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ORIGINAL ARTICLE 

Obtaining mode mixity for a bimaterial interface crack using 
the virtual crack closure technique 

A. Agrawal · A. M. Karlsson 

Abstract We review, unify and extend work per

taining to evaluating mode mixity of interfacial 

fracture utilizing the virtual crack closure tech

nique (VCCT). From the VCCT, components of 

the strain energy release rate (SERR) are obtained 

using the forces and displacements near the crack 

tip corresponding to the opening and sliding contri

butions. Unfortunately, these components depend 

on the crack extension size, ω, used in the VCCT. 

It follows that a mode mixity based upon these 

components also will depend on the crack exten

sion size. However, the components of the strain 

energy release rate can be used for determining 

the complex stress intensity factors (SIFs) and the 

associated mode mixity. In this study, we show that 

several—seemingly different—suggested methods 

presented in the literature used to obtain mode 

mixity based on the stress intensity factors are in

deed identical. We also present an alternative, sim

pler quadratic equation to this end. Moreover, a 

ω-independent strain energy release based mode 

mixity can be defined by introducing a “normal

izing length parameter.” We show that when the 

reference length (used for the SIF-based mode 

mixity) and the normalizing length (used for ω

independent SERR-based mode mixity) are equal, 

A. Agrawal · A. M. Karlsson (B) 
Department of Mechanical Engineering, University of 
Delaware, 126 Spencer Laboratory, Newark, 19716, 
DE, USA 
e-mail: karlsson@udel.edu 

the two mode mixities are only shifted by a phase 

angle, depending on the bimaterial parameter χ. 

Keywords Interface crack · Complex stress 

intensity factor · Virtual crack closure technique · 
SIF-based mode mixity · SERR-based mode 

mixity 

1 Introduction 

Bimaterial interfaces are intrinsic in many engi

neering applications, ranging from microelectron

ics to adhesive joints, from fiber-reinforced 

composites to thermal barrier coatings. These lay

ered structures undergo complex failure modes, 

many times relating in interfacial cracking (e.g., 

Wang and Suo 1990; Karlsson and Evans 2001). 

Thus, to design reliable layered structures, it is par

amount that the mechanics of the interface crack 

is understood. Fracture toughness of bimaterial 

interfaces has received attention through analyt

ical (e.g., Rice 1988; Hutchinson and Suo 1992), 

experimental (e.g., Charalambides et al. 1989; 

Wang and Suo 1990; Yuuki et al. 1994; Ikeda 

et al. 1998) and numerical simulations (e.g., Sun 

and Jih 1987; Matos et al. 1989; Toya 1992; Beuth 

1996; Bjerken and Persson 2001). 

Contrary to homogeneous, isotropic materials— 

where cracks tend to propagate in pure mode I 

locally at the crack tip—mode mixity is a critical 
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parameter for interfacial fractures. The mode mix

ity (sometimes called the phase angle of fracture) 

is the relative proportions of tractions ahead of the 

crack tip in sliding mode (mode II) and opening 

mode (mode I) in the facture. A crack constrained 

in an interface is subjected to mixed mode condi

tions—and propagates in mixed mode—when the 

preferred fracture path is in the interface. There is 

ample experimental evidence that interfacial frac

ture toughness depends strongly on the mode mix

ity (e.g., Evans et al. 1990; Wang and Suo 1990; 

O’Dowd et al. 1992; Yuuki et al. 1994). Typically, 

the total fracture toughness increases as the mode 

II contribution increases. 

Mode mixity can be determined using a stress 

intensity factor (SIF)-based approach or can be 

based on the components of the strain energy re

lease rate (SERRs). Although analytical expres

sions for the total strain energy release rate and 

SIF-based mode mixity are available for some sim

ple interfacial crack problems (Hutchinson and 

Suo 1992; Cherepanov 1979), they involve consid

erable mathematical complexity. For complicated 

geometries or loading conditions, the analytical 

expressions may not be available. Thus, numeri

cal methods are many times preferred. The total 

strain energy release rate can be obtained through 

numerical computation of the J-integral (Rice 

1968) using finite element based techniques (e.g. 

the virtual crack extension technique, Parks 1974). 

However, the J-integral provides no information 

about the mode mixity. 

Stress-based mode mixity can be determined by 

two alternative numerical methods: 

(i) The crack-face displacement method (Matos 

et al. 1989). The method is widely used and 

is easy to implement for most problems. It 

requires the displacement field for many 

nodes close to the crack tip, and may be diffi

cult to implement if the crack faces are not 

straight. 

(ii) The M-Integral  method (Yau et al. 1980). 

The method requires a known auxiliary 

solution and is very sensitive to the accuracy of 

the auxiliary solution because the error builds 

up in a quadratic manner. 

A third method, the virtual crack closure 

technique (VCCT), has successfully been used to 

obtain both the total strain energy release rate and 

the mode mixity for cracks in homogeneous mate

rials (Rybicki and Kanninen 1977; Dattaguru et al. 

1994, Xie et al. 2004). For an interface crack, the 

VCCT has traditionally been used to obtain the 

total strain energy release rate. Obtaining mode 

mixity for an interface crack using the VCCT has 

proven to be more challenging (Sun and Jih 1987; 

Raju et al. 1988; Dattaguru et al. 1994). However, 

several approaches have been suggested to extract 

consistent mode mixity values using the VCCT 

(Toya 1992; Chow and Atluri 1995; Beuth 1996; 

Sun and Qian 1997; Bjerken and Persson 2001). 

The purpose of this paper is to present the VCCT 

as a reliable and efficient method to extract SIF- or 

SERR-based mode mixity to characterize an inter

face crack, within the context of linear-elastic frac

ture mechanics. To this end, we will in Chapters 3–4 

re-derive the equations that are needed to extract 

mode mixity from the VCCT results of SERRs us

ing asymptotic stress and displacement field near 

the crack tip. The derivation is intended to estab

lish a clear link between various approaches (Toya 

1992; Chow and Atluri 1995; Beuth 1996; Sun and 

Qian 1997). Furthermore, a simple quadratic equa

tion is derived that can be used to obtain the SIF-

based mode mixity. This equation gives identical 

results to the previous approaches suggested by 

Toya (1992), Chow and Atluri (1995) and Sun and 

Qian (1997). In addition, an approach by Bjerken 

and Persson (2001) is examined and found attrac

tive for providing acceptable values of mode mixity 

with significantly less computational efforts. Fur

ther, a modified definition of mode mixity, based 

on SERRs (Beuth 1996), is shown as an alternative 

measure for characterizing an interface crack. 

In Chapter 5, we will numerically illustrate the 

theory discussed in Chapters 2–4, with two bench

mark problems: an interface crack in an infinite bi

material plate subjected to uniform normal stress 

and a bi-layer four-point flexure specimen with an 

interface crack. We believe that reading the numer

ical examples parallel with the theory may help a 

reader who is unfamiliar with the concepts pre

sented herein. 
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2 The interface crack problem 

In this section, we will review the definitions and 

some key concepts relating to the complex stress 

intensity factor, the SIF-based mode mixity, the 

total strain energy release rate, and end with a dis

cussion relating to the contact zone. 

2.1 Nature of the interface crack singularity 

A bimaterial body experiences stress intensifica

tion from both a geometric discontinuity (crack), 

as well as a material discontinuity. Stress intensi

fication for a plane interface crack between two 

elastic, isotropic materials was first suggested by 

Westergaard (1939). A complete analytical solu

tion was given by Williams (1959), where the 

asymptotic nature of the dominant singular stress 

field using an eigenfunction approach was estab

lished. That work indicated that the stress field is 

coupled near the crack tip and that the stress sin
/

gularity is of the order of rξ , where ξ = −1 2+ iχ 
is the complex eigenvalue, and χ is the bimaterial 

constant defined as: 
  

1 1 − β 
χ = ln ,  (1)  

2π 1 + β

where 

E1 − E2 µ1(ψ2 − 1) − µ2(ψ1 − 1)
α = , and  β = . 

E1 + E2 µ1(ψ2 + 1) + µ2(ψ1 + 1) 
(2a, b) 

α, β are the “Dundur’s parameters” (Dudurs 1969); 

and j = 1, 2 represents material 1 and 2 (Fig. 1), 
( )

respectively. Furthermore, ψj = 3 − 4νj and Ej = 
/

( ) 
( )/

Ej 1 − ν2 for plane strain; and ψj = 3 − νjj
( )

1 + νj and Ej = Ej for plane stress. Ej is the elastic 

modulus, νj is Poisson’s ratio and µj = Ej/2(1 + νj) 
is the shear modulus. The oscillatory singularity is 

given by 

riχ = cos(χ ln r) + i sin(χ ln r),  (3)  
� 

where i = −1. An interface crack experiences 

mixed mode condition even when subjected to 

pure mode I loading. 

The interface crack solutions based on the “open 

crack model” (e.g., Williams 1959; Rice and Sih 

Material 1 ( 11,νE ) 

Material 2 ( 22 ,νE ) 

r 

θ 

y 

Fig. 1 Geometry and nomenclature for an interface crack 

1965; Malyshev and Salganik 1965; England 1965) 

contain oscillation of stresses and displacements 

in the vicinity of the crack tip. In such model, the 

interpenetration of crack faces always occurs near 

the crack tip, which is physically unfeasible. Com

ninou (1977) presented a modified solution con

sidering contact near the crack tip to eliminate the 

oscillations. However, the contact region is very 

small. Thus, the oscillatory solution allowing inter

penetration is considered valid in the K-annulus, 

i.e. the region close to the crack tip where the singu

lar field dominates, outside the non-linear contact 

zone (Rice 1988; Rice et al. 1990; Wang and Suo 

1990). 

2.2 Definition of complex K and SIF-based mode 

mixity 

Using the convention for an interface crack defined 

in Fig. 1, the complex stress intensity factor, K, is  

given by (Rice and Sih 1965) 

i� ∗ 
K = K1 + iK2 = |K| e ,  (4)  

� 
where K has units of Nm−2 m m−iχ and �∗ is the 

“phase angle” or “mode mixity” of K. In the  K-

annulus region, the tractions at a distance r ahead 

of the crack tip at the interface (θ = 0) are given 

by (Rice and Sih 1965; Rice 1988) 

K 
σyy + iσxy = � riχ .  (5)  

2πr 

An alternative definition of the interfacial stress 

intensity factors was suggested by Rice (1988), re

ferred to as the  complex stress intensity factors of 

classical type, which agrees with the definition of 

Malyshev and Salganik (1965). The stress intensity 



factors of classical type, KI and KII, represent stress 

intensity factors of two different modes of fracture 

and can be defined as: 

iσKI + iKII = Kliχ = |K| e ,  (6)  

where l is an arbitrarily chosen reference length, 

σ is the mode mixity of Kliχ, and KI, KII are based 

on the reference length r = l. The stress inten

sity factors defined by Eq. 6 have the units of the 

“isotropic” stress intensity factors, i.e. Nm−2
� 

m, 

and are thus easy to interpret physically. However, 

the stress intensity factors KI, KII for a bimateri

al system with β →= 0 are not directly analogous 

to mode I and mode II stress intensity factors for 

homogeneous material, since a characterizing ref

erence length always needs to be specified (Rice 

1988; Hutchinson and Suo 1992). The stress field in 

Eq. 5 can be rewritten in terms of KI, KII as 
(KI + iKII r)iχ 

σyy + iσxy = � .  (7)  
2πr l 

The (stress-based) mode mixity in Eq. 6 is ex

pressed as 
( ) ( )

Im[Kriχ] KII 
σ = tan−1 = tan−1 , (8a) 

Re[Kriχ] KIr=l 

which is equivalent to 
( )

σxy
σ = tan−1 . (8b) 

σyy r=l 

σ is the mode mixity of Kliχ and can be related to 

the mode mixity of K as (Rice 1988; Hutchinson 

and Suo 1992; Ikeda et al. 1998) 

σ = � ∗ + χ ln (l) . (9a) 

Futhermore, 

l2 
σ2 = σ1 + χ ln (9b)

l1 

where l1 and l2 are two reference lengths used to 

define the mode mixities: σ1 = σ1 (l1) and σ2 = 
σ2 (l2). 

The expression for the displacement jumps is 

(Hutchinson and Suo 1992) 
(KI + iKII � r)iχ 

δy + iδx = 8 � r , 
(1 + 2iχ) E∗ cosh (πχ) 2π l 

E∗ 2 E1 E2

(10a, b) 

( )

1 1 1 1
where = + . 

Here, δx and δy are the displacement jumps be

tween two points located on opposite crack faces 

at a distance r behind the crack tip, along x- and 

y-directions, respectively. Lastly, the angle π at a 

distance r behind the crack tip is defined as 
( ) 

π = tan−1 δx 
. (11) 

δy 

2.3 Total strain energy release rate 

The total strain energy release rate can be ex

pressed in terms of the modulus of complex K as 

(Malyshev and Salganik 1965) 

1 − β2 

G = 
(

|K|2
) 

, (12) 
E∗ 

where |K|2 = (K1
2 + K2

2) = (KI
2 + KII

2 ) and it is 

noted that 1 − β2 = 1/ cosh2 (πχ) and |liχ| = 1. The 

strain energy release rate for an interface crack has 

the dimension of Nm−1 (which is the same as that 

for the strain energy release rate for monolithic 

material). 

2.4 Estimate of the contact zone 

For a bimaterial interface crack (β →= 0), the open 

crack solution with oscillatory stress and displace

ment field given by Eqs. 7 and 10, respectively, 

indicates that there are infinite numbers of sign 

changes of the normal and shear stress, and the 

normal and shear displacement, near the crack tip 

(Sun and Qian 1997). The oscillation zone for stress 

and displacement are not necessarily the same. 

Similarly, the oscillation zone based on the oscil

latory field model and the contact zone based the 

contact model are not necessarily the same. Rice 

(1988) arrived at an elementary estimate of the 

contact zone as the radius of oscillation zone of 

displacement, ro, which is the largest value of r for 

which the opening gap δy vanishes in the cycle of 

oscillation: 

Re 

{ 
KI + iKII 

1 + 2iχ 

( 
l 

ro 

)iχ} 
= 0 (13) 

which gives 

ro = l exp 
{ 

1 

χ 
tan−1 

( 
KI − 2χKII 

KII + 2χKI 

)} 
. (14) 



  

ω 
  

ω 
  

The contact zone obtained above is very small com

pared to the crack size and other specimen dimen

sion even for large mismatch (β = 0.5). Indeed, the 

contact zone is much smaller than even the atomic 

dimensions for moderate values of β (Rice 1988; 

Wang and Suo 1990; Sun and Qian 1997; Borovkov 

et al. 2000). 

3 Strain energy release rates for an interface crack 

In this section, we will introduce the virtual crack 

closure technique (VCCT) that is used to obtain 

the components of the strain energy release rate GI 

and GII. Due to the oscillatory nature of stress and 

displacement fields, the components of the strain 

energy release rates (SEERs) for an interface crack 

are oscillatory. Consequently, GI and GII become 

dependent on the assumed crack-extension size, 

ω, in the finite element simulations. Various pro

cedures have been suggested to extract meaning

ful ω-independent parameters from the oscillatory 

SERRs in order to characterize the interface crack 

(Toya 1992; Chow and Atluri 1995; Beuth 1996; 

Sun and Qian 1997). We will show that the expres

sions for GI and GII used by these authors are 

identical. We will conclude with comments on the 

implications of ω-dependent quantities and intro

duce a coupled strain energy quantity. 

3.1 The virtual crack closure technique (VCCT) 

According to Irwin (1957), the work required to ex

tend a crack by an infinitesimal distance is equal to 

the work required to close the crack to its original 

length. Thus, for homogeneous, isotropic, linear-

elastic material, the components of strain energy 

release rate for mode I and mode II can be ex

pressed as: 

1
GI = Lim σyy (ω − r) δy (r) dr, (15) 

ω≡0 2ω 
0 

1
GII = Lim σxy (ω − r) δx (r) dr, (16) 

ω≡0 2ω 
0 

where ω is a small crack extension; σyy and σxy are 

the normal and shear tractions, respectively, at a 

distance r ahead of the crack tip; and δx and δy are 

the displacement jumps at a distance r behind the 

crack tip, along the x (sliding mode) and y (opening 

mode) directions, respectively. 

Rybicki and Kanninen (1977) showed that the 

integrals in Eqs. 15 and 16 can be computed numer

ically by finite element analysis using a 

technique referred to as the virtual crack closure 

technique (VCCT). This method can be used with 

conventional (non-singular), linear, finite element 

simulation to get accurate strain energy release 

rate values. 

The VCCT is based on nodal forces and dis

placements near the crack tip. In this technique, 

the four elements adjacent to the tip should pref

erably have the same size (Fig. 2), where the length 

of the crack tip element size is ω. Nodes e and f are 

joined at the crack tip, whereas nodes c and d are 

next behind the crack tip on the two opposite crack 

faces. Fy,c and Fx,c are the forces required to hold 

nodes c and d together in the y and x directions, 

respectively. If the forces Fy,c and Fx,c are applied at 

nodes c and d, the crack closes by increment ω, and 

c and d become coincident with each other to form 

the new crack tip. Thus, assuming that ω is small 

compared to the overall length of the crack, Fy,c 

and Fx,c can be assumed to be the same as the trac

tions at the current crack tip (nodes e and f ). The 

forces at the nodes e and f can be obtained directly 

from the finite element results. Conversely, if we 

apply these forces at e and f to balance the crack 

∆ ∆ 

Element 2Element 1 

Element 3 Element 4 

Crack Tip 

e 

f 

c 

d 

Fig. 2 Finite element mesh near the crack tip and nomen
clature used in the virtual crack closure technique 
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ω

tip tractions, the crack will advance by ω and the 

work done for the small unit crack extension cor

responds to the (total) strain energy release rate. 

Hence, recasting Eqs. 15 and 16 to capture the 

discrete nature of finite element analysis, the VCCT 

yields 

1
GI = Fy,cδy,c−d, (17) 

2ω 

1
GII = Fx,cδx,c−d, (18) 

2ω 
where δy,c−d and δx,c−d are the relative opening 

and sliding displacement jumps between points c 

and d, respectively. The components of the strain 

energy release rate for a crack can be obtained 

from Eqs. 17 and 18 using the VCCT. How this is 

done, is demonstrated in Sect. 5.1.1 (infinite plate) 

and Sect. 5.2.1 (4-point bending). 

However, the procedures of isotropic fracture 

are not directly applicable to analyze bimaterial 

interfacial cracks. GI and GII depend on the crack 

extension size, do not converge as ω approaches 

infinitesimal value, and do not relate to mode I 

and II mode contributions (Sun and Jih 1987; Raju 

et al. 1988; Dattaguru et al. 1994). Thus, GI and GII 

have unclear physical meaning and mode decom

position in terms of GI and GII can only be defined 

for a chosen finite crack extension ω. 

The total strain energy release rate of an inter

face crack is well defined for an infinitesimal crack 

extension and agrees with Eq. 12 (Sun and Jih 1987; 

Raju et al. 1988; Dattaguru et al. 1994). The total 

strain energy release rate is obtained as follows: 

 

1
G = GI + GII = Lim σyy(ω − r)δy (r) 

ω≡0 2ω 
0 

+σxy (ω − r) δx (r) dr. (19) 

The dependence of the SERR’s components on 

the crack extension size was first presented in ex

plicit mathematical form by Sun and Jih (1987) 

and Raju et al. (1988). The SERRs for an inter

face crack oscillate with ω due to the oscillatory 

nature of stress and displacement fields. The oscil

latory character of SERRs is similar to that of Eq. 

3, with the wavelength depending on the bimaterial 

parameter χ. 

3.2 Analytical expressions for SERRs in terms of 

KI and KII 

The explicit mathematical form of SERR depen

dence on ω has been analyzed, resulting in var

ious suggested procedures to extract meaningful 

ω-independent parameters (Toya 1992; Chow and 

Atluri 1995; Beuth 1996; Sun and Qian 1997). In 

what follows, we will derive the analytical expres

sions of GI and GII in terms of the complex stress 

intensity factors KI and KII and will show that 

seemingly different representations of SERRs are 

indeed the same. 

The definition of SERRs in Eqs. 15 and 16 in

volves the product of stresses ahead of the crack 

tip and the displacement jumps between the crack 

faces behind the crack tip. From Eq. 7, the asymp

totic stress field is given by 

σyy = 
1 

� 
2πr 

[

KI cos 
{

χ ln 
( r 

l

)} 

−KII sin 
{

χ ln 
( r 

l

)}]

, (20a) 

σxy = 
1 

� 
2πr 

[

KII cos 
{

χ ln 
( r 

l

)} 

+KI sin 
{

χ ln 
( r 

l

)}]

. (20b) 

The expression for asymptotic displacements be

hind the crack tip in Eq. 10 can be reexpressed as: 
� 

δy + iδx = m r [(KI + 2χKII) 
( )iχr 

+ i (KII − 2χKI)] , (21a) 
l

8 
m = � (21b)

2πE∗ 
(

1 + 4χ2
)

cos (πχ) 
From Eq. 21 the displacement field is: 

[ { ( )}� r 
δy = m r (KI + 2χKII) cos χ ln 

l
{ ( )}]r 

− (KII − 2χKI) sin χ ln , (22a) 
l

[ { ( )}� r 
δx = m r (KI + 2χKII) sin χ ln 

l
{ ( )}]r 

+ (KII − 2χKI) cos χ ln . (22b) 
l

Introducing Eqs. 20 and 22 into Eqs. 15 and 16, we 

obtain the expression for GI and GII used by Toya 

(1992) 
{ ( ) }m

GI = � fcIc − fsIs + KI 
2 + K2 Io , (23) II

4 2π 
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ω 
{ ( ) 

ω  

ω 

{ ( ) }m
GII = � −fcIc + fsIs + KI

2 + K2 Io , (24) II
4 2π 

where 

ω 
( ) J

1 r (ω − r) r
Ic = cos χ ln dr, (25a) 

ω l2 ω − r 
0 

ω 
( ) J

1 r (ω − r) r
Is = sin χ ln dr, (25b) 

ω l2 ω − r 
0 

1 ω − r
I0 = cos χ ln 

ω r 
0 

( ) } J 
ω − r r 

−2χ sin χ ln dr (25c) 
r ω − r 

fc = KI
2 − KII

2 + 4χKIKII, 
[ ( )]

fs = 2 KIKII + χ KII
2 − KI

2 . (26a, b) 

In addition to Eqs. 23 and 24 obtained by Toya 

(1992), other representations of GI and GII are 

available (Chow and Atluri 1995; Beuth 1996; Sun 

and Qian 1997). The representations involve com

plex quantities written in different forms; thus, it is 

not obvious that the expressions are related. How

ever, here we will show that these representations 

can be derived from the expressions of Eqs. 23 and 

24 and that they indeed are identical. We introduce 

two complex integrals, A1 and A2, to establish a  

connection between the various representations of 

GI and GII. Let  

ω 
( )iχ J 

1 r (ω − r) r 
A1 = dr, (27a) 

ω l2 ω − r 
0 

which can be rewritten as 

( )2iχ ≈ 
( )2(1+iχ) 

ω t
A1 = 2 dt

l t2 + 1  
0  

( )2iχ π/2  

= 2 sin2 θ (sin θ cos θ)2iχ dθ , (27b) 
l 

0 

where t and θ are dummy variables. A1 can be eval

uated numerically (see Sects. 5.1.1 and 5.2.1) and 

be expressed as 
( )2iχ 

iζA1 = 2 |�| e , (27c) 
l 

where |�| and ζ depend only on the bimaterial 

parameter χ, and are obtained from the numerical 

integration. Also, let 
( )iχ J1 ω ω − r r

A2 = dr, (28a) 
ω r ω − r0 

which can be expressed as 
( )2iχ ( )2≈ 1 t

A2 = 2 dt 
0 t t2 + 1  

π/2 ( )2iχ cos θ 
= 2 sin2 θ dθ . (28b) 

0 sin θ 
We can relate the integrals A1 and A2 defined 

in Eqs. 27a and 28a, respectively, to the quantities 

used by Toya (1992) in Eq. 25 as: 

Ic = Re {A1} , (29a) 

Is = Im {A1} , (29b) 

I0 = Re {A2} − 2χIm {A2} . (29c) 

Furthermore, Eq. 26 can be re-expressed as 

fc + ifs = (1 − 2iχ) (KI + iKII)
2 . (30) 

Substituting Eqs. 29 and 30 into Eqs. 23 and 24 

obtained by Toya (1992), we re-express GI and GII 

as: 
{[ ]

2GI = � 
m 

Re (1 − 2iχ) (KI + iKII) A1
4 2π 

[ ] }

+ KI
2 + KII

2 (1 + 2iχ)A2 , (31) 

{ [ ]

2GII = � 
m 

Re − (1 − 2iχ) (KI + iKII) A1
4 2π 

[ ] }

+ KI
2 + K2 (1 + 2iχ)A2 . (32) II

Equations 31 and 32 have been used by 

Chow and Atluri (1995) with the complex integral 

A1 represented in explicit ω-dependent form given 

by Eq. 27b. Thus, we have shown that the expres

sion used by Toya (1992) and Chow and Atluri 

(1995) are indeed the same equations. In addition, 

integral A1 can be expressed in terms of a Gamma 

function or a Beta function (Magnus et al. 1966) 
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and can be evaluated using standard mathematical 

tables. Sun and Jih (1987) and Sun and Qian (1997) 

have used integral A1 expressed as a Gamma func

tion and have obtained expressions for GI and GII 

similar to Eqs. 31 and 32. 

Lastly, let us introduce the two real quantities 

�1 and �2 used by Beuth (1996): 

1 (

�1 = Re σyy (ω − r)
4ω 

0 
}

) ( )

+iσxy (ω − r) δy (r) + iδx (r) dr , (33) 

1 (

�2 = Re σyy (ω − r)
4ω 

0 
}

) ( )

+iσxy (ω − r) δy(r) + iδx(r) dr , (34) 

where z̄ denotes the complex conjugate of a com

plex number z. Substituting Eqs. 7, 10, and 27a into 

Eq. 33, and Eqs. 7, 10, and 28a into Eq. 34, we get 
{ }m 

�1 = � Re (1 − 2iχ) (KI + iKII)
2 A1 ; (35) 

4 2π 

[ ] { }m 
�2 = � KI

2 + K2 Re (1 + 2iχ) A2 . (36) II
4 2π 

Substituting Eqs. 35 and 36 into Eqs. 31 and 32, 

we obtain the expression used by Beuth (1996) 

as: 

GI = �1 + �2, (37a) 

GII = −�1 + �2. (37b) 

Thus, the expressions for GI and GII used in 

different approaches (Toya 1992; Chow and Atluri 

1995; Beuth 1996; Sun and Qian 1997) are iden

tical and can be derived from one another. All 

the available approaches can be used to charac

terize the interface crack by extracting meaningful 

ω-independent parameters. These ω-independent 

crack characterizing parameters are the ω-inde

pendent SERR-based mode mixity (Beuth 1996), 

or the SIF-based mode mixity (Toya 1992; Chow 

and Atluri 1995; Sun and Qian 1997), and shall be 

discussed in Chapter 4. 

3.3 Implications of �1 and �2 with regard to 

ω-Dependence of GI and GII 

From Eq. 32 we have 

G = GI + GII = 2�2. (38) 

Thus, �2 is half of the total strain energy release 

rate and is well defined. Hence, from Eq. 36, the 

complex integral A2 is well defined. (It is also evi

dent from Eq. 28b that A2 shows no dependence on 

crack extension size ω). Furthermore, using Eqs. 

12, 29c, 36, and 38, the complex integral I0 can be 

expressed as 
(

1 + 4χ2
)

I0 = . (39) 
π 
2 cosh (πχ) 

The quantity �1 can be related to A1 from Eq. 35 

and expanded using Eq. 27b, which shows clear 

dependence on the crack extension size ω. Hence, it 

is evident that the quantity �1 is responsible for the 

non-convergence of the components of the SERR. 

Individual SERRs in Eq. 37 can be re-expressed in 

the form used by Sun and Jih (1987) as: 

G G
GI = + �1, GII = − �1. (40a, b) 

2 2 

Caution must be exercised when interpreting 

Eq. 40. Contrary to what has been indicated by Sun 

and Jih (1987), the result does not imply equal par

tition of the total strain energy release rate close 

to the crack tip as ω ≡ 0: The quantity �1 is 

non-trivial and cannot be neglected (Itou 1986). 

The mode mixity very close to the crack tip can 

be examined from the contact model (Comninou 

1977) which is more realistic: for contact of crack 

faces, δy vanishes, implying that mode I contribu

tion must vanish (Toya et al. 1997). Thus, in the 

contact region and its vicinity (when ω ≡ 0) pure 

mode II dominance is expected. This agrees with 

the finite element results of Dattaguru et al. (1994) 

and Hemanth et al. (2005). 

3.4 Coupled strain energy release rate 

For a crack in a bimaterial interface, there is cou

pling between σyy(ω − r) and δx(r), and between 

σxy(ω − r) and δy(r). As a result, a coupled strain 

energy release rate can be introduced as suggested 



 ω 

ω 

by Chow and Atluri (1995) 

1 [

GI−II = σyy(ω − r)δx (r)
2ω 0 

]

+σxy (ω − r) δy (r) dr = 2�3, (41) 

where after substituting Eqs. 7, 10 and 27a, �3 can 

be expressed as 
{ }m 

�3 = � Im (1 − 2iχ) (KI + iKII)
2 A1 . (42) 

4 2π 
The expressions for �3 will be useful when rewrit

ing the expressions for ω-independent parameters 

discussed in Chapter 4. 

3.5 Evaluation of �1, �2, �3 

The quantities �1, �2 and �3 can be computed 

from finite element calculations. Let F = Fy,c+iFx,c 

be the nodal force vector for node c (i.e., the force 

required to hold node c and d together), and ε = 
δy,c−d+iδx,c−d be the nodal displacement jump vec

tor. Thus, we have from Eqs. 33 and 34 

1 
�1 = Re {FΛ} , (43) 

4ω 

1 { }

�2 = Re FΛ . (44) 
4ω 

Also from Eq. 41, we have 

1 
�3 = Im {FΛ} . (45) 

4ω 

4 Obtaining mode mixities for interface crack 

using VCCT 

We will now review and extend the techniques that 

are available to extract mode mixities for interfa

cial cracks based on the VCCT. Expressions for 

various mode mixity definitions will be introduced 

for: (i) SERR-based mode mixity, (ii) ω-indepen

dent SERR-based mode mixity, (iii) SIF-based 

mode mixity obtained from oscillating SERRs, and 

(iv) SIF-based mode mixity obtained from com

plex strain energy release rate. 

4.1 SERR-based mode mixity 

Mode decomposition of the total strain energy re

lease rate has successfully been implemented for 

cracks in homogeneous isotropic materials 

(Rybicki and Kanninen 1977), where the mode 

mixity based on SERRs, σG, can be expressed as: 

GIItan2 σG = . (46) 
GI 

For homogeneous, isotropic, linear-elastic materi

als, the results of mode mixity based on SERR, Eq. 

46, and those based on SIFs, Eq. 8, are identical. 

However, for an interface crack, the decomposed 

components of the strain energy release rate, hence 

the mode mixity, σG, depend on the crack exten

sion size, ω. Thus, σG is referred to as ω-depen

dent mode mixity. This is illustrated for the two 

benchmarked problem considered in Sects. 5.1.1 

and 5.2.1. However, when χ is small, the oscillatory 

character can be ignored (Xie et al. 2004, 2005, 

2006). 

4.2 ω-independent SERR-based mode mixity 

A method to obtain ω-independent SERR-based 

mode mixity was introduced by Beuth (1996). In 

this case, Eq. 40 can be modified to obtain ω

independent values of SERRs by eliminating the 

ω-dependence of �1. Thus, Eq. 35 is modified as 

(Beuth 1996) 
  

( )2iχm lG
�≤ = � Re (1−2iχ)(KI+iKII)

2A11 
4 2π ω 

(47) 

where �≤
1 is a ω-independent quantity and lG is 

an arbitrary parameter used to normalize ω. Since 

lG is of the dimension “length,” we will refer to 

it as the “normalizing length.” We note that even 

though the modification of Eq. 47 has no real phys

ical justification, this “mathematical trick” will be 

shown to be quite useful when using VCCT, as dis

cussed in Sect. 4.5.3 below and illustrated in Sect. 

5. Utilizing the expression for �1 in Eq. 35, �3 

in Eq. 42, and noting that ω-dependence in these 

equations is due to ω-dependence of A1 shown in 

Eq. 27b, we can rewrite the Eq. 47 as 
  

( )2iχlG
�≤ = Re (�1 + i�3) (48)1 

In finite element calculation, it is convenient to 

use Eq. 48 for obtaining �≤ , where �1 and �3 are1
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obtained numerically using Eqs. 43 and 45. Mod

ifying Eq. 40, the ω-independent SERRs can be 

obtained as 

≤ ≤ G ≤ = 
G 

+ �1, and G ≤ 
G 

− �1. (49a, b) II = 
2 2 

We can now introduce the following definition 

G ≤ ≤ IItan2 σ = , (50) G G ≤ I 

where σG
≤ is the ω-independent SERR-based mode 

mixity. The reference length l associated with the 

complex K representation employed for express

ing GI and GII in Eqs. 31 and 32, or Eq. 40 [which 

is analogous to Eq. 49], is the same as for complex 

K in Eq. 8. However, it is obvious that ω-indepen

dent SERR-based mode mixity σG 
≤ in Eq. 50 is not 

the same as SIF-based mode mixity σ in Eq. 8. It 

may be emphasized that the parameter lG is arbi

trarily used to normalize ω, and has no physical 

significance, as opposed to the reference length l, 

which has clear physical meaning. The use of σG 
≤ is 

illustrated for the two benchmarked problem con

sidered in Sects. 5.1.1 and 5.2.1. In Sect. 4.5 we will 

derive a relationship between σG 
≤ and σ . 

4.3 SIF-based mode mixity from oscillating 

SERRs 

The SIF-based mode mixity, Eq. 8, can be obtained 

using the expressions of (oscillating) the compo

nents of the SERR. Dividing Eq. 23 with Eq. 24 

for any chosen crack increment ω, the following 

simple expression—from which KI and KII can be 

extracted—is obtained: 

( )

Ic(κ
2 − 1 + 4χκ) − 2Is(κ + χ − χκ2) + I0 κ2 + 1 GI 

( ) ( ( ) = 
−Ic κ2 − 1 + 4χκ + 2Is κ + χ − χκ2

)

+ I0 κ2 + 1 GII 

(51) 

where κ = KI/KII and the right hand side is ob
/

tained using the VCCT. Using g = GII GI, and 

rearranging Eq. 51, we obtain a quadratic algebraic 

equation in κ 
2
[ ]

κ (Ic + 2χIs) (1 + g) + I0 (g − 1)
[ ]

+κ (4χIc − 2Is) (1 + g)
[ ]

− (Ic + 2χIs) (1 + g) − I0 (g − 1) = 0. (52) 

Mode mixity is obtained by rewriting Eq. 8a as 

tan−1
(

1
/

κ
)

. Out of the two values obtained σ = 

when solving the quadratic Eq. 52, the correct κ 
can be ascertained from inspection by discarding 

the one which gives an incompatible σ . The crack 

face displacements data from finite elements anal

ysis and Eqs. 10 and 11 provides an approximate 

value of σ (Smelser 1979). 

Several authors (Toya 1992; Chow and Atluri 

1995; Sun and Qian 1997) have successfully ob

tained KI and KII from the SERR’s components 

using the VCCT. The representations of their equa

tions for GI and GII to extract KI and KII are differ

ent from Eq. 51, and are also different from one 

another. However, as examined in Sect. 3.2, all of 

the above approaches are identical and can be de

rived from one another. Thus, κ obtained by any of 

the past approaches in literature (Toya 1992; Chow 

and Atluri 1995; Sun and Qian 1997) or Eq. 51 are 

the same. We are note that Eq. 51 (which further 

reduces to Eq. 52) is much simpler to use. The 

results from Eq. 51 and the previously derived 

methods discussed in the above paragraph are 

numerically investigated in Sects. 5.1.6 and 5.2.6. 

4.4 SIF-based mode mixity using complex strain 

energy release rate 

We will now consider an approach for obtaining 

SIF-based mode mixity (as defined by Eq. 8) using 

the complex strain energy release rate. Bjerken 

and Persson (2001) have cleverly introduced the 

complex strain energy release rate as 

1 [

ϑ = Lim σyy(ω − r) 
ω≡0 2ω  

0  
] [ ]

+iσxy (ω − r) δy (r) + iδx (r) dr (53) 

Substituting Eqs. 7, 10 and 27a into Eq. 53, we get 
{ }m 

ϑ = � (1 − 2iχ) (KI + iKII)
2 A1 , (54) 

2 2π 
Further using Eqs. 35 and 42 into Eq. 54, and then 

utilizing Eqs. 43 and 45, we get 

ϑ 1 
= [�1 + i�3] , [�1 + i�3] = Fε,

2 4ω  
1 

and ϑ = [Fε] (55a, b, c) 
2ω 

Based on finite element simulations, ϑ can be ob

tained from Eq. 55c, where F and Λ are the nodal 

http:thesame.We
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force and displacement jump vectors introduced in 

Sect. 3.5. Further, F and Λ can be re-expressed as: 

iρc iπF = |F| e , and Λ = |Λ| e c−d , (56a, b) 

where ρc and πc−d are the arguments of complex 

nodal force and displacement jump, respectively. 

We substitute Eq. 56 into Eq. 55c to re-express the 

complex strain energy release rate. In addition, we 

substitute the expression for A1 from Eq. 27c and 

expand Eq. 54. Equating the arguments of complex 

quantities in Eqs. 54 and 55c, we obtain the expres

sion for obtaining mode mixity used by Bjerken 

and Persson (2001): 
( )

ρc + πc−d = 2σ − tan−1(2χ) + 2χ ln + ζ .(57) 
l 

We recall that ζ is obtained from FE-simulations 

according to Eq. 27. Equation 57 utilizes only the 

complex integral A1 and gives a simple expression 

for SIF-based mode mixity without a need for the 

relatively lengthy calculation involved in Eq. 51. 

Eqs. 55 – 57 are utilized in the numerical examples 

in Sects. 5.1.1 and 5.2.1. 

≤ 4.5 Relationships between σ , σG and σG 

In this section, we will establish relationships be

tween the three mode mixity angles defined above: 

(i)  the SIF-based mode mixity, σ [defined by 

Eq. 8], for a given reference length l; 

(ii)  the ω-dependent SERR-based mode mix

ity, σG [defined by Eq. 46], for a given crack 

extension size, ω; 

(iii)  the ω-independent SERR-based mode mix
≤ ity, σG [defined by Eq. 50], for a given crack 

extension size, ω, and a given normalizing 

length, lG. 

In particular, we will develop a new relationship 
≤ between σG and σ for a special choice of the nor

malizing length, lG. 

4.5.1 Relationship between σ , and σG 

First, let us consider the SERR-based, ω-depen

dent, mode mixity σG. Using Eq. 46, and substitut

ing Eq. 56 into the VCCT result of Eqs. 17 and 18, 

we have 
( )

tan2 (σG) = tan (ρc) tan πc−d , (58) 

where ρc and πc−d are defined with Eq. 56. Both 

ρc and πc−d are readily available from the finite 

element simulations and are generally of the same 

magnitude (as shown in the numerical examples in 

Sects. 5.1.1 and 5.2.1), leading to the opportunity 

to derive some useful (but approximate) relation

ships. Thus, by developing an approximation for 

the right hand side of Eq. 58, we can determine 

an approximation of σG. To this end, rewrite the 

arguments in Eq. 58 as 

ρc + πc−d ρc − πc−d
ρc = + and

2 2 
ρc + πc−d ρc − πc−d

πc−d = − . (59a, b) 
2 2 

The right hand side of Eq. 58 can now be expressed 

as 
( )

tan (ρc) tan πc−d
[ ] [ ]

( ) ( )

tan2 1
2 ρc + πc−d −tan2 1

2 ρc − πc−d
= [

( )

] [

( )

]

1−tan2 1 ρc + πc−d tan2 1 ρc − πc−d2 2 
[ ]

( )

1◦ tan2 ρc + πc−d .  (60) 2 

Substituting the approximation defined by Eq. 60 

into Eq. 58 results in 
( )

σG ◦ 1 πc−d + ρc .  (61) 2 
( )

Equation 60 holds if ρc − πc−d is “small,” and 

angles ρc and πc−d are not “close” to either 0� or 
)

90�, which together implies that tan2
(

ρc − πc−d

can be neglected. For example, if ρc and πc−d differ 

by 4� (which is the maximum value expected for 

most cases), the error in Eq. 61 is less than 0.2� 

for 10� < σG < 80�. Moreover, the error is less 

than 1� for 3� < σG < 87�. For cases when σG is 

outside the desired range, a different crack exten

sion size can be selected. Thus, for most problems, 

Eq. 58 decomposes into the useful approximation 

expressed by Eq. 61. 

It follows that, by substituting Eq. 61 into Eq. 

57, the relationship between SERR-based and SIF

based mode mixity ( σ and σG, respectively) for 

most applications is given by 
( 

ω
) 

1 ( )

σG ◦ σ + χ ln + ζ − tan−1 (2χ) (62)
l  2 

where we recall that that ζ is a numerically ob

tained parameter from Eq. 27 that depends on the 

bimaterial constant χ. As may be expected, this 
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relationship is dependent on the crack extension 

size, ω. 

Mantic and Paris (2004) have examined the rela

tionship between SERR-based and SIF-based 

mode mixity following the work of Toya (1992). 

Furthermore, possible usefulness of σG in charac

terizing interfacial fracture toughness for physical 

specimens has been explored (Mantic and Paris, 

2004, Zhao 2005). However, for interfacial cracks 

SERR-based mode mixity is non-unique and de

pend on the crack extension size, ω. Thus, any 

physical interpretation of GI, GII and σG has to 

be explained in terms of finite crack extension size 

ω as suggested by Toya (1992). 

4.5.2 Relationship between σG and σ ≤ G 

The ω-independent mode mixity, σG
≤ , can serve 

as a useful crack characterizing parameter (Beuth 

1996; Sun and Qian 1997; Mantic and Paris 2004). 

Thus, obtaining an expression that relates the ω

independent mode mixity, σG
≤ , to the SIF-based 

mode mixity, σ , is valuable. This will be achieved 

by first relating the two SERR-based mode-mixites 

( σG and σG
≤ ) and then utilizing Eq. 62. 

Using Eqs. 38 and 49, we rewrite Eq. 50 as: 

≤ 
≤ 1 − �1 �2 tan2 σG = 

/

/ . (63) ≤ 1 + � �21

Rewriting Eq. 44 by introducing �4, we have 

1 
FΛ = �2 + i�4, (64a) 

4ω 
where 

1 { }

�4 = Im FΛ̄ . (64b) 
4ω 

Now, from Eqs. 64a and 55b, we have 

|�1 + i�3| = |�2 + i�4| . (65) 

Based on results from the finite element calcula

tion, �4 is obtained from Eq. 64b. In Eq. 56, we 

note that when ρc is “close” to πc−d, it follows that 

�4 is negligibly small compared to �2, and we have 

|�2 + i�4| ◦ �2. (66) 

The approximation in Eq. 66 is more restrictive on 

the values of ρc and πc−d than in Eq. 61. For exam

ple, if ρc and πc−d differ by 2�, the error incurred 

in Eq. 66 is about 3.5%. 

≤ Next, we introduce �3 to rewrite Eq. 48 as 

( )2iχlG≤ ≤ � = (�1 + i�3)1 + i�3 

  ≤ ≤ 
 and  �1 + i� = |�1 + i�3| . (67a, b) 3

Therefore, using the approximation in Eq. 66, it 

follows from Eq. 67b that
  

 � ≤ ≤ 
 

1 + i� ◦ �2. (67c) 3
/≤ ≤ Further, we introduce tan (p) = �3
/

�1, which 
≤ from Eq. 67a,b,c leads to cos (p) ◦ �1 �2. Thus, 

Eq. 63 can be rewritten as 

( )1 − cos (p) p≤ tan2 σG ◦ = tan2 , (68a) 
1 + cos (p) 2

leading to 

p≤ σG ◦ . (68b) 
2

Similarly, we rewrite Eq. 46 using Eq. 37, and intro
/

duce tan (q) = �3 �1 to obtain σG ◦ (q/2). There

fore, using the values of quantities p and q obtained 

above, from the arguments of complex quantities 

in Eq. 67a, we finally get a relationship between 

σG 
≤ and σG 

( )

lG≤ σG ◦ σG + χ ln . (69a) 

≤ When lG = ω it follows that σG (lG = ω) = σG, 

i.e., when the normalizing length is selected as 

the crack extension length, the ω-dependent mode 

mixity equals that of the ω-independent mode mix

ity.1 Even though introduction of the normalizing 

length is a useful strategy, this observation serves 

to highlight the non-physical nature of lG. Never

theless, from Eq. 69a, we can relate σG 
≤ from one 

normalizing length to another as 
( )

≤ ≤ lG,2
σ , (69b) G,2 = σG,1 + χ ln 

lG,1 

where lG,1 and lG,2 are two normalizing lengths 
≤ used to define the mode mixities, σ G(lG,1)G,1 � σ ≤ 

and σG
≤ 

,2 � σG
≤ (lG,2). We note that Eq. 69b, ob

tained for ω-independent SERR-based mode mix-

ity, has a similar form to Eq. 9b used for SIF-based 

mode mixity. 

1 This also follows from Eq. 48 and comparing Eq. 49 to 40. 



→

  

4.5.3 Relationship between σ and σ ≤ G 

More insight into various expressions for mode 

mixities is obtained by selecting the normalizing 

length to equal the reference length. When lG = l, 

Eqs. 69a and 62 yields: 
( )

≤ 1σG (lG = l) ◦ σ (l) + 
1 

ζ − tan− (2χ) . (70) 
2

Thus, when the normalizing length, lG, equals the 

reference length, l, the  ω-independent SERR-

based mode mixity, σG
≤ , and the SIF-based mode 

mixity, σ , are merely shifted by a phase angle 
[ ]

1 ζ − tan−1 (2χ) , which only depends on the bi2 
material constant χ. 

Hence, we have shown that ω-independent 

SERR-based mode mixity can be related to the 

SIF-based mode mixity by setting the normalizing 

length equal to the reference length. Even though 

σG 
≤ appears to be a mathematical quantity with no 

physical meaning (unlike σ), we believe σG 
≤ can 

be a useful parameter if care is taken in its inter

pretation. The relationship defined in Eq. 70 may 

be useful when interpreting results using VCCT, 

since the phase shift only depends on the bi-mate

rial constant χ. The numerical results illustrating 

this are presented in Sects. 5.1.4 and 5.2.4. 

5 Numerical examples 

Two examples of interface cracks between dissimi

lar isotropic elastic layers are considered for deter

mining and comparing the mode mixity values from 

the expressions obtained in Sect. 4. The two bench

mark problems considered are: (i) an interface 

crack in an infinite bimaterial plate subjected to 

a uniform normal stress (Fig. 3A); and (ii) a bi

layer four-point flexure specimen with an inter

face crack (Fig. 4A). Finite element models are 

constructed using the commercially available pro

gram ABAQUS (2003). For each case, symmetry 

condition about the y-axis at the mid-section of 

the specimen is imposed to reduce the model size. 

Four-node constant strain quadrilateral elements 

(CPE4R) are used. The finite element models of 

the two specimens are shown in Figs. 3B and 4B, 

respectively. The mesh around the crack tip for 

the flexure specimen is also shown in Fig. 4B. This 

mesh is similar for the bimaterial plate but omitted 

for brevity. The near tip mesh is symmetric about 

the crack tip with respect to both x and y axes, 

Fig. 2. Various crack extension sizes, ω, are consid

ered by changing the near tip mesh. For the finest 

mesh, the bimaterial plate model has 16,114 ele

ments and the four point flexure specimen model 

has 21,771 elements. The SIF-based mode mixity 

values computed using the VCCT from Eqs. 51 

and 57, are compared with analytical solutions and 

results from the crack face displacement method 

(Matos et al. 1989). 

5.1 Interface crack in infinite plate subject to 

uniform tension 

The infinite bimaterial plate with a small, isolated 

crack at the interface subjected to a uniform ten

sile stress normal to the crack (Fig. 3) has been 

studied extensively (e.g. Rice and Sih 1965; Sun 

and Jih 1987; Toya 1992; Chow and Atluri 1995; 

Sun and Qian 1997; Bjerken and Persson 2001) and 

is thus a suitable benchmark problem. Plane strain 

condition is assumed. In our model, the material 

properties are: E1 = 200 GPa, E2 = 5 GPa, and 

ν1 = ν2 = 0.25. Thus, α = 0.9512, β = 0.3171, and 

χ = −0.10453. The plate size is 400 mm×400 mm 

and the crack length is 2a = 10 mm. The analyti

cal solution (Rice and Sih 1965) requires the uni

form remote stresses along the x-direction to be 

unequal, σ≈ = σ≈ , in order to maintain the 
xx(1) xx(2)

continuity of longitudinal normal strain, χxx, across 

the interface. Thus, the longitudinal normal stress 

is discontinuous across the interface and we have 

(Rice and Sih 1965) 

σ≈ = 
E2 

σ≈ 
xx(2) xx(1)

E1 

σ≈ 
yy E2+ ν2 (1 + ν2) − ν1 (1 + ν1) (71)

1 − ν2 
2 

E1 

The remote loading is σ≈ = 100 MPa; yy 

σ≈ = 0, and σ≈ = 32.5 MPa. 
xx(1) xx(2) 

5.1.1 Mode mixities obtained from the VCCT 

First, we compute the ω-dependent SERR-based 

mode mixity discussed in Sect. 4.1. Using the VCCT, 

the components of the SERR, GI and GII, are  
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(a) (b) 

Fig. 3 (a) An interface crack in an infinite bimaterial plate, (b) the finite element mesh used for the simulations 

computed numerically from Eqs. 17 and 18, and the 

SERR-based mode mixity, σG, is obtained form 

Eq. 46. The total strain energy release rate, G, 

is independent of the crack extension size, but 

GI and GII, thus σG, depend on the crack exten

sion size (Table 1, Fig. 5a). The average G = 
14.1547 Nmm−1. 

Secondly, we compute the ω-independent 

SERR-based mode mixity introduced in Sect. 4.2. 

Equation 48 is used to determine the ω-indepen
≤ dent quantity �1, and normalizing length lG is arbi

trarily selected as lG = 0.1 mm. (The normaliz

ing length is selected arbitrarily to provide posi

tive values of G ≤ I and G ≤ II) The G value is taken 

as the average G in Table 1. The ω-independent 

SERRs are obtained using Eq. 49. From Eq. 50, we 

obtain consistent values of ω-independent SERR
≤ based mode mixity, σG. Similar results are 

obtained for all crack extension sizes as tabulated 

in Table 2 and shown in Fig. 5a. The average value 

is σG
≤ (lG = 0.1) = 31.46� . 

Next, we obtain the SIF-based mode mixity from 

the components of the SERR discussed in Sect. 4.3. 

The complex quantity A1 is obtained using numer
ical integration of Eq. 27b: 

( )2iχl
A1 ◦ 1.48033 + i0.43716 = 1.54353(arg 16.45�) 

0.2871i= 1.54353e , 

where l = 2a = 10 mm is the reference length. 

Equations 29a and 29b are used to obtain the quan

tities Ic and Is. Equation 39 yields I0 = 1.55486. The 

mode mixity is obtained from Eq. 52 and results 

are tabulated in Table 3. The results show some 

sensitivity with the crack extension size ω. For the  

finest near-tip mesh we have σ (l = 10) = −10.30� 

as shown in Fig. 5a. 

Lastly, SIF-based mode mixity is alternatively 

obtained from the complex strain energy release 

rate as discussed in Sect. 4.4. We use the Eqs. 55 and 

56 to obtain the complex strain energy release rate 

numerically, and the argument of complex quantity 

A1 is available from numerical integration of Eq. 

27b. The reference length, l, selected is the crack 

length (10 mm). The SIF-based mode mixity σ is 
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Fig. 4 (a) A four-point bend specimen with interfacial cracks, (b) the finite element mesh used for the simulations, including 
the near crack field 



Table 1 VCCT Results for SERRs for bimaterial plate 

ω 
(mm) 

Fy,c 

(Nmm−1) 
Fx,c 

(Nmm−1) 
δy,c−d 10−2 

(mm) 

δx,c−d 10−2 

(mm) 

GI 

(Nmm−1) 
GII 

(Nmm−1) 
G total 

(Nmm−1) 
σG 

(deg) 

0.1 
0.05 
0.02 
0.005 

54.3577 
36.6293 
21.4862 
9.2793 

33.6988 
26.5310 
18.9194 
10.9134 

3.7890 
2.5520 
1.4970 
0.6460 

2.2877 
1.8089 
1.2933 
0.7483 

10.2981 
9.3478 
8.0412 
5.9944 

3.8546 
4.7992 
6.1171 
8.1665 
Average 

14.1527 
14.1470 
14.1583 
14.1609 
14.1547 

31.45 
35.62 
41.09 
49.41 

Fig. 5 Various definitions 
of mode mixities as a 
function of crack tip 
element size, ω: (A) 
Bimaterial plate and (B) 
Four-point bend 
specimen. σG is the 
ω-dependent strain 
energy release rate based 

≤ mode mixity; σG is the 
ω-independent strain 
energy release rate based 
mode mixity with 
normalizing length lG; 
and σ is based on stress 
intensity factures with 
reference length l 
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Table 2 ω-independent SERR-based mode mixity σ ≤ G for bimaterial plate 

ω 
(mm) 

2χ ln 
( 

lG 
ω 

) 

(deg) 

�1 

(Nmm−1) 
�3 

(Nmm−1) 
� ≤ 1 

(Nmm−1) 
G ≤ I 

(Nmm−1) 
G ≤ II 

(Nmm−1) 
σ ≤ G (lG = 0.1) 
(deg) 

0.1 
0.05 
0.02 
0.005 

0.0 
−8.30 
−19.28 
−35.88 

3.2217 
2.2743 
0.9620 
−1.0860 

6.3010 
6.6983 
7.0138 
6.9969 

3.2217 
3.2174 
3.2239 
3.2209 

10.2991 
10.2948 
10.3012 
10.2982 

3.8556 
3.8600 
3.8534 
3.8564 
Average 

31.46 
31.48 
31.45 
31.46 
31.46 

Table 3 SIF-based mode mixity σ from the components of the SERR for bimaterial plate 

ω 
(mm) 

2χ ln 
( 

ω 
l 

) 

(deg) 
Ic Is κ  σ  (l=10) 

(deg) 

0.1 
0.05 
0.02 
0.005 

55.16 
63.46 
74.44 
91.04 

0.48689 
0.27035 
−0.02404 
−0.46396 

1.46472 
1.51967 
1.54334 
1.47215 

−5.6439, −0.2986 
−5.6128, −0.1473 
−5.5571, 0.0436 
−5.5021, 0.3443 

−10.04 
−10.10 
−10.20 
−10.30 

obtained using Eq. 57. The results are similar for 

all cases and tabulated in Table 4 with the average 

value σ (l = 10) = −10.25� . 

5.1.2 Mode mixity from the crack face 

displacement method 

For comparison, we will determine the mode 

mixity based on the near-tip displacement field 

available from Eq. 10a using the crack face dis

placement (CSD) method (Matos et al. 1989). This 

method extends the approach of Smelser (1979) to 

provide better accuracy of the mode mixity values. 

We square the modulus of complex terms on both 

sides of Eq. 10a and substitute Eq. 12 to obtain 

(Matos et al. 1989) 

δ2 + δ2 
y x G 

= 64 ( . (72) 
r 2π 1 + 4χ2

) 
E∗

In Eq. 72, G is obtained from Table 1. All other 

parameters in the right hand side are material prop

erties, thus are known. The left hand side is ob

tained from finite element results of crack face 

displacement jumps at various distances from the 

crack tip, r. Although the left hand side should 

match with the right hand side for any r in the k-

annulus region, numerical error exists in the left 

hand side (Matos et al. 1989). We get best fit of 

the left hand side and the right hand side at r = 
0.35 mm. (This value of r does not have any phys

ical meaning). Here, we have π = 20.53�, where 

π is defined by Eq. 11. Equating the arguments of 

Eq. 10a on both sides, we get 

( /)

rπ = σ + tan−1 (−2χ) + χ ln . (73) l

It follows that σ (l = 10) = −11.36�, which is close 

to the mode mixity obtained by the VCCT calcu

lations. 

Table 4 SIF-based mode mixity σ from complex energy ϑ for bimaterial plate 
( )

ω χ ln  ρc πc−d σ (l = 10)l
(mm) (deg) (deg)  (deg) (deg) 

0.1 27.58 31.80  31.12 −10.25 
0.05 31.73 35.92  35.33 −10.24 
0.02 37.22 41.36  40.82 −10.26 
0.005  45.52 49.63 49.20 −10.24 

Average −10.25 

http:definedbyEq.11


5.1.3 Mode mixity from an analytical solution 

An alternative comparison is obtained from the 

analytical solution. For an isolated interface crack 

(length = 2a) in infinite bimaterial plate subject to 

remotely uniform stress σ ≈ , the complex xy , σ ≈ 
yy 

stress intensity factor is given by (Rice and Sih 

1965; Rice 1988) 
( ) �≈ ≈ ≈KI + iKII = σ σ πa (1 + 2iχ) , (74) 12 + iσ22 

where the complex stress intensity factor is based 

on the reference length l = 2a. This gives σ (l = 10) 
= tan−1 (2χ) = −11.81�, again close to the values 

obtained by the VCCT. 

5.1.4 Phase shift between σ (l = 10) and 
≤ σG (lG = 10) 

Using the SIF-based mode mixity results obtained 

from the oscillating SERRs in Sect. 5.1.1, we have 

σ (l = 10) = −10.30�. Further, from the results 

for the ω-independent SERR-based mode mixity, 

and using Eq. 69b, we have σG
≤ (lG = 10) = 3.88� . 

{

Thus, the phase shift, computed as σG
≤ (lG = l) 

−σ (l)}, is 14.18�, compared to the approximate 

value of 14.13� from Eq. 70. The phase shift is illus

trated in Fig. 5a. 

5.1.5 Size of the contact zone 

Finally, we investigate the size of the contact zone. 

For the interface crack in an infinite bimaterial 

plate, the analytical solution of the complex stress 

intensity factor is available from Eq. 74. Thus, the 

contact zone size given in Eq. 14 simplifies to 
( )π 

ro = l exp . (75) 
2χ 

For reference length l = 2a = 10 mm, we find the 

contact zone size, ro = 2.98 nm. 

5.1.6 Synopsis of results for the infinite plate 

Similar values for the SIF-based mode mixity were 

obtained from Eq. 51 [using oscillating SERRs] 

and using Eq. 57 [based on complex strain energy 

release rate]. Moreover, the crack face displace

ment method and the analytical solution both give 

similar values of the mode mixity (Table 5). 

Figure 5A illustrates various mode mixities 

introduced in Sect. 4. Whereas σG depends on 

ω, the modified SERR-based mode mixity σG 
≤ ap

pears independent of ω. Letting the normalizing 

length equal the reference length, we have σ ≤ G 

(lG = 10) = 3.88�. The SIF-based mode mixity is 

obtained form the Eq. 51, σ (l = 10) = −10.30� . 
≤ The phase shift (14.18�) between σG and σ when 

lG � l is indicated in the Fig. 5A. 

5.2 Interface crack in four-point flexure specimen 

Next, consider a slender, bilayer four-point flexure 

specimen with an interface crack (Fig. 4). This spec

imen was designed by Charalambides et al. (1989) 

to measure interfacial fracture toughness of bilayer 

materials and has been studied extensively (e.g., 

Charalambides et al. 1989; Matos 1989; Hutchinson 

and Suo 1992; Suo and Hutchinson 1990). Analyti

cal solutions for this specimen are available in form 

of total strain energy release rate and SIF-based 

mode mixity. Plane strain condition is assumed. The 

material properties selected for this benchmark 

problem are: E1 = 200 GPa, E2 = 20 GPa, and 

ν1 = ν2 = 0.33. Thus, α = 0.8182, β = 0.2076, and 

χ = −0.067055. The thickness of the upper layer is 

h1 = 2 mm, and h2 = 5 mm for the bottom layer. 

The total length of the specimen is 100 mm. The 

crack length is 9 mm on each side of the symme

try line. The distance between the inner supports is 

74 mm, and the outer loading points are separated 

by 90 mm with force P = 20 N/mm. Thus, a constant 

moment of 160 Nmm/mm is acting in the region be

tween the inner supports (Fig. 4). Similar to Sect. 

5.1, various mode mixities defined in Chapter 4 will 

be obtained for this benchmark problem. 

5.2.1 Mode mixities obtained from the VCCT 

First, we compute the ω-dependent SERR-based 

mode mixity defined in Sect. 4.1. Using the VCCT, 

the components of the SERR, GI and GII, are com

puted numerically from Eqs. 17 and 18, and the 

SERR-based mode mixity σG is obtained form Eq. 

46. As for the infinite plate studied above and as 

expected, the total strain energy release rate, G, 

is independent of the crack extension size, but the 



ω 

Table 5 Comparison of mode mixity obtained from the four methods investigated a 

Bimaterial plate specimen Four-point flexure specimen 
χ = −0.10453, l = 10 mm χ = −0.067055 l = 2 mm  

Extracted from Oscillating −10.30 44.33 
SERRs, Eq.  51  and Toya 1992; 
Chow and Atluri 1995; Sun and 
Qian 1997 
Based on complex strain energy −10.25 45.70 
release rate Equation 57 by Bjer
ken and Persson (2001) 
Crack face displacement method −11.36 45.31 
(Matos et al. 1989) 
Analytical solution (Rice and Sih −11.81 44.39 
1965; Hutchinson and Suo 1990) 

a The representative value is taken as the value corresponding to the finest mesh when using the approach of oscillating 
SERRs, and the average value when using the complex strain energy release rate approach. 

Table 6 VCCT results for SERRs for four-point flexure specimen 

ω Fy,c Fx,c δy,c−d δx,c−d GI GII G total σG 

(mm) (Nmm−1) (Nmm−1 )  10−5 (mm) 10−5 (mm) 10−4 (Nmm−1) 10−2 (Nmm−1) 10−2 (Nmm−1) (deg) 

0.004 0.274200 1.398500 5.100 25.580 17.4802 4.4717 4.6465 78.82 
0.002 0.149840 1.000100 2.700 18.180 10.1142 4.5454 4.6465 81.52 
0.0008 0.056397 0.638500 1.000 11.560 3.5248 4.6132 4.6484 85.00 
0.0004 0.019426 0.452915 0.300 8.190 0.7285 4.6367 4.6440 87.73 

Average 4.6463 (10−2) 

components, GI and GII, as well as  σG, depend 

on the crack extension size (Table 6, Fig. 5b). The 

average G = 4.6463(10−2) Nmm−1. 

Secondly, we compute the ω-independent 

SERR-based mode mixity defined in Sect. 4.2. 

Equation 48 is used to determine the ω-indepen
≤ dent quantity �1, with the normalizing length 

arbitrarily selected as lG = 0.004 mm. G value is 

obtained from Table 6. The ω-independent SERRs, 

G ≤ I and G ≤ II, are obtained from Eq. 49. From Eq. 

50, we obtain consistent values of ω-independent 

SERR-based mode mixity, σG
≤ . The  ω-indepen

dent SERRs and ω-independent SERR-based 

mode mixity are tabulated in Table 7. The results 

are similar for all cases, Fig. 5b, with the average 

value of σG
≤ (lG = 0.004) = 78.84� . 

Next, SIF-based mode mixity is obtained from 

the components of the SERR as discussed in Sect. 

4.3. From numerical integration of Eq. 27b we ob

tain 

( 
l 

)2iχ 
A1 ◦1.5327+ i0.2871 =1.5594(arg 10.61�) 

0.1852i= 1.5594e , 

where we set the reference length to be the thick

ness of the upper layer l = h1 = 2 mm. Equations 

29a and 29b are used to obtain quantities Ic and Is. 

Equation 39 yields I0 = 1.5642. The mode mixity is 

obtained from Eq. 52 and the results are tabulated 

in Table 8. For the smallest crack extension size, we 

get σ (l = 2) = 44.33� as shown in Fig. 5b. 

Lastly, SIF-based mode mixity is obtained using 

the complex strain energy release rate discussed in 

Sect. 4.4. We use Eqs. 55 and 56 to obtain the com

plex strain energy release rate numerically. The 

argument of complex quantity A1 is available from 

numerical integration of Eq. 27b. The reference 

length l selected is the thickness of upper layer 

(h1 = 2 mm). The SIF-based mode mixity σ is 

obtained using the Eq. 57. The mixity values are 

very close for all cases and tabulated in Table 9 

with average value σ (l = 2) = 45.70� . 

5.2.2 Mode mixity from crack face displacement 

method 

As for the previous benchmark problem, we will 

compare the SIF-based mode mixity determined 

http:showninFig.5b


Table 7 ω-independent SERR-based mode mixity σ ≤ Gfor four-point flexure specimen 

ω 
(mm) 

2χ ln 
( 

lG 
ω 

) 

(deg) 

�1 

10−2 (Nmm−1) 
�3 

10−3 (Nmm−1) 
� ≤ 1 

10−2 (Nmm−1) 
G ≤ I 

10−3 (Nmm−1) 
G ≤ II 

10−2 (Nmm−1) 
σ ≤ G (lG = 0.004) 
(deg) 

0.004 
0.002 
0.0008 
0.0004 

0.000 
−5.326 
−12.367 
−17.693 

−2.1484 
−2.2222 
−2.2890 
−2.3147 

8.8415 
6.7804 
4.0326 
1.8436 

−2.1484 
−2.1497 
−2.1495 
−2.1492 

1.7475 
1.7345 
1.7365 
1.7395 

4.4716 
4.4728 
4.4726 
4.4724 
Average 

78.82 
78.86 
78.85 
78.84 
78.84 

Table 8 SIF-based mode mixity σ from the components of the SERR for four-point flexure specimen 

ω 
(mm) 

2χ ln 
( 

ω 
l 

) 

(deg) 
Ic Is κ  σ  (l = 2) 

(deg) 

0.004 
0.002 
0.0008 
0.0004 

47.76 
53.08 
60.12 
65.44 

0.81779 
0.69116 
0.51463 
0.37594 

1.32771 
1.39782 
1.47199 
1.51336 

0.9856, 0.3924 
0.9888, 0.5019 
1.0016, 0.6574 
1.0237, 0.7817 

45.42 
45.32 
44.95 
44.33 

Table 9 SIF-based mode mixity σ from complex energy ϑ for four-point flexure specimen 

ω 
(mm) 

χ ln 
( 

ω 
l 

) 

(deg) 
ρc 

(deg) 
πc−d 

(deg) 
σ (l = 2) 
(deg) 

0.004 
0.002 
0.0008 
0.0004 

23.88 
26.54 
30.06 
32.72 

78.91 
81.48 
84.95 
87.54 

78.72 
81.55 
85.06 
87.90 
Average 

45.67 
45.72 
45.68 
45.74 
45.70 

from the VCCT calculations with values from the 

crack face displacement method, Eqs. 72 and 73. G 

is obtained numerically from Table 6. We get best 

fit of the left hand side and the right hand side for 

Eq. 72 at r = 0.002 mm. Here, we have π = 79.49� . 

Thus σ (l = 2) = 45.31� . 

5.2.3 Mode mixity from the analytical solution 

The mode mixity can be obtained analytically using 

the local stress field near the crack tip. The solution 

for stress based mode mixity for a long, slender bi

material beam with an interface crack subjected to 

mixed mode loading has been found using a combi

nation of non-dimensional geometric parameters, 

bimaterial parameters, and a loading parameter to 

account for any general case (Hutchinson and Suo 

1992; Suo and Hutchinson 1990). For the four-point 

/

flexure specimen (Fig. 4), we define η = h1 h2 

as the thickness ratio of upper layer and bottom 

layer; � = 1 ρ = E ≤ E2 
≤ as the ratio of effective 

/

/

1

/

( /

modulus; 1 U = 1 + �η 4 + 6η + 3η2
) 

, 1 V = 
( � ( )

12 1 + �η3
) 

and sin γ = UV 6�η2 (1 + η) as 

geometric parameters. 

The mode mixity defined in Eq. 8a can be ob

tained in terms of φ, a real angular quantity which 

depends only on η, α and β, and can be chosen in 

the range 0 ∗ φ ∗ π/2. The dimensionless function 

φ(η, α, β) can be obtained from tables (Suo and 

Hutchinson 1990). The mode mixity is obtained as 

λ sin φ − cos (φ + γ )
tan σ = where 

λ cos φ + sin (φ + γ ) 
J 

Ph1 V 
λ = . (76) 

M U

In Eq. 76, λ is a load parameter, and P and M 

are the effective forces and moments, respectively 



(Hutchinson and Suo 1992; Suo and Hutchinson 

1990). Here, η = 0.4; � = 10; φ = 52.72. Thus, 

P = 33.90 N/mm, M = 16.14 Nmm/mm; 1/U = 
28.52, 1/V = 19.68; which gives γ = 34.56 and 

λ = 5.057. Therefore, we get σ (l = 2) = tan−1 

(0.9789) = 44.39�, which again is similar to the 

values obtained from the VCCT, above. 

5.2.4 Phase shift between σ (l = 2) and 
≤ σG (lG = 2) 

Using the SIF-based mode mixity results obtained 

from the oscillating SERRs in Sect. 5.2.1, we have 

σ (l = 2) = 44.33�. Further, from the results for 

the ω-independent SERR-based mode mixity, and 

using Eq. 69b, we have σG
≤ (lG = 2) = 54.96�. Thus, 

{

the phase shift, computed as σG
≤ (lG = l) 

−σ (l)} is 10.63�, compared with approximate 

value of 9.12� based on Eq. 70. The phase shift 

is illustrated in Fig. 5b. 

5.2.5 Size of the contact zone 

For an interface crack in the four-point flexure 

specimen, the contact zone can be obtained from 

Eq. 14. Using σ (l = 2) = 44.39� from the ana

lytical solution of Eq. 73, we get KII = 0.9789 

KI. We obtain the size of the contact zone to be 

r0 = 1.91 nm. 

5.2.6 Synopsis of results for the four-point flexure 

test 

As for the bimaterial plate, the values of the SIF-

based mode mixity obtained from Eq. 51 [using 

oscillating SERRs] and those obtained using Eq. 

57 [based on complex strain energy release rate] 

are similar. Moreover, the crack face displacement 

method and the analytical solution give similar re

sults of the mode mixity (Table 5). 

Figure 5B illustrates various mode mixities 

introduced in Sect. 4. Whereas σG depends on 

ω, the modified SERR-based mode mixity σG 
≤ ap

pears independent of ω. Setting the normalizing 

length equal to the reference length we have 
≤ σG (lG = 2) = 54.96�. The SIF-based mode mix

ity is obtained form the Eq. 51, σ (l = 2) = 44.33� . 

The phase shift (10.63�) between σG 
≤ and σ when 

lG � l is indicated in Fig. 5B. 

6 Discussion 

6.1 Accuracy of SIF-based mode mixity using 

VCCT 

SIF-based mode mixity results for two interface 

crack specimens—an infinite bimaterial plate and 

a four-point flexure specimen—were obtained in 

Sect. 5 using the VCCT. As summarized above, the 

values of the SIF-based mode mixity obtained from 

Eq. 51 using oscillating SERRs, are identical to the 

previous approaches (Toya 1992; Chow and Atluri 

1995; Sun and Qian 1997). Furthermore, the SIF-

based mode mixity values obtained using Eq. 57 

based on the complex strain energy release rate 

(Bjerken and Persson 2001) were similar and inde

pendent of crack increment size, ω. The mode 

mixities obtained using these two methods were 

in addition compared to values based on the crack 

face displacement method and analytical solutions, 

and all methods were seen to give similar results 

(Table 5). 

The accuracy of the mode mixity calculations 

will now be investigated through the complex stress 

intensity factors, KI and KII. These can be obtained 

using Eq. 6, where the SIF-based mode mixity, σ , 

is available from VCCT, and |K| is obtained using 

the total strain energy release rate G, Eq. 12. The 
( )

error involved is computed as 
(

KI − KI 
≈ / |K| for 

KI and as KII − K≈) 
/ |K| for KII, where KI 

≈ andII 
KII 

≈ are the analytical solutions. All errors are less 

than 3%, Table 10. The errors of KI and KII obtain 

from the VCCT using Eqs. 51 and 57, are com

parable to those reported previously (Matos et al. 

1989; Chow and Atluri 1995; Sun and Qian 1997; 

Bjerken and Persson 2001). 

For both specimens, the mode mixity values ob

tained using our Eqs. 51 and Eq. 57 by Bjerken 

and Persson (2001) are very close, with deviations 

of less than 1.5� (Table 5). The method using Eq. 

51 utilizes the expressions for oscillating SERRs 

in terms of complex quantities and is rigorous in 

mathematical details. The method using Eq. 57 uti

lizes complex strain energy release rate, is much 

simpler, and can provide reliable mode mixity val

ues with an acceptable error. 

http:usingEq.57
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Table 10 Complex stress intensity factor and associated relative error for from the four methods investigated 

Bimaterial plate specimen Four-point flexure specimen 
β = 0.3171, E∗ = 5.2032 GPa, β = 0.2076, E∗ = 20.4038 GPa, 

1 1G = 14.1547 Nmm− , |K| G = 4.6463(10−2) Nmm− , |K|
3/2 3/2= 9.0478 Nmm− , l = 10 mm = 0.9947 Nmm− , l = 2 mm  

KI (% error) KII (% error) KI (% error) KII (% error) 

Equation 51 based on VCCT 
using oscillating SERRs 
Equation 57 based on VCCT 
using complex strain energy re
lease rate 
Crack Face Displacement 
Method (Matos et al. 1989) 
Analytical Solution (Rice and 
Sih 1965; Hutchinson and Suo 
1990) 

8.9020 (0.51%) −1.6178 (2.59%) 0.7115 (0.07%) 0.6951 (−0.07%) 

8.9034 (0.52%) −1.6100 (2.67%) 0.6947 (−1.62%) 0.7119 (1.62%) 

8.8705 (0.16%) −1.7822 (0.77%) 0.6995 (−1.14%) 0.7109 (1.52%) 

8.8563 −1.8518 0.7108 0.6958 

6.2 Implications of contact zone 

The contact zone in the two benchmark problems 

considered in Chapter 5 are of the orders of nano

meter, which is small compared to material length 

scale dimensions, e.g., the grain size. In general, 

the contact zone is very small. For example, for the 

bimaterial plate subjected to uniform tension and 

with an interfacial crack length of 2a = 10 mm, the 

contact zone size is 6.04(10−71)m, 2.27(10−16)m, 

1.51(10−9)m, 2.83(10−7)m for  χ = −0.01, −0.05, 

−0.1, −0.15, respectively [using Eq. 75 ]. This agrees 

with previous observations (e.g., Rice 1988; Sun 

and Qian 1997; Borovkov et al. 2000). Hence, the 

contact zone is much smaller than the k-annulus 

region, which is often scaled by the smallest dimen

sion of the specimen or crack length 

(Wang and Suo 1990; Becker 1997). Thus, for mod

erate values of the bimaterial constant, the inter

facial fracture mechanics solution, based on the 

k-annulus concept is reasonable. We note that for 

in-plane shear load, the contact zone size is larger 

than the values considered here, but remains small 

compared to other material dimensions. 

Thus, the solution based on the “open crack 

model” (Williams 1959; Rice and Sih 1965) can be 

adopted to characterize interface crack singularity 

for moderate values of χ. However, due to the oscil

latory nature of the solution, the open crack model 

is unable to infer the physical nature of (stress

based) mode mixity close to the crack tip, as a suit

able reference length in the k-annulus region that 

governs the physical fracture process is not evident 

(Hutchinson and Suo 1992). However, (as noted in 

Sect. 3.3) according to the contact model (Comni

nou 1977), the crack grows in mode II inside the 

contact zone and its vicinity, although macroscop

ically the crack grows in mixed mode. 

For material combinations with large mismatch 

vales, the contact zone can be larger than the atomic 

spacing, and the crack may grow in pure mode II 

for all cases of loading. Consequently, the fracture 

toughness of such bimaterial may be constant, as 

mode II is always expected to control the crack 

growth. 

7 Concluding remarks 

This paper reviews, unifies and extends methods 

characterizing interfacial fractures, with particular 

application on evaluating mode mixity using the fi

nite element based virtual crack closure technique 

(VCCT). 

It is well established that the complex stress 

intensity factors (SIFs), KI and KII, can be used 

as the characterizing parameters for an interface 

crack singularity, i.e., the same SIFs in two different 

cracked bodies implies the same stress distribution 

close to the crack tip. The SIF-based mode mixity 

can be obtained from the oscillating components 

of the strain energy release rate (SERR) using the 

VCCT, either from our Eq. 51, or from past works 

(Toya 1992; Chow and Atluri 1995; Sun and Qian 

http:reasonable.We
http:0.6995(�1.14
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http:0.6951(�0.07


1997). We show that all of these approaches are 

identical and can be derived from one another. Our 

Eq. 51 is—in our opinion—significantly easier to 

use than the alternative methods referenced. Fur

thermore, we compare these methods to a differ

ent approach developed by Bjerken and Persson 

(2001) and show that this method gives acceptable 

values of mode mixity with significantly less com

putational efforts. Thus, either our Eq. 51 or the 

method presented by Bjerken and Persson (2001), 

as given in Eq. 57 may be the preferred meth

ods to determine the SIF-based mode mixity from 

VCCT. 

Since the VCCT directly yields a decomposed 

form of strain energy release rate, it would be 

convenient to use these two components directly 

to determine mode mixity. However, these com

ponents cannot directly be linked to mode I and 

mode II for an interface crack. Indeed, the com

ponents—and the SERR-based mode mixity—will 

depend on the element size at the crack tip, that 

is, to the crack extension size, ω . Thus, the depen

dence on element size is referred to as “ω-depen

dent SERR-based mode mixity.” Evidently, this is 

not a useful design parameter. However, a “ω

independent SERR-based mode mixity” can be 

defined by introducing a “normalizing length 

parameter” (Beuth 1996). We show that when the 

reference length (used for the SIF-based mode 

mixity) and the normalizing length (used for ω

independent SERR-based mode mixity) are equal, 

the two mode mixities are only shifted by a phase 

angle, depending on the bimaterial parameter χ. 

Thus, even though ω-independent SERR-based 

mode mixity appears to be a mathematical quan

tity with no physical meaning, we believe it can be a 

useful parameter if care is taken in its 

interpretation. 
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