
Obtaining High Throughput in Networks with Tiny Buffers

Neda Beheshti*, Yashar Ganjali†, Ashish Goel‡, Nick McKeown*
*Department of Electrical Engineering, Stanford University

{nbehesht, nickm}@stanford.edu
†Department of Computer Science, University of Toronto

yganjali@cs.toronto.edu
‡Department of Management Science and Engineering, Stanford University

ashishg@stanford.edu

Abstract— In this paper we explore whether a general topology
network built up of routers with very small buffers, can maintain high
throughput under TCP’s congestion control mechanism. Recent results on
buffer sizing challenged the widely used assumption that routers should
buffer millions of packets. These new results suggest that when smooth
TCP traffic goes through a single tiny buffer of size O(log W ), then
close-to-peak throughput can be achieved; W is the maximum window
size of TCP flows.

In this work, we want to know if a network of many routers can
perform well when all buffers in the network are made very small,
independent of the structure of the network. This scenario represents
a real network where packets go through several buffering stages on
their routes. Assuming the ingress TCP traffic to a network is paced,
we first prove that all routers can get by with very small buffers, if the
network has a tree structure. For networks with general topology, we
propose a simple active queue management policy called Bounded Jitter
Policy (BJP), and show that under the proposed policy each flow will
preserve its smooth pattern across the network. Logarithmic size buffers
would therefore be enough in every router of the network.

I. INTRODUCTION

Until recently, Internet routers were widely believed to need large
buffers. A typical core router today, can buffer millions of packets,
and the buffer size grows linearly as the capacity of the network
links increases over time. Recent results on buffer sizing challenged
this widely used assumption, and suggested that a smooth and well-
multiplexed TCP traffic makes the routers achieve high throughput
even when the buffers are made very small [1], [2], [4]. It is shown
that implementing buffers of size O(log W ) packets suffices to have
close-to-peak throughput when the packets in each TCP flow are
sufficiently spaced out [1]. Here, W is the maximum congestion
window size of the TCP flows going through the buffer.

The tiny buffer results [1] assumes that traffic is paced, either by
implementing paced TCP at source (source-paced traffic), or as a
result of having very slow access links (link-paced traffic). If this
paced traffic goes through one buffering point, then tiny buffers
are enough to achieve high throughput. In a real packet-switched
network, however, packets go through several buffering points on
their routes from source to destination. Even a single router in today’s
Internet, usually has more than one buffering stage. A combined input
output queued (CIOQ) router, for example, has buffers both on ingress
and egress ports. Going through many buffers – even if they are not
congestion points – can change traffic pattern along the links.

In this work, we explore whether we can obtain a core network of
very small buffers and yet keep the utilization high on every link. To
answer this question, we consider a network of routers where packets
go through at most n routers on their paths. We show that if TCP
traffic is paced as it enters the network, then the size of every buffer
in the network can be reduced to O(log W + log n) without losing
more than a small fraction of throughput on any link in the network.
The condition of having paced traffic at ingress ports is automatically
satisfied when traffic entering the core is aggregated from slow access

networks.
To study a network of routers, we first consider a tree-structured

network, and show that such structure does not add to the burstiness
of traffic as packets move forward in the network. More precisely,
we show that any arbitrary buffer of such network would have lost
no less throughput, had the arrival traffic been directly injected into
that buffer (without going through the prior stages of buffering). A
router in this network would therefore require buffers as big as what
a single isolated router with the same input traffic requires: when
the ingress TCP traffic is non-bursty, shrinking buffers of all routers
to a logarithmic size maintains high throughput on every link in the
network.

Next, we consider a network with general topology. In a network
with arbitrary traffic matrix and topology, the characteristics of
individual flows might change as they get aggregated with other flows
on a link, or when they share queues with some cross-traffic. As a
result, a smooth traffic at the source, or at ingress ports of the network,
may not preserve its advantageous non-bursty attribute as it traverses
across the network. Examples in [10] show network settings where
delay jitter increases as traffic goes through more hops toward its
destination, despite having only smooth (constant-bit-rate or Poisson)
traffic generated at sources. Increased burstiness necessitates bigger
buffers to absorb the bursts.

To eliminate the possibility of having increased burstiness caused
by cross traffic, and consequently the need to have bigger buffers, we
propose a simple active queue management policy, which we refer to
as Bounded Jitter Policy (BJP). We show that by implementing BJP at
each router of a general topology network, all packets will experience
an almost fixed delay at each router. As a result, the inter-arrival time
of packets in a flow remains unchanged as the flow traverses across
the network. The packet arrival sequence of an arbitrary flow at any
intermediate router will therefore be a delayed copy of its arrival
sequence at the ingress port of the network: if the traffic is spaced
out at the ingress port, it will remain spaced out and smooth at any
node in the network.

Under BJP, a fixed delay can be achieved at the expense of some
small additional drops compared with a buffer of the same size
under FIFO policy. In return for dropping slightly more packets,
our proposed policy guarantees that each flow will preserve its
characteristic all along its route in the network. Consequently, if the
ingress traffic of the network is sufficiently paced, then tiny buffers of
logarithmic size will be sufficient to achieve high throughput between
any arbitrary pair of ingress-egress ports.

II. BACKGROUND: BUFFER SIZING IN A SINGLE ROUTER

Internet routers need buffers to hold packets during times of
congestion, and to resolve contention. The size of this buffer directly
impacts the packet drop rate, as well as the delay of packets going
through the router. Historically, the buffer sizes in Internet core routes



have been set based on a rule-of-thumb which says in order to
achieve 100% link utilization, the buffer size B should be equal to the
bandwidth-delay product C ×RTT [6]. Here, RTT is the effective
two-way propagation delay of packets going through the router, and C
is the capacity of the bottleneck link. For a 10Gb/s link for example,
and an average two-way propagation delay of 100ms the required
buffer size would be roughly 1, 000, 000 packets. According to this
rule, the required buffer size grows linearly with the link capacity
over time.

The bandwidth-delay-product rule assumes there is a single long-
lived TCP flow going through the bottleneck link. The congestion
control mechanism of TCP adjusts the transmission rate in response
to the drop indications from the network: the sender controls the
outgoing traffic by limiting the window size, i.e., the number of
outstanding (unacknowledged) packets at any time. In additive-
increase and multiplicative-decrease (AIMD) congestion avoidance
mode, the window size increases additively upon receiving an ACK
packet, and is halved when the source detects packet loss. Using this
mechanism, TCP controls the average transmission rate of data over
a round-trip-time interval. Nevertheless, the source has no control
over the data rate of smaller time intervals: the number of allowed
outstanding packets might all be sent out in a burst, at the beginning
of the round-trip time. Moreover, when packet loss is detected in
the AIMD congestion avoidance mode, the transmitter reduces the
window size, and stops sending out any packet until the number of
unacknowledged packets fits into the reduced window size. These
idle time-intervals add up to the burstiness of the traffic, and hence,
increase variations in the buffer occupancy.

The rule-of-thumb for buffer sizing aims at keeping the bottleneck
link busy at all times, so as to maximize the network throughput. The
required buffer size is determined by the shape of the flow’s TCP
window-size dynamics. The window-size follows the well-known
sawtooth shape, and has a distance from peak to trough of C×RTT .
Therefore, this much of buffering is required to ride out reductions
in window-size and to make sure the bottleneck buffer never goes
empty and the link is never idle.

Recently, Enachescu et al. [1], and Raina et al. [2] suggested that
buffer sizes can be reduced drastically to B = O(log W ). 1 This
is equivalent to only 20 − 50 packets for today’s typical networks.
There are two underlying assumptions for the tiny buffers result.
First, the maximum throughput which we will achieve is 85-90%
rather than 100%, i.e., we must be willing to sacrifice 10-15% of link
utilizations. Second, network traffic must be smooth. This smoothness
can happen as a result of implementing Paced TCP [5] at all sources,
which spreads packets over time rather than injecting bursts of traffic.
Smoothness also can result from having slow access links in the
network. When the capacity of access links is much slower than the
core links, packets are automatically spaced out when they arrive at
the core of the Internet.

III. HOW BIG BUFFERS NEED TO BE IN A NETWORK OF ROUTERS

The dynamics of packet backlog in a buffer, and consequently the
required buffer size for achieving a desired throughput, are imposed
by the characteristics of the arrival traffic. A bursty traffic needs big
buffers for absorbing the bursts, while a smooth traffic, a Poisson
traffic for example, with the same average arrival rate needs much
smaller buffers.

In this work we consider a core network, and assume that the
ingress traffic of the network is non-bursty TCP traffic. This model

1Enachescu et al. have also shown that a constant buffer size cannot achieve
high throughput as the capacity of the network grows.

can represent a backbone network in today’s Internet: if the core
links are sufficiently faster than the links in access networks, then as
packets enter the core network, they automatically get paced (without
a need to change TCP sources). But does the traffic stay non-bursty
on every link of the core network?

In a network with an arbitrary traffic matrix and topology, the
arrival pattern of packets in individual flows might change as they
get aggregated with other flows on a link, and as they share queues
with some cross-traffic. As a result, a smooth traffic at the source,
or at ingress ports of the network, may become bursty as it traverses
across the network. While there has been no thorough analytical
work on how an arbitrary network of FIFO buffers will change the
pattern of input traffic, evidences show that the network can add to
the burstiness of the traffic. Grossglauser et al. have studied cases
where delay jitter increases as traffic goes through more hops toward
its destination [10]. In their setting, the generated traffic is smooth;
flows generated at network sources follow either the constant-bit-
rate model or the Poisson model, but the traffic doesn’t preserve its
smooth pattern across the network.

In the following subsections we will explore whether under the
assumption of having smooth traffic at ingress ports, the network
can maintain high throughput when all buffers are made very small.
To answer this question, we first study networks with tree structure.
In Section III-A we show that any buffer in this type of network
drops no more packets than an isolated buffer of the same size and
with the same incoming traffic. Networks with arbitrary topology are
studied in Section III-B. We show that the logarithmic buffer size rule
holds in all buffers of such network, if a simple packet scheduling
mechanism is implemented in network’s routers. As will be shown,
implementing this policy makes the arrival sequence of any flow at all
intermediate nodes look almost like a time-delayed copy of the flow’s
arrival sequence at the ingress node. If the ingress traffic is assumed
to be Poisson for example, then by scheduling packets according to
the proposed policy the arrival traffic to each node will be a sub-
sequence of a Poisson process.

In both tree-structured and general topology networks, we find
the sufficient size for buffers to obtain a small drop rate across the
network when the ingress traffic to the network is Poisson. Section
III-C explains how these results can be applied to size buffers in
networks with TCP traffic.

For a given network and traffic rate matrix, we define the offered
load on each link to be the aggregate injection rate of flows sharing
that link. The load factor ρ of the network is defined to be the
maximum, over all links in the network, of the offered loads. In
our analysis, we assume that the network is over-provisioned, i.e.,
ρ < 1, and that the packets are all of the same size. Throughout
the paper, we assume that flows go through only one buffering stage
inside each router. Hence, we set the number of buffering points equal
to the number of routers, and refer to them interchangeably. This can
simply be generalized by setting n, used in our equations, to be the
number of buffers rather than the number of routers.

A. Tree-Structured Networks

Fig. 1 shows a network of routers with a tree structure. We show
that any arbitrary router of such network would have dropped more
packets, had the arrival traffic been directly injected into the router
(without going through the prior nodes of the tree).

Consider the two networks shown in Fig. 1, one with buffers in
a tree structure, and the other with only one single buffer. Both
networks have the same arrival sequence, i.e., a packet enters the
first network at time t, if and only if at time t there is an arrival






 

 


 

 


Fig. 1. Tree-structured network.

in the second network. In the tree-structured network, packets enter
the leaves first. After being processed at each buffering node, the
packets are transferred to the next buffering point until they depart
the system. Assume that all physical links in both networks have
capacity of c = 1 packet per unit of time, and that the propagation
delay on the links is negligible. We will discuss later how the latter
assumption can be relaxed without changing the results.

We consider a router Rm at distance m from the ingress ports of
the tree network (leaves of the tree), and compare the occupancy of
its buffer to the buffer occupancy of the single router R. Assuming
that buffers in both routers are of size B, we show that Rm does not
drop more packets than R.

Lemma 1. For any t > m, the number of drops at Rm in interval
[0, t) is less than or equal to the number of drops at R in interval
[0, t−m).

Proof: First, we assume that all routers have buffers of infinite
size. We compare the queue occupancy in router Rm at time t, and
the queue occupancy in router R at time t −m, which are denoted
by qm(t) and q(t−m) respectively. Both systems (shown in Fig. 1)
have the same input sequences. An arriving packet in the first system,
goes through exactly m FIFO queues – each with departure rate of
1 packet per unit time – before getting into Rm. Whereas, packets
in the second system are directly forwarded to R. Let Am(t− τ, t)
be the number of packet arrivals in Rm during the interval [t− τ, t).
Define τ0 as follows:

τ0 = max
τ

{0 ≤ τ ≤ t; Am(t− τ, t)− τ = qm(t)} (1)

τ0 corresponds to the largest possible time interval in which the
backlog qm(t) is built up. Picking the maximum of such intervals
indicates that there is no arrival to Rm during the interval [t− τ0 −
1, t − τ0); otherwise τ0 should have been replaced by τ0 + 1, as it
is assumed to be maximized in equation 1. Note that when a packet
enters the tree-structured system, it takes at least m time units for the
packet to reach the m-th buffer, as the capacity of each link is exactly
1 packet per unit of time. This indicates that all packets arriving to
Rm in interval [t−τ0, t) have been injected to the system during the
time interval [t−τ0−m, t−m). Because the whole system is work-
conservative, if one of those packets had arrived before t− τ0 −m,
there should have been an arrival during the interval [t−τ0−1, t−τ0).

Consider the single router R in the second system. Since the
arrivals to both systems are exactly the same, router R should

have received the same number of packets during the interval [t −
τ0 − m, t − m), and the queue occupancy at time t − m satisfies
q(t −m) ≥ Am(t − τ, t) − τ . Therefore, the number of packets in
router R at time t−m is no less than qm(t).

Now assume that all buffers in both systems have a finite size B.
We will use a similar argument to show that for any given t ≥ 0, the
number of drops in R during the interval [0, t −m) is greater than
or equal to the number of drops in Rm during the interval [0, t). In
particular, we will show that for every t, there exists some t0 ≥ 0
such that the number of drops in Rm during [t0, t) is smaller than
or equal to the number of drops in R during [t0 −m, t−m).

Let q′m be the pseudo queue occupancy in router Rm, defined as
q′m(t) = maxτ Am(t − τ, t) − τ, 0 ≤ τ ≤ t. Here, Am(t − τ, t)
denotes the number of packets arrived (not necessarily stored) in Rm

during the interval [t− τ, t). Define τ0 as follows:

τ0 = max
τ ′

{0 ≤ τ ′ ≤ t; Am(t− τ ′, t)− τ ′ = q′m(t)}

Assume that during the interval [t − τ0, t), k of these arriving
packets are dropped from Rm at times t− τ0 ≤ t1, t2, ..., tk ≤ t.

Let Sm(I) be the number of packets stored in Rm during some
time interval I . Note that at each time ti, where a drop event occurs
at router Rm, we have Sm(t − τ0, ti) − τ0 > B − 1. Therefore,
Am(t − τ0, tk) − τ0 > B + k − 1. Since there is no arrival to Rm

during the interval [t − τ0, t − τ0 − 1), all Am(t − τ0, tk) packets
must have arrived in R during the interval [tk−τ0−m, tk−m), and
hence at least k of these packets must have dropped from R during
this interval. The total number of drops in Rm until any time t, can
not exceed the corresponding number in R until time t−m.

Now let us relax the condition that every flow which arrives to
Rm has gone through exactly m previous buffering stages. Denote
by mi the number of prior buffers that flow fi has gone through.
Assume that each flow has a stationary arrival sequence, independent
from other flows. Coupling {fi(t)} with {fi(t−mi)} will result in
the same tail probability in both R and Rm when the buffers are
of unlimited size, and the same drop probability when the size of
buffers is limited.

Assuming that the ingress traffic is Poisson, and that the network
has a load factor ρ < 1, the drop rate at each queue will be bounded
above by ρB . This makes the overall drop rate of any packet to be
less than nρB , if each packet goes through at most n routers. The
following theorem immediately follows.

Theorem 1: In a tree-structured network with Poisson ingress
traffic, packet drop rate of ε can be achieved if every router can
buffer

B ≥ log1/ρ(
n
ε
)

packets, where n is the maximum number of buffering nodes on
each route.


 

Fig. 2. An example of network with general topology.



B. General-Topology Networks

Fig. 2 is an example of a network with general topology, where a
flow can merge with other flows by sharing a number of links and
their corresponding buffers. But flows can also diverge on different
routes after sharing a number of common links.

To analyze a queueing network of arbitrary topology, first consider
a network in which each router delays every single packet which goes
through it for exactly D units of time. Clearly, in such network, the
inter-arrival time of packets in each flow will remain intact as the flow
is routed across the network. In particular, if the network’s ingress
traffic is Poisson, then the input traffic to each intermediate router
will continue to be Poisson. However, delaying every packet by some
fixed amount of time is not feasible when the output link capacity
is limited, and the inter-arrival time of successive arriving packets is
very small. Packets coming in a burst can not all be sent out in a burst
when the output link capacity is limited. Therefore, we need to allow
some small variations in the amount of delay packets experience in a
buffer. In the following, we define a simple active queue management
policy which we call the Bounded Jitter Policy (BJP).

Informally, the BJP scheme tries to delay each packet for D units
of time, but it also allows a cumulative slack of ∆ ≤ D units of time.
We call ∆ the ”jitter bound” of the scheme. More exactly, a packet
that enters the network at time t0 is allowed to depart from the ith
router anytime during the interval [t0 + iD −∆, t0 + iD]. In order
to implement this scheme, we need to time-stamp packets at each
router. The time-stamp of each packet is initialized to be zero as the
packet enters the network. At each router on the path, the time-stamp
is updated and incremented by D units of time.

Consider a router in the network, and assume that a packet with
time-tamp t arrives at the router. The router tries to delay the packet
for D units of time. If this exact delay can not generated, i.e., if
another packet has already been scheduled for departure at time s =
t + D, then the packet will be scheduled to depart the buffer at the
largest available time-slot in the interval [s − ∆, s]. If there is not
any available time-slot in this interval, then the packet is dropped.

In the remainder of this section we study the buffer size require-
ments in a network where queues are managed by BJP. We assume
that the ingress traffic of the network is Poisson, and show that under
the BJP scheme, high throughput can be achieved with buffers of
logarithmic size.

Theorem 2: In a network of arbitrary topology with Poisson
ingress traffic, packet drop rate of ε can be achieved if the size of
every buffer in the network is B, and

B ≥ 4 log1/α(
n

(1− α)ε
)

packets, where n is the maximum number of routers on any route,
α = ρe1−ρ, and ρ < 1 is load factor of the network.

Proof: Under BJP scheme, an arriving packet is dropped only if
it can not be scheduled for in-time departure from the queue, i.e., if
there is no free time-slot available in time interval [s−∆, s]. In this
case, there must be exactly ∆ packets in the queue whose scheduled
departure times are in [s − ∆, s]. Let pm denote the probability of
having an interval Im of m consecutive busy (scheduled) time-slots-
corresponding to the departure times of m packets at this router,
followed by an available (nonscheduled) time-slot. As explained
before, BJP tries to send out a given packet in a time-slot that is
as close as possible to (and not later than) the packet’s stamped
departure time. Therefore, if the m + 1st time-slot is available, then
the departure time-stamps of these m packets must fall within the
same interval Im.

 




 

Fig. 3. A packet that arrives at time a, is scheduled based on its arrival
time-stamp t ≥ a. The departure time-stamp of this packet will be a fixed
delay D added to the arrival time-stamp. The system schedules the packet to
depart as close to the departure time-stamp as possible.

The packet drop probability, Pdrop, is therefore bounded as fol-
lows:

Pdrop ≤
2∆∑

m=∆

pm <
∞∑

m=∆

P{A[m] ≥ m} (2)

Note that before the arrival time of a packet with time-stamp t, no
packet in the router can be scheduled to depart later than t+D +∆,
otherwise the jitter bound of some packet would have been violated.
Therefore, m can not exceed 2∆ in equation 2.

The jitter bound ∆ should be made large enough to make the drop
probability less than the desired value ε. Let ρ be the arrival rate of
the Poisson traffic. The following set of inequalities hold [7]:

e−mρ(mρ)m

m!
< P{A[m] ≥ m}

< (1− ρm
m + 1

)−1 e−mρ(mρ)m

m!

<
1

1− ρ
em(1−ρ)ρm

Substituting each term of the geometric sum in equation 2 by its
upper bound, we have

Pdrop <
(ρe1−ρ)∆

(1− ρ)(1− ρe1−ρ)
≤ (ρe1−ρ)∆

(1− ρe1−ρ)2

Let n be the maximum number of FIFO buffers along the path of
each flow. To make the overall drop rate smaller than ε, it suffices
to make the drop rate at each queue Q smaller than ε/n, and hence,
choose ∆ such that

Pdrop <
α∆

(1− α)2
≤ ε/n (3)

where α = ρe1−ρ, and ρ is the aggregate rate of all flows sharing
Q. This results in the following logarithmic constraint on the size of
the jitter:

∆ ≥ 2 log1/α(
n

(1− α)ε
) (4)

Let the size of buffers, B, be equal to D+∆. Note that with such
scheduling, there will be no drop incidence due to full occupancy of
a buffer. No packet in a queue can be delayed more than D + ∆
time-slots, without violating the delay policy. Therefore, at any time,
the number of packets in a queue will be less than or equal to D+∆.

Equation 3 shows that the drop rate at each router is only a function
of the slack size ∆, and does not depend on the value of the fixed
delay D. The only constraint that the scheduling policy imposes is



that ∆ ≤ D. Therefore, the size of buffers can be made as small as
2∆. This completes the proof of theorem 2.

C. Networks with smooth TCP incoming traffic

The results of previous sections provide bounds on the required
buffer size for achieving a desired throughput under Poisson packet
arrival. In this section, we study the throughput of the network
in the case of having TCP traffic, where the sources reduce their
transmission rates in response to packet drops in the network. We
show that when the packet in every underlying flow of the ingress
TCP traffic is smooth, then buffers of logarithmic size suffice for
having high throughput.

In section II we explained the intuition behind the delay-bandwidth
rule, and pointed out that a single TCP flow can get very bursty. It is
important to note that requiring big buffers is not necessarily caused
by the AIMD dynamics of TCP’s congestion control mechanism.
Traffic generated by TCP sources can be made very smooth without
any modifications to the AIMD mechanism. Consider TCP sources
which adjust their transmission rates by following the AIMD dy-
namics, but rather than sending out packets in bursts, their traffic
is spread out over a round trip time interval (Note that still the
average transmission rate over a round trip time is equal to what
TCP dictates). Intuitively, this pacing should prevent bursts and hence
remove the need for large buffers.

In our analysis, we assume that packet injection time of every
flow (at the rate dictated by the AIMD mechanism of TCP) follows
a Poisson model. As shown in [1], when the time gap between
successive packets of any flow is at least O(log W ), then the
throughput will be the same as what the Poisson model gives us.

Consider a particular (but arbitrary) link l with bandwidth C
packets per unit of time, and assume that N long-lived TCP flows
share this link. Flow i has time-varying window size Wi(t), and
follows TCP’s AIMD dynamics. In other words, if the source receive
an ACK at time t, it will increase the window size by 1/Wi(t). If the
flow detects a packet loss, it will decrease the congestion window by a
factor of two. In any time interval [t, t’) when the congestion window
size is fixed, the source will send packets as a Poisson process at rate
Wi(t)/RTT . This is different from regular TCP, which typically
sends packets as a burst at the start of the window.

We will assume that the window size is bounded by W . Implemen-
tations today typically have a bound imposed by the operating system
(Linux defaults to W=64 kbytes). We will make the simplifying
assumption that the round trip time of all flows sharing link l is
RTT. Having a different propagation delay for each flow leads to the
same results, but the analysis is more complicated. We also assume
that the network load factor ρ (as defined before) is less than one,
which implies that ρl = NW/RTT < C, where ρl is the offered
load on link l. The effective utilization, θl, on link l is defined as the
achieved throughput divided by ρl. Under the above assumptions, the
following theorem holds:

Theorem 3: To achieve an effective utilization of θ on each link
in the network, buffers of size

B ≥ 4 log1/α(
nW

(1− α)(1− θ)
)

packets suffices under the BJP scheme.
Proof: It can be shown that if the overall drop rate of each

packet in the network is bounded as

Pdrop <
2(1− θ)

W 2

then, an effective utilization of θ will be achieved [1]. Using the
result of theorem 2, it suffices that

nα∆

(1− α)2
≤ 2(1− θ)

W 2

Therefore, it is enough for the buffer size B to satisfy

B = 2∆ ≥ 4 log1/α(
nW

(1− α)(1− θ)
)

The above theorem states that with a fixed offered load and link
utilization, the buffer size on a network link grows with the logarithm
of W . Since the network is assumed to be over-provisioned, the
maximum window size is limited by C ∗ RTT/N , where N is the
number of flows sharing that link. Consequently, as the capacity of the
core links grows over time, the buffer size only needs to be increased
logarithmically.

IV. CONCLUSIONS

Our results suggest that a network of routers with logarithmic size
buffers can achieve high throughput under TCP traffic, as long as
the ingress traffic is sufficiently paced. If the network has a tree
structure, then no modification in needed in the routers. In a network
with general topology, where flows might be intervened by other
cross-traffic flows on their paths, implementing a simple active queue
management policy in buffers makes the arrival traffic of each router
behave as if it is directly coming from ingress ports of the network.
The smoothness of TCP traffic is thus preserved across the network,
and the logarithmic size buffers suffice.

Our results assume that packets are sufficiently spaced out as they
enter the core network. Slow access links or slightly modifying TCP
to space out packet injections (Paced TCP) can make this happen
in a network. If having tiny buffers is inevitable in a network – in
an all-optical network for instance – in which neither of the above
conditions hold, one can use traffic shapers at the edge to space out
packets entering the network. In this case, all the results mentioned
in this paper will apply.

REFERENCES

[1] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden,
Routers with very small buffers, In Proceedings of the IEEE INFO-
COM’06, Barcelona, Spain, April 2006.

[2] G. Raina, D. Towsley, and D. Wischik, Part II: Control theory for buffer
sizing, ACM/SIGCOMM Computer Communication Review, 35(3):7982,
July 2005.

[3] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router buffers, In
Proceedings of SIGCOMM ’04, pp. 281-292, New York, NY, USA, 2004.

[4] R. S. Prasad, C. Dovrolis, and M. Thottan. Router Buffer Sizing Revisited:
The role of the input/output capacity ratio, In Proceedings of the ACM
CoNext conference, New York, December 2007

[5] A. Aggarwal, S. Savage, and T. Anderson, Understanding the perfor-
mance of TCP pacing, In Proceedings of the IEEE INFOCOM, pages
1157-1165, Tel-Aviv, Israel, March 2000.

[6] C. Villamizar and C. Song. ”High performance TCP in ANSNET,” ACM
Computer Communication Review, 24(5):45-60, 1994

[7] B. Klar, Bounds on tail probabilities of discrete distributions, Probability
in the Engineering and Informational Sciences, 14(2):161-171, April 2000

[8] R. Motwani, and R.Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995

[9] F. T. Leighton, B. M. Maggs, and S. B. Rao, Packet routing and job-shop
scheduling in O(congestion+dilation) steps, Combinatorica, Vol. 14, No.
2, pp. 167-180, 1994.

[10] M. Grossglauser and S. Keshav. On CBR Service, In Proceedings of
INFOCOM’96, pp129-137, March 1996.


