the
weights in the formula as functions of the xti, and thus as functions of X.

Lemma 4. Let Sm. = {(a, ß): 0 g a, ß < m} and let (x,,, y¡), i, j = 1, • • •, m, be
the common zeros of (A), corresponding to X G J. Then X(Sm,) is nonsingular.

Proof. Suppose there exists a X G J such that X(Sm.) is singular. This is equivalent
to the existence of a nontrivial polynomial ô2m-2(x, y) = 12{a.ß)<sm° a<a.<i>xa/
which vanishes at every point (xiy, y¡). Thus, for every j, Q2m-2(x, y¡) is zero at xi;,
i = 1, • • -, m. Since those x¿,- are distinct and ô2m_2(x, y¡) has degree gm- 1 in x,
we have Q2m-2(x, y¡) = 0 for j = 1, • • •, m. But the coefficient of each power of x in
Q2m-2 has degree ^m — 1 in y. Thus Q2m-2(x, y) = 0, a contradiction. D

On the basis of Lemma 4, we may solve the weights, A ¡,( X), by making the approxi-
mation exact for monomials corresponding to elements of Sm,. Thus, we are spared
any difficulties which could arise from having to change that set in the interval J.

We note that each /í¡,(X) can be expressed as a rational function of the Xi,(X).
Since each xtl is an algebraic function of X, so is An.
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The proof now breaks into two cases: case (i) for some X G J, one or more of the
Aij(\) = 0; case (ii) for all X G J, An(X) y* 0, i, j = 1, ••-, m. Assume case (i) is
encountered. Let X* G J be the smallest number in absolute value such that one or
more A4i(\*) = 0. For X G (-|X*|, |X*|) all An(\) > 0, by the continuity of the
An. Thus Aii(\*) = 0 for all/,./= 1, ••■, wand by choice of X*, at least one Au(\*)
is zero. Thus the resulting cubature formula effectively uses fewer than m2 points.

Now assume that case (ii) is encountered. We first note that for X G J, An > 0,
for i, j = 1, • • • , m, by continuity. Let X* G closure (J), X* (£ J, where X* is finite.
Then for some j, i, and /', x,-,(X*) = x,.,(X*). We will show that limx_x«¡xe/ Aij(\)
exists for each /, j = 1, • • • , m.

Precision for constants tells us that X?,;-i ^.>(x) = 1(1), and hence each A{j(\)
is bounded for X £ /. The only singularities possessed by algebraic functions are
poles of finite order. X = X* is a branch point of some of the x,,(X). Since it is a pole
of at most finite order, and since each An(\) is bounded as X —> X* through values
in /, we see that limx-,x«;xe/ ^i,(X) exists. Let A* = limx^x.;xej A,(X), and let
x* = x{f(\*). Then we have

m

(6) /(ft-i) =   Z   A*iQ2m-i(xfi, y,)
i.i-l

for all Os™-1, since (6) is obtained by taking the limit on the right side of

m

/(Ö2m-i) =   Z   Ai,(\)Q2m-i(xii(\), y,),
¿.i-i

which holds for all g2m-i, for all X G J. Since some of the (x({, y¡) coincide, (6)
effectively uses fewer than m2 points. Since A{¡(\) > 0 for all X G J, A* ^ 0, for
i,j- 1, ••• ,m.   D

4. Numerical Examples. The proof of Theorem 3 indicates an algorithm for
computing formulas using fewer than m2 points. Starting with the cross product
(X = 0), one can easily compute the common zeros of the polynomials (4), then the
weights, as X varies. For large values of m, the method may break down numerically
since the matrix X(Sm.) is ill conditioned. One can observe the behavior of the weights
to determine whether case (i) or case (ii) applies. This procedure was used in the
numerical examples which follow.

In the tables in this paper, the notation (—1)0.123 • • • means 0.123 • • • XlO"1.
All calculations were done in double precision on the Univac 1108 at the University of
Utah. The calculations were verified by checking the error in the approximation for
those monomials which were to be approximated exactly. The errors were sufficiently
small that the rounded values given in the tables should be accurate to the given
number of digits.

Example 1. We consider the square with vertices at (±1, ±1) and weight function
w(x, y) "■■ 1. Letting Li denote the Legendre polynomial of degree / with leading
coefficient one, we consider the common zeros of

L,(y),        L,(x) + \L2(x)L2(y).

It is found that case (ii) applies, with
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_ /_2J7_= V    490(3(30)1/2 + 5), 27
490 (3(30)' -4

Two 14-point formulas of precision 2m — 1 = 7 are obtained, corresponding to the
endpoints of J. The approximate values of the points and weights are given in Table 2.
Note that one formula has four points outside of the square.

Table 2

Weight

+(1)0.10578 40123 71275
+0.77459 66692 41483
+0.46925  35221 27911

0.00000 00000 00000

+ a

+ b

+ a

+ b

(-1)0.43784 15208 72291
0.36230 28638 12526
0.30407 06930 50225
0.57968 45821 00041

27
490 (3 y 30 + 5)

+0.77459 66692 41483
+0.91506 05233 80880

0.00000 00000 00000
+0.39619 10397 48320

+ a

+ b

+ a

+ b

0.19325 26917 43030
0.16904 99212 19002
0.30920 43067 88848
0.48309 52336 43544

27
X  - 490      <3   /30 - 5>

2 _ 15+2 /30a    - 35

,2      15-2 y5cTb    = -j^— ,

a = 0.86113 63115 94053

h =0.33998 10435 84856

Example 2. Let R2 and w be the same as Example 1. Consider the common
zeros of

Lt(y),       L5(x) + XLx(x)L4f».

It is found that case (i) applies, and again two formulas with fewer than m2 = 25
points are obtained which have positive weights. These formulas are given in Table 3.
A third formula is given; although it has a negative weight at the origin, it is interesting
because it uses fewer points than either of the other two.

We also note that not all formulas obtained in case (i) have positive weights,
which emphasizes the procedure used in the proof to assure positive weights.

The formulas have precision 9.
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+0.84592
+0.62890

+0.95968
+0.43603
+0.77459

0.00000
0.00000
0.00000

77997
16367

14212
05962
66692
00000
00000
00000

71709

32253
14621

73468
41483
00000
00000
00000

Table 3

+ a

+ a

+ b

+ b

0.0
+ a

+ b

0.0

Weight

(-1)0.70506 51405 64012

(-1)0.72112 15110 07611

(-1)0.97149 27360 37507
0.36854 90486 77049
0.31604 93827 16049
0.18861 64397 98053

(-1)0.25860 69643 71341
0.50567 90123 45679

X  -  0.80000 00000 00000;  23 points

+0.94581

+0.46534
+0.80425
+0.68138
+0.96301
+0.42861

0.00000
0.00000

37395
66248
39257
58921
84090
01432
00000
00000

19925
36203
42002
63677
85396
23121
00000
00000

+ a

+ a

+ b

+ b

0.0

0.0
+ a

+ b

(-1)0.49929 06230 65150
0.15844 51822 84802
0.18338 37881 51247

(-1)0.88147 65236 65422
0.11445 63755 61331
0.45443 25133 27558

(-1)0.57105 28092 97435
0.41419 44599 63155

X   ^0.79012 34567 90123;  24 points

+0.94930
+0.45817
+0.77459
+0.96777
+0.41775

0.00000

0.00000
0.00000

73500

75489
66692
69089
46715
00000

00000
00000

01342

31134

41483

76724
02987
00000

00000

00000

+ a

+ a

+ b

0.0

0.0
+ a

± b

0.0

(-1)0.49452 20191 30682
0.16391 47318 81061

0.26590 48169 44092
0.11304 18390 46410

0.47992 22296 00720

(-1)0.47119 90252 41204
0.42544 77071 10548

-(-1)0.48150 35951 64821

X   =  0.87082 50331 67594;  21 points

a2=l+6l
2 _ 5        i      r—b    - 9 -  63    /7°

a  = 0.90617  98459  38664

b ^0.53846  93101  05683
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810 RICHARD FRANKE

Example 3. Let R2 = [0, ») X [-1,1] and w(x, y) = e~x/(l - y2)l/2. This example
was chosen to illustrate the theorem for a nontrivial weight function on a nonsym-
metric region. Let £¡ denote the Laguerre polynomial of degree / with leading coef-
ficient one, and Tt the Chebyshev polynomial of degree / with leading coefficient one.
We consider the common zeros of

Tt(y),       £«(*) + X£2(*)r2(v).

During the computations investigating the behavior of the weights, it was first thought
that case (ii) applied. However, closer numerical investigation revealed that case (i)

(0,1)

(0,0)

o ov2

(5,0)

->

■+-
(10,0)

1.0

General location of common zeros, \  > 0

-H-1-1-1-

.8 4-

.6 ±

.4 4-

.2 4

A3 x 1000

\

Figure 1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CUBATURES FOR RECTANGLES AND OTHER PLANAR REGIONS       811

applied. Because of the unexpected behavior of the weights, their values as functions
of X are shown in Figure 1. One of the two formulas is given in Table 4, and cor-
responds to X* = (2)0.25455 84412 27157. The second is obtained by interchanging
a and b in the evaluation points, and corresponds to X = — X*. The formulas use 14
points and have precision 7.

Table 4

Weight

0.11303 28614 59250

(1)0.12290 70412 16527
(1)0.40847  50367 25518
(2)0.10573  14635 91203

0.41577 45567 83479

(1)0.22942  80360 27904
(1)0.62899 45082 93747

± a

+ a

± a

+ a

+ b
± b

+ b

0.29900 62097 72373
0.43310 01383 75078

(-1)0.53044 24891 47755
(-3)0.24756 63352 22222

0.55849 11440 03136
0.21874 73164 18902

(-2)0.81597 02975 41073

2       2-/2a     = -r-

2       2  +/2
4

a  = 0.38268 34323 65090

b ^0.92387  95325   11287

5. Generalizations. We note that in the proof of Theorem 3, we could just as
well have considered the polynomials:

Pm.Kx),       Pm.,(y) + \Pk.2(y)Pm-k.i(x),

with the same restrictions on k. Which of the two sets of polynomials to be considered
in practice might depend on the desire to preserve some symmetry.

Let us consider two situations which might lend themselves to a treatment similar
to the proof of Theorem 3.

(51) Suppose we have under consideration the square [—a, a] X [—a, a] with
weight function w(x, y) = u(x)u(y), where u(—x) = u(x). Since the region and weight
function are fully symmetric, it would be desirable to obtain a fully symmetric formula
of precision 2m — 1 which uses fewer than m2 points. Accordingly, if P, is orthogonal
to all Qi-i on [—a, a] with respect to u, we could consider the orthogonal polynomials

(7) Pm(x) + \Pk(x)Pm-k(y),      PJy) + \Ph(y)Pm-k(x),

where m + k is even. The zeros are fully symmetric, and if they are distinct and
finite, the cubature formula obtained by Theorem 1 is also fully symmetric, since it is
unique.

(52) Suppose R2 is not a rectangle, and/or w(x, y) is not a product of functions x
and y, respectively. However, suppose that there are orthogonal polynomials P„,i(x, y)
and Pm,2(*, y) which satisfy the hypothesis of Theorem 1. Further, suppose the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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common zeros are real, and the weights of the associated cubature formula are all
positive. One could then consider the polynomials

(8) Pm.i(*, y) + XPm,3(x, y),        Pm.2(x, y)

or the polynomials

(9) P„.i(x, y) + \Pm.3(x. y),        Pm.Áx, y) + XPm,4(*, y),

where Pm¡3 and Pm,4 may or may not be the same orthogonal polynomial, and neither
is equal to Pmil or Pm,2.

The question in both situations is the same. By varying X, can one obtain a cubature
formula of precision 2m — 1 which uses fewer than m2 points, either through zero
weights or coalescence of common zeros? A completely satisfying answer is unknown
at this time. We will discuss each situation in turn, the first being the simpler. We note
that in either case, complex zeros appear in conjugate pairs, since

Qd(x, y) = Qd(x, y).

Let X* be a point where the common zeros of (7) are distinct. According to van der
Waerden [13], the Jacobian is nonzero at each common zero. Hence, one can apply
the Implicit Function Theorem (see Bochner and Martin [4]) and conclude that the
common zeros are analytic functions of X in a neighborhood of X*.

Assume that the leading coefficients of the P¡ are all one. Then, a common zero
at infinity would have to satisfy the following:

m     \     \     k    m — k kf   m — k     i     \     m — k\ r\x   + Xx y       = x (x       + Xy      ) = 0,
m      \      \     k    m—k k/    m — k      i      \     m — k\ r\y   + \y x       = y (y       + \x     ) = 0,

and we see that this would require X2 = 1. Thus, for X = ±1, the polynomials (7)
have common zeros on the line at infinity. Let J denote the largest interval containing
the origin such that X £ J implies the polynomials (7) have m2 real, distinct, and
finite common zeros. Unless case (i) is obtained (zero weights), it would be necessary
that J be properly contained in (—1, 1). If that were the case, we would also need
the common zeros to be continuous functions of X at the point X* where some of the
common zeros coalesce. The analogue of Theorem 2 for common zeros of two poly-
nomials in two variables was not found in the literature. Forsythe [5, p. 212] proves a
partial analogue of Theorem 2, where only the constant coefficients are allowed to
vary. It is expected that the full analogue is true, but at the present we must make that
assumption. We would also need to know that the limits of the weights as X —> X*,
X £ J, exist;

In the second instance, one can tell nothing about the behavior of the common
zeros of the polynomials (8) or (9) as functions of X. Again, they are analytic in the
neighborhood of any value of X which yields m2 distinct common zeros. Let J be
defined as before, and assume continuity at a point where common zeros coalesce.
Assume case (i) does not apply or we are finished. If case (ii) applies, we need J to be a
proper subset of the real line; we need the common zeros of (8) or (9) to be uniformly
bounded in a subinterval J' of J having a finite endpoint X*, which is also an endpoint
of J. Again the limits of the weights X —» X*, X £ /, would have to exist to obtain the
desired result.

We see that the first situation is contained in the second, although more can be
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determined in the first situation. The above ideas can be incorporated into a theorem
which is primarily useful as a guide to computations in search of cubature rules of
precision 2m — 1 using fewer than m2 points.

Theorem 5. Suppose PmA and Pm,2 satisfy the conditions of Theorem 1 and that
Pm,3 and Pm,4 are orthogonal polynomials, neither of which is the same as Pmil or Pm,2.
Further, suppose that the common zeros ofPmA andPm¡2 are all real and that the weights
of the associated cubature rule are positive. Let J denote the largest interval containing
the origin such that X £ J implies the common zeros of the polynomials (8) or (9) satisfy
the hypothesis of Theorem I. If the weights of the cubature rule obtained by Theorem 1
are all positive for all X £ J, assume the following:

(a) that for X* £ closure (J), X* (£ /, the polynomials (8) or (9) have a finite number
of common zeros, none of which are at infinity;

(b) the common zeros are continuous functions of X at the point X = X*; and
(c) the limits of the weights as X —> X*, X £ J, exist.

Then there exists a cubature formula of precision 2m — 1 for R2 and w which effectively
uses fewer than m2 points, and which has positive weights.

6. Numerical Examples. The procedure indicated by the theorem was attempted
in a number of examples, with success in each instance. Both case (i) and case (ii) were
encountered. Two of the examples involved numerical investigation somewhat beyond
that indicated by the theorem.

Example A. Let R2 = [— 1, 1] X [— 1, 1] and w(x, y) = 1. Consider the polynomials
(10) L,(x) + \L2(x)L2(y),        L,(y) + \L2(y)L2(x),

where L, is the Legendre polynomial with leading coefficient one. The common zeros,
and thus the cubature formulas, are fully symmetric.

For X £ (—27/35, 189/385), the common zeros are distinct and finite. In this
range, the weights of the corresponding cubature formulas are always positive. In the
limit, as X —» (189/385)—, one obtains Tyler's formula [12], given in Table 5. For
X = 189/385, the polynomials (10) have multiple zeros on the x and y axes. If one
takes the limit as X —» (—27/35)+, one obtains a 13-point formula due to a coalescing
of 4 zeros into the origin. Four of the points are outside the square, as can be seen in
Table 6. The formulas in Tables 5 and 6 have precision 7.

Table 5
(Tyler's Formula)

Point

(r,0) FS

(s,s) FS

(t,t) F S

Weight

98
405

178981 + 2769V583
472230

178981 - 2769 V583
472230
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Table 6

Point

(0,0)

(a,a) FS

(b,c) FS

Weight

392
405

16
2025

1519
4050

2       3a     =2

2       3b    =y (1 +Vf
7<i-Vff

Example 5. Let R2 = [— 1, 1] X [— 1, 1] and w(x, y) = 1. Consider the polynomials

(11)     L5(x) + \L3(x)L2(y) + pLi(x)LA(y),        L5(y) + XL3(y)L2(x) + /^lOO^i*).

The formulas obtained are fully symmetric. It was found that case (i) was obtained
for a range of values for p.

For p ^ -0.53880 66531 67134, X = 0, a 21-point formula of precision 9 is
obtained by virtue of a set of four weights (say Ai) being zero. We note that this
formula has a negative weight at the origin. Now letting p decrease, and finding a
corresponding X such that Ax = 0, we eventually find that corresponding to p =
-0.75540 45432 80930, X S 0.29165 21592 17893, the weight at the origin has in-
creased to zero, thus yielding a 20-point formula. The formula is given in Table 7,
and was previously given by Rabinowitz and Richter [9], who computed it by a dif-
ferent method.

Table 7
(Rabinowitz-Richter Formula)

Point Weight

(a,0)

(b,0)

(cc)

FS

FS

FS

(r,s) F S

0.45409 03525 51545

(-1)0.71613 42470 98110

(-1)0.42784 61546 67780

0.21575 58036 35933

a = 0.48888 63428 42372

b"ä 0.98453 98119 42252

c^ 0.93956 72874 21522
r ^ 0.50737 67736 74613

s - 0.83671 03250 23989

For X = 0, m = -0.39506 17283 95062, a 24-point formula is obtained through the
weight at the origin being zero. By decreasing p and selecting X to maintain a zero
weight at the origin, we expected that the formula of Table 7 would again be obtained.
This was not the case. Another 20-point formula of precision 9 was found, cor-
responding to m = -0.72380 71335 86019, X S 0.26938 24624 64281. Note that the
values of p and X are near the values obtained above, however a different set of 4
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weights are zero, which yields a formula with a different disposition of points than that
obtained by Rabinowitz and Richter. The formula is given in Table 8.

Table 8

Point Weight

(a,0)

(b,b)

(c,c)

FS

FS

FS

(r,s)
FS

0.45416 39606 86749

0.21420 03609  26862

(-1)0.42731 23186  57758

0.14445 22232  60307

a  = 0.48892  68569 74369

b = 0.69088 05504 86344

c = 0.93956  52580 96838
r = 0.91862  04410 56722

s - 0.34487 20253 64404

0.26938 24624 64281, n = -0.72380 71335 86019

Example 6. Let R2 he the triangle with vertices at (0, 0), (1, 0), and (0, 1), with
weight function w(x, y) = 1. The following orthogonal polynomials were given by
Appell and Kampé de Feriet [2], and may be found in Stroud [11].

P*,i(x, y) = 70x4 + 140x3y + 90x2y2 + 20x/ + /

- 140x3 - 180x2y - 60xy2 - Ay3

+ 90x2 + 60*v + 6y2 - 20x - Ay + 1,

P4.2C*, y) = 35x4 + I60x3y + 180x2/ + 64x/ + 5/

- 80x3 - 240x2.y - 144*/ - 16/

+ 60x2 + 96xy + 18/ - 16x - 8v + 1,

P4.ÄX, y) = 15x4 + 120x3v + 216xV + 120x/ + 15/
- 40x3 - 216x2.v - 2l6xy2 - 40/

+ 36/ + Í08xy + 36/ - 12x - 12y + 1,
Pi.i(x, y) = Pi,2(y, x),

P4.ÁX, y) = P4.i(^, x).

We consider the common zeros of two polynomials of the form

Pi.(s(x, y) = tPí,i(x, y) + XPi,2(x, y) + pP4.s(x, y) + yP4,4(*, y),

(12)       P4.7(x, y) = rP4.5(x, y) + XP,,4(x, y) + mP4.3(x, v) + yPi.2(x, y)

=   P4.80', x)

in an attempt to find a formula of precision 7 which uses fewer than 16 points. The
form of the polynomials (12) was chosen to obtain a formula with the same symmetry
as the region, i.e., if (a, b) £ R2, then (b, a) £ R2, and if (a, b) is a common zero of
(12), so is (b, a). Including P4,6(x, y) in the first and P4 tl(x, y) in the second polynomial
leads to no more generality than the above.
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We found that the common zeros of (12) for t = 1, X = p = y = 0 are all real,
distinct, and inside the triangle. However, the cubature rule obtained by using these
points has two negative weights. By decreasing X, decreasing p, or increasing y, while
maintaining t = 1, and the other two of X, p, and y at zero, it was found that the two
negative weights increased, and became zero for some value of each of the three
parameters. Thus, three different 14-point rules can be obtained in this manner, each
of which has positive weights and one of which has all its points interior to the tri-
angle. The latter formula is given in Table 9. Using the same procedure as in Example
5, an attempt was made to obtain a formula using fewer than 14 points. One approach
which was used, but without success, was to start with the formula given in Table 9,
change X slightly, and obtain a new 14-point formula by proper choice of p. Because
this is simply a trial and error method, a complete investigation was impractical.
However, it appeared that one of two things would happen: (1) a common zero would
tend to infinity; or (2) a common zero would coalesce with the common zero which had
a zero weight. Thus, the effort failed to improve on the results indicated by Theorem 5.

The same procedure was tried, starting with a 14-point formula occurring for
X = -0.08, p ̂  (-2)0.71524 25347 51567. This formula is given in Table 10. While
the disposition of the points is similar to that of Table 9, the zero weight occurs for a
"different" point, as determined by its position relative to the other points. The points
in the formula are interior to the triangle, although the two common zeros with zero
weights are outside the triangle. Again no formula with fewer than 14 points was
obtained, for the same reasons as in the other attempt.

A very large number of 16-point formulas were computed for various values of X, p,

Table 9

Point Weight

(a,

(b:

(^
<*;

(bf
(ci

V
a2>

a3>

V
Cl>

V

V
C3>

V
V
V
C5>

V

(-1)0.26332 15013 60460

(-1)0.66675 06099 02085
(-1)0.59839 84722 97514
(-1)0.30224 43080 27287

(-1)0.38713 91024 62897

(-1)0.22310 31308 16147

(-2)0.93095 64046 94027

(-1)0.36538 29270 09296

(-1)0.51592 17534 48585

b, =

b„ =

(-1)0.64634
0.25047
0.40528
0.48342

(-1)0.49024
0.31241

(-1)0.27265
0.64982

(-2)0.74809
0.92292
0.16671
0.77579
0.15196
0.56910

10980

87642
81131
85070
15490
81290
49172
99188
20050
92246
86876
68804
95753
13418

16171
60821

34598
60240
57468
02285
25016
30148
42521

98637
51425
94268
82297
00312

1, X = -(-1)0.44573 47683 19604, \j
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Table 10

Point

<a]

ea
(a,

<*;

o»,

(bj

(b,

U.
(\
(c4
(b.

Weight

(-1)0.26081 61608 68233
(-1)0.66360 23579 26664
(-1)0.56173 11713 92644
(-1)0.23952 62212 75731

(-1)0.39457 61269 86614

(-1)0.23550 12185 40342

(-1)0.16265 84769 36259

(-1)0.31823 23669 04684

(-1)0.52619 38549 00464

cl "

c2 =

b5 =

(-1)0.64321
0.25299
0.40974
0.48546

(-1)0.50408
0.31055

(-1)0.27912
0.64767

(-1)0.36407
0.89578
0.20234
0.74337
0.16004
0.56485

15701

83313
73142
22879
59335
48435
25784

37979
93788
58440
89156
52526
02557
12168

15959
85515
94030
28209

70127
59296
37840
23676
27516
39319
94331
60890
10345
76248

= 1, X = 0.08, (i - (-2)0.71524 25347 51567, y 0

and y in (12) in an effort to determine the behavior of the weights as functions of those
parameters. Although the investigation was far from complete, none of the computa-
tions gave any indication of the existence of a formula using fewer than 14 points.

Department of Mathematics
Naval Postgraduate School
Monterey, California 93940

1. Lars V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic
Functions of One Complex Variable, 2nd ed., McGraw-Hill, New York, 1966. MR 32 #5844.

2. P. Appell & J. Kampé de Feriet, Fonctions Hypergéométriques et Hypersphèriques—
Polynômes d'Hermite, Gauthier-Villars, Paris, 1926.

3. Gilbert Ames Bliss, Algebraic Functions, Amer. Math. Soc. Colloq. Publ., vol. 16,
Amer. Math. Soc, Providence, R.I., 1933.

4. Salomon Bochner & William Ted Martin, Several Complex Variables, Princeton
Math. Series, vol.  10, Princeton Univ. Press, Princeton, N.J., 1948. MR 10, 366.

5. A. R. Forsythe, Theory of Functions of Two Complex Variables, Cambridge Univ.
Press, Cambridge, 1914.

6. Dunham Jackson, Fourier Series and Orthogonal Polynomials, Carus Monograph
Series, no. 6, Math. Assoc. of Amer., Buffalo, New York, 1941. MR 3, 230.

7. Morris Marden, Geometry of Polynomials, 2nd ed., Math. Surveys, no. 3, Amer.
Math. Soc, Providence, R.I., 1966. MR 37 #1562.

8. J. Radon, "Zur mechanischen Kubatur," Monatsh. Math., v. 52, 1948, pp. 286-300.
MR 11, 405.

9. Philip Rabinowitz & Nira Richter, "Perfectly symmetric two-dimensional inte-
gration formulas with minimal numbers of points," Math. Comp., v. 23, 1969, pp. 765-779.
MR 41 #2928.

10. A. H. Stroud, "Integration formulas and orthogonal polynomials for two variables,"
SIAMJ. Numer. Anal., v. 6, 1969, pp. 222-229. MR 41 #6400.

11. A. H. Stroud, Approximate Calculation of Multiple Integrals. (Manuscript.)
12. G. W. Tyler, "Numerical integration of functions of several variables," Canad. J.

Math., v. 5, 1953, pp. 393-412. MR 15, 67.
13. B. L. van der Waerden, Moderne Algebra. Vol. 2, Springer, Berlin, 1931; English

transi., Ungar, New York, 1950.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


