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Obtaining free USArray data by multi-dimensional
seismic reconstruction
Yangkang Chen1*, Min Bai 2 & Yunfeng Chen3

USArray, a pioneering project for the dense acquisition of earthquake data, provides a semi-

uniform sampling of the seismic wavefield beneath its footprint and greatly advances the

understanding of the structure and dynamics of Earth. Despite continuing efforts in improving

the acquisition design, network irregularity still causes spatial sampling alias and incomplete,

noisy data, which imposes major challenges in array-based data analysis and seismic imaging.

Here we employ an iterative rank-reduction method to simultaneously reconstruct the

missing traces and suppress noise, i.e., obtaining free USArray recordings as well as

enhancing the existing data. This method exploits the spatial coherency of three-dimensional

data and recovers the missing elements via the principal components of the incomplete data.

We examine its merits using simulated and real teleseismic earthquake recordings. The

reconstructed P wavefield enhances the spatial coherency and accuracy of tomographic

travel time measurements, which demonstrates great potential to benefit seismic investi-

gations based on array techniques.

https://doi.org/10.1038/s41467-019-12405-0 OPEN

1 School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310027, China. 2Key Laboratory of Exploration Technology for Oil and Gas

Resources of Ministry of Education, Yangtze University, Wuhan, Hubei Province 430100, China. 3Deep Earth Imaging, Future Science Platform, CSIRO, Perth,

WA 6151, Australia. *email: chenyk2016@gmail.com

NATURE COMMUNICATIONS |         (2019) 10:4434 | https://doi.org/10.1038/s41467-019-12405-0 |www.nature.com/naturecommunications 1

12
3
4
5
6
7
8
9
0
()
:,;

http://orcid.org/0000-0002-2692-5402
http://orcid.org/0000-0002-2692-5402
http://orcid.org/0000-0002-2692-5402
http://orcid.org/0000-0002-2692-5402
http://orcid.org/0000-0002-2692-5402
mailto:chenyk2016@gmail.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications


T
he past two decades have witnessed a major proliferation of
broadband seismic arrays around the globe. One excellent
example is USAarry, the seismology component of the

national Earth science program EarthScope, that migrated con-
tinuously across the North American continent (year 2004–2013;
now deployed in Alaska and northwestern Canada), providing a
dense sampling of the seismic wavefield beneath its footprint. The
availability of a large amount of high-quality data offers unique
opportunities for high-resolution seismic imaging, which leads to
a much-improved understanding of the Earth’s structure at var-
ious scales1–11. The relatively even-spaced sensors, with an
average spacing of ~70 km, form an ideal network configuration
for the application of array-based methods12,13. While the
quantity of array data is continuously growing, the improvement
of data quality is hampered by the presence of noise and a biased
spatial sampling that results from unevenly distributed earth-
quake sources and stations. Both factors (i.e., quantity and
quality) play an important role in exploiting the data and
achieving robust imaging outputs. Most data improvement efforts
have been focusing on increasing the data volume whereas gen-
erally less attention was paid to improve the quality of existing
recordings. The high-quality data with a regular spatial sampling
can greatly benefit data analysis, processing and visualization, and
also improve the numerical stability and accuracy for grid-based
seismic imaging techniques (e.g., Eikonal4 and Helmholtz
tomography14). As a result, regularization approaches that sup-
press the noise and interpolate the missing traces of array data are
highly demanded15–17.

Some effective methods for seismic data reconstruction have
been proposed in the exploration seismology community. One
type of the most widely used methods is based on a sparse
transform that maps the seismic signals to certain domains (e.g.,
Fourier18, curvelet19, slant stacklet20, and seislet domains21),
where the useful information can be sparsely represented and
separated from the missing data and random noise. Another type
of mainstream methods is based on the Cadzow filtering or the
singular spectrum analysis (SSA)22, which is a rank-reduction-
based method that transforms the data to frequency-wavenumber
or frequency-space domains to extract the spatial coherency of
the entire dataset for reconstructing the missing information.
Oropeza and Sacchi23 extended the SSA method to multi-channel
version to tackle the 3-D seismic data reconstruction challenge
and later on Kreimer et al.24 formulated the high-dimensional
reconstruction as a nuclear-norm constrained tensor completion
problem in the frequency-space domain. More recently, Chen
et al.25 improved the traditional truncated singular value
decomposition (TSVD) method by deriving a new rank-reduction
formula that better decomposes the data space into signal and
noise subspaces. All aforementioned reconstruction methods are
commonly applied to seismic data from exploration-scale surveys,
while their applications to earthquake data, especially the multi-
dimensional data recorded by large-scale seismic arrays, have
been seldom reported.

In global seismology community, several methods have been
proposed to interpolate the irregularly sampled seismic data.
Most earlier studies have been concentrating on interpolating
the receiver functions26 that consist of P to S converted waves
based on a certain form of spatial smoothing, including, for
example, weighted stacking with either linear27, gaussian28,29, or
cubic spline functions30,31. Also implemented are methods
based on high-resolution Radon transform32, singular spectrum
analysis33,34 and, more recently, non-linear waveform stretching-
and-squeezing35. Aside from interpolating the receiver functions,
Schneider et al.17 reconstructed the weak-amplitude under-side
reflections from the mantle transition zone (i.e., PP precursors)
while utilizing a compressive-sensing-based approach that seeks

the sparsity of dominating energy in the frequency-wavenumber
domain. A recent study also applied the idea of compressive
sensing to reconstruct the synthetic surface wavefields via a sparse
representation using a plane-wave basis36. These earlier studies
represent continuing efforts of the global seismology community
in improving the earthquake data toward a regularly sampled
wavefield. However, challenge still exists in view that (1) only a
specific type of data (e.g., receiver functions, PP precursors),
which is typically structurally simple, is reconstructed and (2) the
energy of useful signals tends to be excessively smoothed by the
ad hoc interpolation schemes, which limits the data resolution
thereby the resolvability of small-scale structures.

In this study, we develop an effective framework to reconstruct
the three-dimensional (3D) data of an earthquake recorded by
USArray. We propose a localized rank-reduction method to
simultaneously reconstruct the missing traces and improve the
weak-amplitude phase arrivals. Compared with the regular global
rank-reduction method, our localized approach is superior at
preserving the small-scale features in the array data, which is
critical for high-resolution imaging of subsurface structures. We
demonstrate its signal-improvement capability via a synthetic
dataset and then apply the proposed method to January 18, 2009,
Kermadec Islands Mw 6.4 earthquake recorded by USArray,
where a significant portion of the recordings is missing due to
deployment limitations. The reconstructed earthquake wavefield
provides the virtual recordings at the missing locations as if they
had been acquired by the actual stations during the earthquake.
We demonstrate the merits of the proposed method and data
improvement by conducting cross-correlation measurements of
P-wave arrival times, a fundamental step in body-wave travel time
tomography.

Results
Synthetic test. We first conduct a synthetic test to demonstrate
the performance of the proposed methodology. The model is
designed to honor the complex Moho structure in central US37

that is characterized by large depth variations by as much as
20 km (Fig. 1). The elastic properties (velocity and density) of the
crust and upper mantle are obtained from the average values
of AK135 continental model38 (Fig. 1a–c). We synthesize the
recorded wavefield by solving the 3D elastic wave equation
based on a finite-difference method. (A different synthetic
example test is provided in the Supplementary Note 1 and
Supplementary Figs. 1–6). We simulate plane-wave incidence of
teleseismic earthquake by simultaneously injecting energy from
multiple point sources located on a plane in the upper mantle
(Fig. 1d). The physical parameters of an earthquake (e.g., epi-
center and magnitude) are implicitly considered in our simula-
tion. The direction of wavefront is determined from the epicenter
distance and azimuth of the earthquake investigated in this study.
The stacked P-wave of actual earthquake recordings is employed
as the effective source-time function to honor the actual earth-
quake source parameters and ensure a similar frequency content
and signal energy of the synthetics.

The 3D seismic data consist of 200 time samples with a
sampling rate of 0.5 s and 100 equally spaced spatial samples in
both longitudinal (X) and latitudinal (Y) directions (Fig. 2a). The
vertical component of the simulated wavefield shows clear P and
Moho converted phases (Ps) (Fig. 2a). To mimic the realistic
signal-to-noise ratio (SNR), we add real noise that precedes the
first arrivals (i.e., P waves) from the USArray data to the
synthetics (Fig. 2b). The missing traces are generated by applying
the sampling matrix (Fig. 2c) to the noisy data. The final
simulated data contain 30% missing traces (Fig. 2d). To
quantitatively evaluate the data quality, we use a SNR criterion
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defined as follows: SNR ¼ 10log10
ksk22

ks�bsk22
, where s denotes the

exact solution (i.e., the clean data), and bs is the noise
contaminated or incomplete data. The respective data quality
metrics (SNR) for the noisy and incomplete data are 10.12 and
4.35 dB, suggesting a significantly decreased data quality caused by
missing traces. This criterion is also applied to assess the quality of
reconstruction, where bs represents the recovered data using the
global or localized reconstruction algorithms. Thus, the SNR
measures the deviation of an estimated data from its true solution.

The global rank-reduction method assumes that the seismic
data are composed of several plane waves, however, this
assumption is often violated due to the presence of non-planar
wavefields in realistic models (see Fig. 1). Thus, we improve
the global rank-reduction method using a localized scheme. This
method divides the data cube into several smaller volumes
to minimize the curvature of seismic waves, which essentially
imposes a local plane-wave constraint to alleviate the non-
planar effects. More sophisticated methods based on non-plane-
wave assumptions (e.g., non-stationary principal component
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Fig. 1Wavefield simulation of plane-wave incidence beneath a regional array. The synthetic model is constructed using real Moho constraints37 and elastic

parameters of a P-wave velocities, b S-wave velocities, and c densities from a 1D reference model38. The blue lines mark the location of horizontal and

vertical slices, where the values of model parameters are demonstrated and projected onto the corresponding sides of the model cube. d Observation

system demonstrating the positions of planar source and receivers. The stars at the surface denote the evenly distributed receivers and symbols on the

dipping plane denote the injected source positions
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Fig. 2 The vertical component of the synthesized data. a The clean data obtained from elastic wave simulation. b The noisy data with signal-to-noise ratio

equal to 10.12 dB. c The sampling matrix with a sampling ratio of 70%. d The final data (signal-to-noise ratio equals to 4.35 dB) after applying the sampling

matrix to noisy data in (b)
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analysis39) may offer better solutions to the curved wavefronts.
To implement the localized rank-reduction method, we apply a
3D moving window with a size of 50 × 50 × 50 to the data volume.
We allow a 25-points (i.e., 50%) overlap in each direction between
successive windows to suppress the edge effects. For each subset
of the data volume within the moving window, we use a reference
rank of three to compute the trajectory matrix (see Methods),
whereas a reference value of nine is adopted in global rank-
reduction method. In the global case, the two plane waves are well
reconstructed (Fig. 3a), but the curved wavefront exhibits
significant reconstruction errors, particularly in areas with large
curvatures (Fig. 3c). In comparison, the localized rank-reduction
method does not cause obvious damages to the signal (Fig. 3b)
and the reconstruction error is almost zero everywhere (Fig. 3d).
Based on SNR metric, the respective quality metrics for the global
and localized reconstructions are 17.34 and 21.53 dB, suggesting a
better performance of the latter approach. We extract a single
trace at a location where large curvature exists (Fig. 4). The
reconstructed trace using localized rank-reduction method
(green) almost fully recovers the input (black; Fig. 4b), whereas
an obvious time shift is present in the trace obtained from the
global method (blue; see Fig. 4b).

We also use local similarity40,41, which measures the similarity
between two signals in a local sense, to evaluate the reconstruc-
tion performance. A mathematical introduction of the local
similarity metric is provided in Supplementary Note 2. In our
case, we intend to obtain a reconstruction result that is as close to
the clean data as possible. The local similarity between the clean
and the reconstructed data using the global rank-reduction
method shows obvious low values along the curved wavefront
(Fig. 5a). In comparison, the local similarity of localized
reconstruction is high throughout the data volume regardless of
the shape of the wavefront (Fig. 5b). We further investigate the
effects of sampling ratios (i.e., the percentage of missing data) on
the reconstruction. To this end, we vary the sampling ratios from

90 to 10% and randomly remove the traces. The test results show
that (1) the reconstruction performance, which is defined as SNR
using Eq. (8), improves with an increasing sampling ratio, (2) the
proposed algorithm is robust even at the low end (30–40%) of the
sampling range, and (3) the localized rank-reduction implemen-
tation always achieves superior reconstruction performance than
the global method (Fig. 6).

The parameters for both strategies are fine-adjusted to achieve
the best reconstruction results. The only parameter for the global
rank-reduction method is the rank. To determine the optimal
value, we linearly increase the rank and select the one that
maximizes the SNR of the reconstructed data. On the other hand,
a two-step process is adopted to determine a pair of parameters
(i.e., rank and window size) for the localized rank-reduction
method. As a first step, we optimize the window size while
considering a relatively large reference rank (e.g., five). The exact
choice of reference rank is not critical at this stage since the rank
selection will be further optimized by the automatic rank
selection process. We fix the overlap between two neighboring
windows to half of the window size. The length of window in each
dimension needs to be determined properly such that the data are
segmented into patches with the smallest extension. For example,
for a dimension of 100, the recommended window sizes are 10,
20, 50, or 100, since other choices will all cause an extension of
the dimension. With all possible combinations of the window
sizes considering all three dimensions, we select the best window
size leading to the largest SNR. In the second step, we further
optimize the reference rank for the selected window size. We
decrease the reference rank and adopt the new value if SNR can
be further improved. In real data processing, we use the same
strategy except for the criterion to evaluate the output
performance, which is prohibited by a lack of ground-truth
solution (i.e., term s in the equation of SNR). Instead, we define
the maximum cross-correlation value between a reconstructed
missing trace and its nearest observed trace as the criterion.
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To investigate the influence of frequency content to the
reconstruction performance of the presented methodology, we
extract different frequency contents of the incomplete synthetic
data for the reconstruction. We linearly increase the frequency
band from 0.05 to 0.4 Hz at an interval of 0.05 Hz and perform
reconstruction at each frequency slice (Supplementary Fig. 7).
The seismic signals are well recovered in the reconstructed data
for frequencies up to 0.3 Hz, showing more coherent P and Ps
arrivals. The reconstruction performance degrades at higher
frequencies (>0.3 Hz) with a lower degree of recovery of the
missing traces. The performance of reconstruction is mainly
limited by the weak high-frequency seismic signals with energy
that is close to (or below) the noise level (see Supplementary
Fig. 7g, h). We further perform a quantitative assessment of the
reconstruction quality by computing the SNR of the output signal
at each frequency (Supplementary Fig. 8). Compared with the raw
data, the reconstruction improves the SNRs by a factor of two at
all frequencies except for the high end (>0.3 Hz) of the frequency
spectrum, where the SNRs fall below the level of input values. In
summary, our test results suggest that the frequency content of

the signal largely controls the performance of reconstruction, and
high-quality results are achievable within the dominant frequency
band (0–0.3 Hz) of the signal (Supplementary Fig. 9). As a result,
a careful frequency analysis of the data is recommended prior to
applying the reconstruction algorithm.

USArray data test. A more challenging test is performed using
the real data from January 18, 2009, Kermadec Islands, New
Zealand, Mw 6.4 earthquake recorded by the Transportable Array
(TA) component of USArray (Fig. 7). Despite the best effort in
acquisition design, earthquake data are rarely recorded on a
perfectly even-spaced seismic array. Similar to earlier interpola-
tion methods17,28,34, the first step of our reconstruction algorithm
is to bin the data onto a regular grid. To this end, we use a
weighted interpolation method for the binning process. At each
node location, the waveforms from nearby stations that are
located within one grid distance are stacked and subsequently
assigned to the node, whereas the node remains empty if no
neighboring stations are available. We use a grid with respective
dimensions of 1.0° and 0.5° in latitude and longitude directions,
which is comparable to the station spacing of USArray, to
minimize the effect of spatial smoothing while preserving small-
scale features. Future study would focus on interpolating an
arbitrary geometry given a randomly distributed dataset. The
degree of data completeness after the binning process is
demonstrated by the sampling matrix (Supplementary Fig. 10),
where empty and data-filled grid points are indicated by zero and
one, respectively. We obtain a regular grid with a dimension of
16 × 28 (longitude × latitude) that comprises a total of 448 sam-
pling points. Among them 253 nodes are filled with the recorded
earthquake data while the remaining 164 points require to be
reconstructed by the proposed algorithm, resulting in a sampling
rate (i.e., data completeness) of 56.5% in the data.

During the earthquake, TA was deployed in western US
covering the Basin and Range Province and the Great Plains,
which marks a transition region from the active western US to the
relatively stable eastern part. This diverse tectonic environment
provides an ideal dataset to test the robustness and accuracy of
our reconstruction algorithm. We aim to create a complete data
volume using the vertical component seismograms acquired at
448 stations. The same method can be applied to reconstruct the
other two horizontal components. As a first step, the original
traces are subject to a sequence of preprocessing including
instrument response removal, integration to displacement, and
binning onto a regular grid (Supplementary Note 3). The

0

22
5

225

22
5

225

2
7

.5

2
7

.5

Globala b Local

20

40

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

T
im

e
 (

s
)

60

80

0

20

40

T
im

e
 (

s
)

L
o

c
a

l 
s
im

ila
ri

ty

L
o

c
a

l 
s
im

ila
ri

ty

60

80

0 50 100 150

X (km)

200 250 0

20
0

Y
 (k

m
)

0

20
0

Y
 (k

m
)

0 50 100 150

X (km)

200 250

Fig. 5 A comparison of reconstruction performance in terms of local similarity metric. a Local similarity using the global rank-reduction method. b Local

similarity using the localized rank-reduction method. Note that local similarity around curved wavefronts is noticeably lower in the global reconstruction

results

25

20

15

10

Input

Global

Local

S
ig

n
a
l–

to
–
n
o
is

e
 r

a
ti
o
 (

d
B

)

5

0

10 20 30 40 50 60 70

Sampling ratio in percent

80 90

Fig. 6 Reconstruction results at different sampling ratios. The

reconstruction performance (signal-to-noise ratio) improves with the

increasing sampling ratio. The localized rank-reduction method always

outperforms the global algorithm

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12405-0 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:4434 | https://doi.org/10.1038/s41467-019-12405-0 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


processed data forms a 3D cube with a dimension of 5400 ×
16 ×28 along time, longitude and latitude axes (Fig. 8a). The
quality of this dataset is mainly limited by (1) the missing traces
that account for a significant portion of the data volume and (2)
strong noises that interfere with phase arrivals. The former
constraining factor leads to reduced resolution in regions with
incomplete data sampling (e.g., the circled area on Fig. 8a) and
the presence of noise can mask relatively low-amplitude arrivals
such as the P waves (see Fig. 8a).

We apply the two rank-reduction methods to the preprocessed
data. Figure 8b shows the reconstructed data using the global
rank-reduction method. In global reconstruction, we treat the
whole 3D data cube as the input and set the rank to eight, which
is determined carefully by our tests. The reconstruction results
show an improved data coherency compared with the input, as
demonstrated by a more detailed wavefield variation in the time
slice at 2600 s (Fig. 8a, b). However, a major issue with the global
method is that it tends to smooth small-scale arrivals (e.g., P
waves indicated by red arrows in Fig. 8b). In this example,
because of the relatively weak energy of the first arrivals, they
cannot be robustly distinguished from the noise using the global
rank-reduction algorithm. This issue is largely resolved by the
localized rank-reduction method, where both time slices and the
first arrivals are well recovered (Fig. 8c).

We compare two time slices that contain weak phase arrivals
between the original and the reconstructed data. The first time
slice shows the energy related to PP phase (Fig. 9a, b), the free
surface multiple of P wave. This weak phase is severely
contaminated by the scattered energy associated with the P-
wave codas. As a result, the wavefield pattern of PP is largely
incoherent across the recording array, even in the center and
northeastern portions where station coverage is high. The second
time slice focuses on the wavefield around the excepted arrival
time of SS phase, which is the shear wave reflected off the surface
at the midpoint of source-station path, showing much coherent

energy compared to the scattered wavefield (Fig. 9c, d). The
reconstructed time slice successfully fills the data gap and
captures the detailed variation in wavefield energy. We demon-
strate the reconstruction performance on full seismogram in
Fig. 10, where nine traces are missing in this longitude slice. The
quality of various phase arrivals is severely degraded by noise.
After reconstruction, these phases are clearly identifiable from
both pre-existing and reconstructed traces. A more detailed
examination of weak-amplitude phases shows that (1) the
waveform characteristics (e.g., phase and amplitude) of the
existing traces are well preserved by the reconstruction algorithm
without excessive smoothing and (2) the reconstructed traces well
capture the coherent energy of the data, showing similar
waveform quality to the nearby (observed) traces (Fig. 10c, d).

We conduct a bootstrapping test42 to estimate the effect of
spatial sampling of wavefield on reconstruction. We randomly
select 40% of the observed seismograms to reconstruct the 3D
data cube and repeat this step 20 times. We calculate the standard
deviation of the 20 reconstructed datasets and use the normalized
deviation as an estimate of uncertainty. The reconstruction
uncertainty is low for body-wave phases (e.g., P and S) even in the
presence of intermediate (200 km) data gap (Fig. 10e), whereas
the uncertainty is slightly higher in time ranges with weak arrivals
(e.g., body-wave codas), especially in regions with poor station
coverage (e.g., big recording gaps). Compared with the well-
recovered body-wave phases, the surface wave portion shows
relatively large uncertainties in amplitude recovery (see Fig. 10e).
The degraded reconstruction performance is mainly challenged
by the waveform complexity of surface wave, which is
characterized by a dispersive wave train rather than a distinct
(linear) phase arrival (e.g., body waves). To alleviate these effects,
a frequency-dependent, instead of a linear, time window may be
required to better isolate the surface wave energy. For example,
one may consider a Gaussian window with varying center
frequencies as widely adopted in dispersion analysis43. As
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the recording array (blue triangles)
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importantly, a more careful examination (and selection) of
surface wave related rank values is also essential to better capture
the surface wave energy. Both aspects are critical to an improved
reconstruction performance of surface waves and are worth
future investigations. The lateral distribution of uncertainty is
relatively constant across the study area except at the southwest
corner (Supplementary Fig. 11), where uncertainty is about three
times higher due to highly insufficient data sampling. Through
waveform comparisons and uncertainty analysis, we are confident
to suggest that the proposed localized rank-reduction method
enables a robust reconstruction of the incomplete earthquake
recordings, in particular, body-wave phases, which provides
useful data constraints to the regions where no seismometers
were placed.

Discussion
The synthetic and real data examples demonstrate the ability of
localized rank-reduction method in reconstructing the missing
traces. The complete dataset, with improved quality and spatial
sampling, is critical for improving array-based seismic imaging
methods12,13. In this section, we demonstrate the accuracy of our
method and its application in seismic imaging using the cross-
correlation travel time measurement, a widely used technique in
travel time tomography.

Seismic tomography is one of the most commonly applied
seismic imaging techniques that greatly improve the understanding

of the internal structure of Earth. Seismic tomography can be
broadly classified based on the types of data (travel time or
waveform) and the approximation of wave propagation theory
(ray or finite frequency)44. One classical method of the tomo-
graphic family is regional travel time tomography45 that utilizes
the travel time differences between nearby stations to resolve the
subsurface velocity structure. The density of the station and
the accuracy of travel time measurements are critical factors for
high-resolution imaging. We provide an example of travel time
measurements to demonstrate the capability of the proposed
reconstruction method in improving P wavefield.

The relative travel times between stations in a recording array
are measured using multi-channel cross-correlation46. For a pair
of stations, the optimal relative travel time is determined by the
time delay that leads to the maximum correlation coefficient
between the two traces containing the phase of interest (e.g.,
P wave). To ensure the consistency of travel time measurements
among all recording stations, the relative travel time between each
station pair is optimized through a least-squares inversion. This
optimization process also imposes a zero average constraint to the
travel times. Finally, the demeaned theoretical arrival times
(based on a reference Earth model) are subtracted from the
optimized values to obtain the relative travel time residuals that
can be inverted for velocity perturbations underlying the
recording array.

The travel time measurement is first performed on the original
data. We filter the seismic traces between 0.03 and 0.125 Hz to
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enhance the useful signal and utilize a 100 s cross-correlation
window starting 50 s prior to the predicted P-wave arrival time
based on AK135 model38. The resulting travel time pattern is
similar to the predictions (i.e., theoretical arrival times from
AK135) because the time perturbations induced by structural
variation is much smaller than the move-out (Supplementary
Fig. 12). After correcting for the move-out effect, the remaining
values (i.e., relative travel time residuals) are considered to be
mainly caused by the receiver-side velocity anomalies. The
measured residuals from the original data generally show a
dichotomy of travel times: delay in the SW and advance in the NE
(Fig. 11a), suggesting distinctive mantle structures in these two
regions. Some local-scale variations are also observable in the
travel times (e.g., time delay related to Yellowstone hotspot). We
then conduct travel time measurements on the reconstructed data
using identical parameters (i.e., frequency and window length).
The resulting travel time variation is more coherent compared
with that from the original data (Fig. 11b). A major difference is a
significant time advance in the central part of the array, which
transitions sharply to the regime of time delay in the SW. In
comparison, the travel time advance in the original data appears
to be more scattered and the transition is much smoother.

Seismic travel time is sensitive to velocity anomalies within the
Fresnel zone around the ray path47, thus the consistency of the
travel time pattern with the velocity structures can be used as an
effective metric to evaluate the robustness of the travel time

measurements. For a plane wave from a teleseismic source, it
illuminates the upper mantle portion of the Earth structure
beneath the recording array from the direction of back-azimuth at
a steep incidence angle. The presence of negative (i.e., slow) and
positive (i.e., fast) velocity anomalies, respectively, causes the
delay and advance of the P-wave arrivals. The availability of high-
resolution seismic velocity models in the western US enables a
detailed examination of the travel time accuracy. We utilize a
recent high-resolution tomographic model of the upper mantle of
continental US9, which is constructed using 516,668 P-wave
travel time residuals measured within multi-frequency bands in
combination with a finite-frequency kernel47. In addition to the
high model resolution, the choice of this model is prompted by
the same travel time type (i.e., relative residuals) that permits a
direct comparison with our measurements. Since travel time
residual reflects an integrated effect of velocity anomalies in the
upper mantle, in particular, the heterogeneous mantle litho-
sphere, we consider velocity structures between 50 and 250 km
and compute the average amplitude (i.e., perturbation) of the
seismic velocity anomaly (Fig. 11c). The resulting velocity per-
turbation agrees well with the reconstructed travel time pattern,
whereas its correlation with the travel times from original data is
less apparent. In particular, the high-velocity zone beneath
the southern Wyoming craton is in excellent agreement with the
coherent travel time advance in the reconstructed data, while
the original data shows a much scattered travel time pattern.
Furthermore, the sharp velocity transition to the low-velocity
Cordillera is clearly delineated by the travel time variation from
the reconstructed data, while this travel time contrast is largely
smeared in the original data. In addition, some small-scale
structural variations (e.g., the SE corner of the array and the
Yellowstone anomaly) are captured by the travel times from
the reconstructed data. More importantly, in the regions with
large data gaps, the accuracy of the reconstructed travel times are
supported by the velocities. For example, in the western part of
the array between 36 and 43°N, the travel time shows an overall
delay pattern that corresponds to below than average seismic
velocities, and the smaller data gap at the NE corner also exhibits
a reasonable agreement between the two variables.

We further evaluate the uncertainty of travel time measure-
ments from both datasets. For each station, we compute its travel
time errors with respect to other stations defined as the difference
between the least-squares optimized and cross-correlation
determined travel times. The standard deviation of all measure-
ment errors is then used as an estimate of the measurement
uncertainty at this station. The respective average uncertainties of
the original (Fig. 12a) and the reconstructed data (Fig. 12b) are
0.50 s and 0.41 s, respectively. We notice that the uncertainty of
the reconstructed data is in fact dominated by a few large outliers
at poorly constrained nodes (see Fig. 12b), where the absolute
value of travel time residual is on average >2.0 s. Most of these
nodes are located in the regions with the largest data gap or near
the edges of the data volume (e.g., SW corner). These anom-
alously large measurements are typically caused by cycle-skipping
or poor data quality, and are removed from the inversion process
in regional tomographic study48. After removing the outliers,
which accounts for 4.5% of the total measurements, the average
uncertainty decreases to 0.35 s and is significantly smaller than
that of the original data, suggesting an improved P-wave con-
sistency in the reconstructed data.

The travel time example demonstrates the improved resolving
power of the complete dataset to small-scale structures. Thanks to
the rapid development of dense seismic arrays around the globe,
new seismic imaging techniques have been focusing on simulta-
neous processing of recordings from nearby sensors on a uni-
form/semi-uniform grid. One of the rapidly advancing fields is
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seismic surface tomography that utilizes either the travel time4,49

or the shape of the wavefield14,50 recorded at dense arrays to infer
the elastic properties of the subsurface. These methods typically
require the calculation of spatial derivatives with respect to a
certain parameter such as the travel time (e.g., Eikonal tomo-
graphy4) or amplitude of the surface wave (e.g., Helmholtz

tomography14 and gradiometry50), which is best performed on a
regular grid to ensure the numerical stability and accuracy. The
compressive-sensing-based reconstruction approach proposed by
Zhan et al.36 has demonstrated the improvement in resolving
velocities using the reconstructed wavefields. Similarly, we expect
an improved imaging performance of these gradient-based
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tomographic approaches when applied to the reconstructed data.
The validation of this argument is beyond the scope of this paper
and will be investigated in future studies. Finally, the improve-
ment in sensor technology as exemplified in several large N array
experiments51–54 has permitted a higher-density sampling that is
close to an exploration-scale survey. The development of imaging
technology, such as the one proposed in our study, should work
hand-in-hand with the improvement in data acquisition to
achieve the ultimate goal of having a better understanding of the
Earth’s structure.

Methods
Iterative rank-reduction method. The incomplete earthquake data on a regular
grid can be expressed simply as

u ¼ Sv; ð1Þ

where v denotes the complete earthquake data, u denotes the observed incomplete
data, and S is the sampling operator. Both u and v denote vectors of size NtNxNy ×
1. Nt, Nx, Ny denote the lengths of the t, x, y axes, respectively. The sampling
operator is a diagonal matrix of size NtNxNy ×NtNxNy. In the sampling operator,
each “zero” diagonal entry corresponds to a missing sample and “one” diagonal
entry denotes a sampling point. The sampling matrix will be presented when
analyzing the results of data reconstruction.

Given a reconstruction filter P, we follow the weighted projection-onto-convex
sets (POCS)-like scheme to iterative ly reconstruct the missing earthquake data and
suppress the strong random noise that downgrades the quality of the data. The
weighted POCS-like method is expressed as

vn ¼ αnuþ ð1� αnSÞPvn�1; ð2Þ

where αn is an iteration-dependent relaxation factor to control the suppression of
the random ambient noise. Here, we follow the linear-decreasing strategy used in
Chen et al.25 for iteratively suppressing the noise while restoring the noisy data
with newly interpolated data.

In the rank-reduction method23, the filtering is conducted in the frequency-
space domain of the multi-channel earthquake data. When rewriting v in a tensor
form V(y, x, t), the rank-reduction method first transforms the data from t−x−y
domain to f−x−y domain, i.e., V(y, x, f). The frequency domain data are then
rearranged into a multiple of block Hankel matrices for each frequency slice. The
Hankel matrix Ri for row i of the matrix V(y, x, f) constructed from the frequency

slice of f is

Riðf Þ ¼

Vði; 1; f Þ Vði; 2; f Þ � � � Vði;Mx ; f Þ

Vði; 2; f Þ Vði; 3; f Þ � � � Vði;Mx þ 1; f Þ
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: ð3Þ

By omitting f, Eq. (3) is then inserted into a block Hankel matrix by

H ¼

R1 R2 � � � RMy

R2 R3 � � � RMy

.
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; ð4Þ

where the Hankel matrix H is assumed to be of low rank. Nx and Ny denote the
number of channels in the x and y dimension of the data. Lx ¼ Nx=2b c þ 1 and
Mx ¼ Nx � Lx þ 1, where �b c is the operator to calculate the integer part. Similarly,

Ly ¼ Ny=2
j k

þ 1 and My=Ny− Ly+ 1. The low-rank extraction of the key

information from the Hankel matrix is equivalent to the principal component
analysis of the Hankel matrix. To optimally extract the principal components, i.e.,
the signals, from the Hankel matrix of an updated data, we aim at solving the
following optimization problem

min Ek k2F
s:t: rankðSÞ ¼ K; and;E ¼ H�S;

ð5Þ

where S denotes a low-rank matrix and E denotes small random perturbations.
Problem 5 can be conveniently solved via the singular value decomposition (SVD)
algorithm.

The SVD of H can be expressed as

H ¼ PΣQ
T ; ð6Þ

where ½��T denotes transpose, and

P¼ ½p1; p2; � � � ; pN �;

Σ ¼ ½σ1; σ2; � � � ; σN �;

Q ¼ ½q1; q2; � � � ; qN �:

ð7Þ

pi and qi (1 ≤ i ≤N) are ith left and right singular vectors of SVD. σi denotes the
ith singular value. N denotes the number of columns in matrix H. The
decomposed value matrices are used to reconstruct a rank-reduced matrix by
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selecting only the first K singular vectors and singular values

Ĥ ¼
X

K

i¼1

σ ipiq
T
i : ð8Þ

The rank-reduced Hankel matrix is then remapped back to a 1D vector by
averaging along the anti-diagonals. The mapping from each frequency slice to the
Hankel matrix is referred to as the Hankelization step and the averaging along anti-
diagonals is called the inverse Hankelization process. The overall process including
the Hankelization, principal component extraction, and inverse Hankelization can
be denoted by the restoration filtering operator P expressed previously in Eq. (2).
Note that similar strategies are commonly used in the subspace separation
methods, e.g., defining the log-likelihood of each eigenvalue to be related to signal
subspace to estimate the signal component.

Automatic rank selection. In the rank-reduction filtering introduced above, the
predefined rank parameter K plays a significant role in obtaining satisfactory
performance. It has been documented that an appropriate selection of K can be the
number of seismic events that have distinct slownesses23. However, the real
earthquake data are never a simple composition of several wave types with clear
arrivals. Instead, the earthquake data can be much more complicated, e.g., the
seismic arrivals are buried in the strong noise or the weak phases are hidden in the
more dominant strong codas. Besides, the events in the earthquake record can be
curving when the range of epicentral distance is large.

Thus, the selection the optimal rank is a non-trivial task. Generally speaking, if
the rank is chosen too large, the rank-reduction filter tends to preserve all subtle
features in the data, including the random noise and missing seismograms, thus the
resulting data will contain strong residual noise and not be able to reconstruct the
true-amplitude of the missing data. If the rank is chosen too small, the rank-

reduction filter can remove most useful signal components and only leave the most
dominant energy in the seismic record, e.g., the coda waves or the PP phases with
strong amplitude. The rank parameter is highly correlated with the structural
complexity of the data, and traditionally the optimal rank requires a lot of human
efforts and prior knowledge.

Thus, we introduce an adaptive method to optimally select the rank parameter
for the rank-reduction filtering. We utilize the difference of the singular values
between signals and noise in the singular spectrum to define the rank. We first
define a singular value ratio sequence

ri ¼
σi

σ iþ1

; i ¼ 1; 2; 3; � � � ;N � 1; ð9Þ

where σi is the ith singular value of the Hankel matrix H and {ri} denotes the
singular value ratio sequence. N denotes the size of the singular spectrum. The
optimal rank K is obtained when the sequence ri reaches the maximum

K̂ ¼ arg max

i

ri: ð10Þ

The principles of the adaptive rank selection method introduced in Eqs. (9) and
(10) are based on the detection of the cutoff rank in the singular value spectrum
which indicates the separation between signal and noise energy.

Data availability
All broadband seismic waveforms are retrieved from IRIS-DMC (Incorporated Research

Institutions for Seismology, Data Management Center) (http://ds.iris.edu/ds/nodes/dmc/).

Results obtained in this study are available upon requested from the corresponding

author.
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Code availability
The codes of 3D seismic reconstruction are available from the corresponding author
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