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To improve the accuracy of tree reconstruction, phylogeneticists are extracting increasingly large multigene data sets
from sequence databases. Determining whether a database contains at least k genes sampled from at least m species is an
NP-complete problem. However, the skewed distribution of sequences in these databases permits all such data sets to be
obtained in reasonable computing times even for large numbers of sequences. We developed an exact algorithm for
obtaining the largest multigene data sets from a collection of sequences. The algorithm was then tested on a set of
100,000 protein sequences of green plants and used to identify the largest multigene ortholog data sets having at least 3
genes and 6 species. The distribution of sizes of these data sets forms a hollow curve, and the largest are surprisingly
small, ranging from 62 genes by 6 species, to 3 genes by 65 species, with more symmetrical data sets of around 15 taxa
by 15 genes. These upper bounds to sequence concatenation have important implications for building the tree of life from
large sequence databases.

Introduction

Improved accuracy of phylogenetic inference through
the concatenation of multiple sequences from the same
taxon is expected on theoretical grounds (Erdos et al.
1999; Bininda-Emonds et al. 2001) and has been found in
many recent studies (Qiu et al. 1999; Soltis, Soltis, and
Chase 1999; Graham and Olmstead 2000; Brown et al.
2001; Madsen et al. 2001; Murphy et al. 2001; Bapteste et
al. 2002). For example, Bapteste et al. (2002) combined
123 genes for 30 species of eukaryotes and found support
increased monotonically with the number of genes
included. Concatenation has been undertaken widely in
taxa in which complete genomes are available, such as in
prokaryotes (Brown et al. 2001); taxa having small
organellar genomes, such as animal mitochondria (Miya
and Nishida 2000); and taxa for which long-term co-
ordination among investigators has driven parallel se-
quencing efforts, as for green plants (Chase et al. 1993).
Adding genes for a given set of taxa generally improves
both robustness and running times of computationally
intensive phylogenetic analyses (Soltis et al. 1998;
Savolainen et al. 2000; Bapteste et al. 2002), although
inferences about any particular node may sometimes be
skewed by long-branch attraction (Felsenstein 1978).
Adding taxa for a given set of genes can also sometimes
improve phylogenetic tree inference, especially in cases
of long-branch attraction (Hillis 1996). Increased taxon
sampling can improve reconstructions of ancestral char-
acter states, sharpen estimates of rates and modes of
sequence evolution, and generally provide a more com-
prehensive summary of a clade’s history. Not surprisingly,
the dimensions of phylogenetic sequence data sets have
grown rapidly in recent years.

However, phylogenetic methods require input data in
the form of rectangular matrices of taxa by aligned
sequences. Ideally, such data sets are complete—meaning
that every species has been sequenced for every gene in

the data matrix. The sample of genes among taxa found in
sequence databases or available from other sources rarely
allows large complete data sets to be constructed, however,
and therefore all large concatenated phylogenetic data sets
published recently have missing entries (Qiu et al. 1999;
Soltis, Soltis, and Chase 1999; Murphy et al. 2001).
Missing data in incomplete data sets should eventually
degrade phylogenetic inference by increasing both the
number of optimal solutions found and the uncertainty in
the placement of some taxa relative to others (Wiens
1998), although how much missing data is tolerable
remains an open question (Kearney 2002). This motivates
the present study. How can we optimally construct
complete phylogenetic data sets from large sequence
databases? The problem can be posed more formally as
follows: Given a large collection of sequences that have
been partitioned into sets of homologous genes, is it
possible to construct a complete data matrix in which m
taxa have sequences for the same k genes? Moreover, is it
possible to find all complete data sets of this size or larger?
Finding complete data sets in a sequence database is
a nontrivial problem. In fact, determining whether a
complete data set of a given size exists is an NP-complete
problem, meaning that efficient (polynomial time) algo-
rithmic solutions are unlikely to be discovered (Garey and
Johnson 1979). However, we describe an exact, exponen-
tial time algorithm which effectively solves many large
problems, and we illustrate its use by constructing maxi-
mal concatenated data sets from a large set of orthologous
protein sequences available from green plants. Alexe et al.
(2002) have described a different algorithm which, though
polynomial in the output size, also has worst-case
exponential running time, because the output size can
grow exponentially with input size.

Materials and Methods
Definitions

A cluster is a set of sequence homologs. Because our
sequences consist entirely of protein coding genes, a cluster
here represents a ‘‘gene’’ or ‘‘protein.’’ Concatenation of
sequences is appropriate only for clusters consisting of
orthologous genes, so we restrict attention to those (see
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below and table 1). The cluster set, C, is the set of all
clusters. A cluster set, C, can be represented as a bipartite
graph (West 2001), G(C), consisting of two disjoint sets of
nodes, one for the clusters and one for the taxa (fig. 1).
Edges connect a cluster node to a taxon node if and only if
that cluster has a sequence for that taxon. A complete
phylogenetic data set is one containing no missing genes
for a given set of taxa. Finding a complete phylogenetic
data set for a cluster set C is equivalent to finding a biclique
in the bipartite graph, G(C). A biclique is a subgraph of
G(C) denoted Kk,m and consisting of k clusters and m taxa
such that every cluster node is connected (adjacent) to
every taxon node and vice versa (fig. 1). A biclique is
maximal if no other biclique exists that contains it as
a proper subgraph. There may be many maximal bicliques.
Bicliques arise in many problems in graph theory, and the
complexity of problems related to bicliques has been
studied in some detail (Hochbaum 1998; Peeters 2000;
Dawande et al. 2001).

Formal Statement of Problem

We study the following optimization problem:

Given: Bipartite graph G(C) for cluster set C, natural
numbers k and m.
Find: All maximal bicliques, Kk9,m9, for G(C), in
which k9 � k, m9 � m.

The decision problem asking whether a biclique,
Kk,m, exists in G(C) is NP-complete. This follows because
the decision problem version of our problem for the in-
stance k ¼ m is called GT24 (balanced complete bipar-
tite subgraph problem) in Garey and Johnson (1979; see
also Peeters 2000) and is known to be NP-complete.
Therefore the decision variant of our problem (without
the restriction k ¼ m) must therefore be NP-complete. This
implies that the optimization problem stated above is also
unlikely to have an efficient solution for arbitrary inputs
(Cormen et al. 2001).

Algorithm

We have developed an exact algorithm that solves
this problem quickly (in minutes to a few hours on a Linux
workstation) for our data, by exhaustively building
progressively larger bicliques. Briefly, suppose we seek
all bicliques at least as large as Kk,m. The exact algorithm
examines every pair of clusters and calculates the in-
tersection of their taxon sets. Let the size of that inter-
section (the number of taxa in both clusters) be m9. This
step finds all bicliques, K2,m9. Discard any bicliques in

which m9,m, and—assuming any are left—try adding
every remaining cluster to each surviving candidate
biclique. This step finds all bicliques, K3,m9. If this iterative
procedure terminates before finding bicliques, Kk,m, then
none exists satisfying the constraints. On the other hand if
the iteration gets to the point of examining k clusters, then
every biclique found from then on will be of the required
size or larger, and the algorithm will continue to enumerate
these until it has found all of them. Maximal bicliques are
obtained from these by discarding any that are contained in
another biclique. This algorithm was implemented in Cþþ,
using the LEDA library (Algorithmic Solutions Software
GmbH) for data structures. Source code and a Linux
executable are available at (http://ginger.ucdavis.edu/
sandlab/SOFTWARE). See the Appendix for a detailed
description of the algorithm.

Sequence Data, Extraction of Cluster Set, and
Identification of Ortholog Clusters

To illustrate the effectiveness of this algorithm, we
applied it to a set of 100,813 proteins sampled from 11,587
taxa of green plants extracted from the five GenBank
GBPLN flatfiles in release 127.0 of GenBank (December
2001), representing all green plant protein coding se-
quences in the database that have been translated. The
cluster set was constructed using all-against-all BLAST
searches (Altschul et al. 1990) combined with single
linkage clustering as implemented in the National Center
for Biotechnology Information (NCBI) blastclust tool
(Dondoshansky 2002), at a stringency of 60% at the amino
acid level. Other clustering strategies have been described
which are considerably more sophisticated than ours
(Krause, Stoye, and Vingron 2000; Kriventseva et al.
2001; Tatusov et al. 2001), but our algorithm can be ap-
plied to any cluster set, regardless of how it is constructed.
All clusters are available in our online mySQL database
(host: ginger.ucdavis.edu; user name ‘‘guest’’).

Sequence concatenation is most appropriate for
orthologous sequences. Automated identification of ortho-
logs in sequence database is a challenging task both for

Table 1
Distribution of Sequences and Taxa Among
Phylogenetically Informative Green Plant Clusters

All
Clusters

Informative
Clusters

Orthologous
Informative

Clusters

Number of clusters 40,154 1092 (3%) 656 (2%)
Number of sequences 100,813 38,061 (38%) 22,268 (22%)
Number of taxa 11,527 11,052 (96%) 10,141 (88%)

FIG. 1.—Bipartite graph of a hypothetical cluster set. Edges connect
species (taxon) nodes with cluster nodes if a sequence exists for that taxon
in that cluster. A hypothetical biclique is indicated by bold lines. It
corresponds to a phylogenetic data matrix that is complete (shown in
box). Cluster 4 has not been sequenced for species A or B and therefore
cannot be part of this complete matrix.
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computational reasons (Remm et al. 2001; Lee et al. 2002)
and because sparse sampling of gene families in databases
imposes sharp limits on the strength of inferences. We
used a phylogenetic procedure, rather than relying on more
standard reciprocal Blast searching strategies (e.g., Lee et
al. 2002). By default, the sequences in any cluster in which
only a single sequence was present per taxon were treated
as orthologous. For clusters containing multiple sequences
in at least one taxon, unconstrained and constrained gene
trees were constructed using maximum parsimony with
a ‘‘protein parsimony’’ step matrix (Swofford et al. 1996;
gaps treated as missing data) in the program PAUP*
(Swofford 2002). The constrained tree forced all sequences
from the same species to form a clade. If the constrained
tree was significantly less parsimonious than the un-
constrained tree (using a signed-rank test; Swofford et al.
1996), the cluster was considered to contain paralogs and
was excluded from concatenation analysis. Note that
a cluster might well contain only the orthologs of one
paralog in a gene family. Also, some orthologous genes
with ancestral polymorphisms will be excluded by the test,
and if sampling of a gene family is extremely poor, such
that only one sequence per taxon is found in the database,
then we are left with no choice but to mistakenly infer
orthology. This will be especially likely for clusters with
only a few sequences and taxa.

Phylogenetic Analysis of Concatenated Data Sets

Phylogenies were constructed using standard meth-
ods for two representative maximal bicliques selected from
the set of maximal bicliques. Clusters containing multiple
accessions from the same species were pruned such that
only one sequence was included per species. This pruning
is justified because all sequences from the same species
form a clade for those clusters passing the phylogenetic
test for orthology. Presumably these represent multiple
accessions of the same gene or multiple alleles from the
same locus. Amino acid sequences were aligned with
default options in ClustalW (Thompson et al. 1994). Pro-
tein parsimony was used to reconstruct trees (see above).
Bootstrap analysis (100 replicates) was used to assess
phylogenetic support for clades. The single-celled strepto-
phyte Mesostigma was used as the outgroup to land plants
for the K39,10 biclique; three chlorophytes were used as
outgroups to the streptophytes (including land plants) in the
K15,15 biclique. Aligned data sets are available at http://
ginger.ucdavis.edu/sandlab/WWW_DATA.

Results

Clustering the database generated a set of 40,154
protein clusters, of which 1,092 were potentially phylo-
genetically informative about species relationships because
they contained four or more distinct taxa (table 1). The
plastid genes rbcL, matK, and ndhF formed the largest
clusters, and the model organisms Arabidopsis, rice, and
maize were represented in the most clusters. Of the infor-
mative clusters, 656 were determined to consist entirely of
orthologs, and thus represent candidates for concatenation.
Although this usable subset contained only 26% of the

sequences in the original data set, its taxonomic coverage
was still 88% (table 1).

Although the running time of the exact algorithm
precluded identification of all maximal bicliques, careful
setting of different combinations of lower bounds, k, and
m, allowed us to quickly identify the largest ones (fig. 2).
Running times increase rapidly as the input constraints, k
and m, are decreased, which is expected given the
computational complexity of the problem. To find the
largest maximal bicliques (those forming the boundary in
fig. 2), it suffices to choose values of k and m that are
just small enough to find some bicliques but not so small
that run times become a problem. Each such successful
run identifies one or more bicliques guaranteed to have
the property that no other bicliques exist above and to the
right of it (i.e., with larger values of either k or m or both).
Ten runs of the algorithm were sufficient to identify all
largest maximal bicliques with more than 3 clusters and
6 taxa.

The relative efficiency of the exact algorithm even for
this large sequence set stems from the uneven distribution
of sequences of genes among taxa (many sequences are
available for a few model species and a few heavily sam-
pled genes are available for many species). No bi-
cliques exist larger than the set of maximal bicliques
shown, which form a boundary in the space of concatenated
data sets (fig. 2). Bicliques of every possible dimension exist
below and to the left of the boundary, but many of these
are not maximal. Some bicliques are equal to each other
in their dimensions but have different taxon and cluster
compositions. Many of the bicliques overlap, and for any
given biclique there are generally bicliques which have
either slightly more taxa and slightly fewer clusters, or
slightly more clusters and fewer taxa. The largest bicliques

FIG. 2.—Largest maximal bicliques for the green plant protein data
set having at least 3 genes (clusters) and 6 species. No bicliques exist
above and to the right of those indicated. Every possible data set below
and to the left does exist, but many are trivial subsets of the indicated
maximal bicliques. The two bicliques subjected to phylogenetic analysis
are indicated by arrows.
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form a highly left-skewed ‘‘hollow’’ curve with many data
sets of few genes and many taxa, or few taxa and many
genes. At one end of this range was a data set with 62 genes
by 6 species; at the other end, a data set with 3 genes by
65 species. Bicliques with approximately equal numbers
of both taxa and genes have the unexpectedly small size
of about 12–15 of each. In general, no concatenated data set
contained more than about 400 sequences. Thus, no
complete data set contained more than about 2% of the
22,000 sequences found in phylogenetically informative
ortholog clusters for green plants.

The phylogenetic tree (fig. 3) based on the K39,10

biclique (39 genes; 8,523 amino acids; 10 species) pro-
vides strong support for major clades within land plants,
including basal relationships within eudicot angiosperms
that are not well resolved in recent analyses (Qiu et al.
1999; Soltis et al. 1999; Savolainen et al. 2000). For
example, spinach (Chenopodiaceae) and tobacco (Solan-
aceae) share a more recent common ancestor than either
does with the other angiosperms sampled. The K15,15

biclique (15 genes; 3,919 amino acids; 15 species) samples
many fewer genes but delves more deeply into green plant
phylogeny, including several green algal relatives of land
plants, another angiosperm, and another seed plant, Pinus.
Bootstrap support was slightly lower within eudicots
because of fewer characters, which is apparently the trade-
off for increased taxonomic coverage. These examples are

characteristic of the high degree of overlap between many
maximal bicliques.

Discussion

The algorithms described here permit construction of
maximal complete concatenated sequence data sets from
the sequence databases. Construction of complete data
matrices via concatenation for phylogenetic analysis,
equivalent to the identification of bicliques, is a computa-
tionally hard problem in theory. However, for problem
instances such as the one examined above, comprising a
set of over 20,000 proteins for a taxonomically diverse
collection of green plants (some 10% of all species in
GenBank), exact algorithms can solve the problem fairly
quickly. This should permit more intensive exploitation of
sequence databases for phylogenetic purposes.

Assembling the Tree of Life: The Role of Sequence
Concatenation

These results have implications for recent efforts
aimed at assembling large parts of the tree of life
(http://research.amnh.org/biodiversity/features/feat.html;
or more correctly, that part of the history of life that is
tree-like, see Wolf et al. 2002). Exploiting the size and
diversity of sequence databases for building comprehen-
sive species phylogenies poses many computational chal-
lenges. Two competing strategies have been discussed: (1)
concatenation of sequences for increasingly large sets of
taxa, as discussed here; and (2) combination of trees
(rather than data) constructed from separate but over-
lapping data sets, using ‘‘supertree’’ methods (Sanderson,
Purvis, and Henze 1998; Daubin, Gouy, and Perriere 2001;
Liu et al. 2001). Given that some 11,000 species of green
plants have protein sequences in GenBank, and that these
fall into 40,000 protein clusters, the discovery that the
corresponding maximal bicliques have sizes on the order
of only 15 by 15 is striking. Moreover, the fact that these
complete data sets each contain no more than about 2%
of the available sequences implies some limitations on
the utility of concatenated data sets. Even though the
algorithm described here will permit more intensive ex-
ploitation of the sequence databases, concatenation alone
will probably not provide a comprehensive solution to
building the tree of life any time soon, even with the rapid
accumulation of new complete genome sequences. There
is little reason to expect that the rich diversity of species
from within the broad clades represented in maximal
bicliques will soon have many sequences in GenBank.
Inclusion of the innumerable ‘‘minor’’ species in the tree
of life will therefore require other strategies, such as
supertree methods. Nonetheless, bicliques will ultimately
provide well-supported phylogenetic backbones that can
form the basis for more comprehensive supertree-style
studies.

An important lingering question concerns the treat-
ment of overlapping bicliques. Although some bicliques
found by running this algorithm are mutually exclusive,
many are not. The two ‘‘optimal’’ bicliques shown in
figure 2, for example, contain many of the same se-

FIG. 3.—A, phylogenetic tree for the K39,10 concatenated data set. B,
phylogenetic tree for the K15,15 concatenated data set. Bootstrap support is
indicated at each node. Taxon names are prefixed with their NCBI
taxonomy identification numbers.
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quences, and these overlap as well with some of the other
maximal bicliques that satisfy the input constraints. If it
were desirable to construct many phylogenetic trees from
these data sets, it would be necessary to develop strategies
either to avoid redundantly using the same sequence data
or to account for that redundant use in later applications.
One way to formalize this problem is to (edge-)partition
the bipartite graph with the fewest bicliques possible.
Deciding whether it is possible to partition a bipartite
graph into k bicliques is NP-complete (Amilhastre 1999),
but minimizing k would guarantee at least that the average
number of sequences (edges) per data set (biclique) was
maximized. More specific optimality criteria relating to the
entire collection of bicliques might be necessary to build
robust large phylogenies, however, such as requiring
bicliques to be of a minimum size.

Caveats and Limitations

Concatenation of sequences from different genes may
not always be a good idea. If different clusters contain
different phylogenetic signals, either because of real
differences in their evolutionary history, or because of
different statistical biases, concatenation may obscure the
underlying species tree (Bull et al. 1993). An extensive
literature has considered the problem of combinability of
data, and statistical tests are widely available (e.g., in
PAUP* and other software). However, until very recently
these tests have generally dealt with two or three data sets
at a time. Scaling up tests to tens or ultimately perhaps
even hundreds of genes will present important new
challenges. Judging by recent phylogenetic analyses using
concatenated genes, the tendency will be to combine data
by default, in the hopes that weight of evidence will resolve
any conflicts. As genes are sampled from multiple linkage
groups and multiple genomes, however, the chances for
conflicts between gene trees will rise (Baker and Desalle
1997; Krzywinski ,Wilkerson, and Besansky 2001).

Extensions

The problems described in this paper can be easily
modified to include weights on either the taxa or the
clusters. A natural weight on clusters is the length of the
sequences, which should be crudely correlated with
robustness (all else being equal). For phylogenetic
reconstruction it might be worthwhile to have one gene
of 2,500 nucleotides rather than three genes that together
only comprise 1,500 nucleotides. At present we treat all
clusters as equal. Equal weighting may have its uses if
each cluster is considered a potentially independent source
of evidence on the species tree. However, in the case of
the green plant data, the bicliques were made almost ex-
clusively of genes in a single linkage group, the chloro-
plast genome. In that case, weighting by number of sites
might be instructive. Better still might be weighting by an
a posteriori analysis of the phylogenetic signal in the
cluster, such as by an average bootstrap score or posterior
probability from Bayesian analysis. However, implement-
ing this sort of analysis would be difficult, because the
taxa from the cluster that are eventually represented in

the biclique might be in a part of the tree that is poorly
supported, even if the remainder of the tree is strongly
supported.

Another straightforward extension is to constrain bi-
cliques to contain specific taxa, clusters, or both. Phylo-
geneticists may wish to obtain large bicliques that include
specific taxa of interest; molecular evolutionists may wish
to include genes sampled from specific classes of mole-
cules. The algorithm described in this paper can be easily
modified to start from a given set of constraints.

It may be important to extend these methods to
‘‘quasi-bicliques’’—bicliques that are allowed to have
some fixed number or fraction of empty elements (an
element being an entire sequence missing for some taxon).
It should be possible to construct quasi-bicliques larger
than the bicliques found here. Recent large multigene
studies (Qiu et al. 1999; Soltis, Soltis, and Chase 1999;
Murphy et al. 2001) all contain ‘‘holes’’ in their data
matrices, and are thus quasi-bicliques. The problem is to
assess the trade-off between better sampling in a quasi-
biclique and additional noise owing to the missing data
(Kearney 2002). Quasi-bicliques might also be used to
identify which new sequences should be obtained in the
laboratory to permit true blicliques to be constructed. In
this way, algorithms can guide phylogenetic experimental
design.

Appendix
Exact Algorithm

Given a cluster set C, and natural numbers k and m,
(k, m � 1), find all the bicliques, Kk9,m9, for C, in which
k9 � k, m9 � m. A cluster is defined here as a set of taxon
names (for the relevant sequences). A biclique will be
described by the set of clusters it contains, where it is
understood that the joint intersection of taxa in these
clusters comprises the taxon elements of the biclique.
Define two functions that take a biclique as an argument:
Cluster(b), which returns the clusters of the biclique, and
Intersect_Set(b) which returns the taxa in the biclique,
which are obtained from the joint intersection of
Cluster(b).

SET Max-Biclique(C, k, m)
f

/* Initialization */
Delete from C any cluster that is found in fewer than m
taxa;
Delete from C any taxon that is found in fewer than k
clusters;
Set k9 ¼ 1; Set current_biclique_set ¼Ø;
FOREACH cluster, c, in C

f
Make a biclique, b, such that Cluster(bÞ ¼ fcg, and
Intersect_Set(bÞ ¼ c; Add b to current_biclique_set;
g

/* Main loop */
WHILE (current_biclique_set „ Ø)

f
FOREACH biclique, b, in current_biclique_set
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f
IF jIntersect_Set(bÞj,m THEN

Delete b from current_biclique_set ;
ELSE

IF k9 � k, THEN
Add b to the solutions_biclique_set;

g
Set k9 ¼ k9þ 1;
FOREACH biclique, b, in current_biclique_set

f
FOREACH cluster, c in (c Cluster (b))

f
Let b9 be a biclique such that Cluster(b9Þ ¼
Clusterðb) [ fcg
Add b9 to current_biclique_set;
g

g
FOREACH biclique, b, in current_biclique_set

f
IF jCluster(bÞj ¼ k9� 1 THEN

Remove b, from current_biclique_set ;
g

g
If k9, k, THEN

RETURN Ø; /* no bicliques exist for inputs k andm. */
ELSE

RETURN solutions_biclique_set
g
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