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Abstract. The Karhunen-Loève expansion is a powerful spectral technique for the analysis and synthesis of dynamical systems.

It consists in decomposing a spatial correlation matrix, which can be obtained through numerical or physical experiments. The

decomposition produces orthogonal eigenfunctions or proper orthogonal modes, and eigenvalues that provide a measurement of

how much energy is contained in each mode. The relation between KL modes and mode shapes of linear vibrating systems has

already been derived and demonstrated for two and three dofs mass-spring-damper systems. The purpose of this paper is to extend

this investigation to more complex distributed-parameter linear systems. A plane truss and a simply supported plate subjected to

impulsive forces, commonly used in modal analysis are studied. The resulting KL modes are compared to the analytical mode

shapes. Damping and random noise effects in the procedure performance are evaluated. Two methods for indirectly obtaining

natural frequencies are also presented.

1. Introduction

The Karhunen-Loève (KL) expansion or decompo-

sition initially appeared in the signal processing liter-

ature, where it is customary called principal compo-

nents analysis (PCA). It is a powerful statistical tool

to perform data analysis and compression. It soon

found many useful applications such as voice and im-

age recognition. In Mechanical Engineering, where

it is also known as the proper orthogonal decomposi-

tion (POD), it was firstly employed to uncover coherent

structures in turbulent flow fields [7]. Coherent struc-

tures can be defined as recurrent spatial forms that are

energy dominant [4]. Since then, it has been consis-

tently developed and applied to many fluid dynamics

problems [11–13].

Interestingly enough, only recently has the KL ex-

pansion attracted the attention of structural dynamicists

seeking an alternative approach to obtaining reduced-

order models of linear and nonlinear dynamical sys-

tems [6,8,14]. The objective of reducing a mathemati-

cal model is to obtain a simpler one that not only still

has a good degree of predictive capability but also is

suitable for its intended application. This can be, for

instance, the design of a real-time feedback controller

that is not too computationally intensive, or simply the

performance of a parameter analysis.

The KL method is primarily a statistical procedure.

One initially supposes that the observed system dynam-

ics can be modelled as a second-order ergodic stochas-

tic process. The method consists then in construct-

ing a spatial autocorrelation tensor from data obtained

through numerical or physical experiments and per-

forming its spectral decomposition. Since it deals only

with data, there is no distinction between linear or

nonlinear systems and it can even be implemented, in

the physically obtained data case, without any previ-

ous knowledge about the mechanical characteristics of

the system. The autocorrelation tensor is by defini-

tion Hermitian and positive semi-definite. Therefore,
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its decomposition provides a set of orthogonal eigen-

functions (called proper orthogonal modes, POMs, or

empirical eigenmodes) and nonnegative real eigenval-

ues (or proper orthogonal values, POVs, or empirical

eigenvalues). These POMs can then be used as a basis

for the dynamics projection and in the construction of

a reduced-order model through the retention of a finite

number of them. An important property of the expan-

sion is that the magnitude of a POV is a measure of

the energy contained in the respective POM. Further-

more, the expansion is in a sense optimal, meaning that

no other linear decomposition can better reproduce the

particular dynamics which generated the POMs with

the same number of modes. There are two ways of

constructing the expansion: the direct and the snapshot

methods. Each one has its domain of application, as

will be later discussed, although this paper deals only

with the direct method.

The relation between KL modes and mode shapes

for general vibrating structural systems described by

second-order ordinary differential equations has been

derived in [2]. The purpose of this paper is to ex-

tend that discussion to more complex linear distributed-

parameter system. For this purpose, a plane truss and

a simply supported plate have been chosen as the ob-

jects of study. They have both been excited by means

of impulsive forces as usually is done in modal anal-

ysis. The POMs obtained were then compared to the

intrinsic physical mode shapes and several important

questions addressed.

2. The Karhunen-Loève decomposition

Let a dynamical system be governed by equations

whose solutions give a flow, i.e., a function of time and

space that describes the evolution of a particular state.

Let the flow be denoted by u(x, t) and defined on a

spatial domain x ∈ D and a time domain t ∈ [0,∞).

2.1. Main hypothesis

In order to define the autocorrelation tensor for the

flow, one must model it as a second-order stochastic

process. However, it is desirable to avoid the mathe-

matical description of the sample space, σ-algebra, and

probability measure associated with the flow. A great

advantage of this methodology is that this description

is unnecessary, though two additional assumptions are

needed: the flow is supposed to be strict-sense time-

stationary and ergodic [9].

Let v(x, t) define the deviation from the mean flow,

i.e.,

v(x, t) = u(x, t) − E [u(x, t)] . (1)

Hence, v(x, t) is a stochastic process with zero mean

and consequently its autocorrelation tensor equals its

autocovariance tensor [10]. If v(x, t) is real, then the

two-point spatial autocorrelation function is defined by

the dyadic product

R(x,x′) = E [v(x, t) ⊗ v(x′, t)] . (2)

A final assumption regarding the flows u(x, t) and

v(x, t) is that they are continuous in quadratic mean,

implying the continuity of the autocorrelation tensor

R(x,x′) in its spatial domain [9].

2.2. Model reduction

In order to find a reduced-order flow model that still

reveals the main features contained in the dynamics,

one can search for an expansion of the form

v(x, t) =
∑

n

An(t)ψn(x), (3)

with

E [Ak(t)Al(t)] = λkδkl, (4)

i.e., the modes are uncorrelated, and

〈ψk,ψl〉 =

∫

D

N
∑

j=1

ψkj
(x)ψlj (x) dx = δkl, (5)

meaning that the set {ψn} is orthonormal and N =
dimv. Inserting Eq. (3) into Eq. (2) and using the

relation given by Eq. (4), one obtains

R(x,x′) =
∑

n

λnψn(x) ⊗ ψn(x′). (6)

Since by definition and according to our assump-

tions,R(x,x′) is positive, semi-definite, Hermitian and

continuous on D, Mercer’s Theorem [9] guarantees the

existence and uniqueness of the spectral representation

of R(x,x′) given by Eq. (6), where the elements be-

longing to the orthonormal set {ψn} are the eigenfunc-

tions of the integral operator with kernel R(x,x ′) and

the set {λn} is formed by the corresponding real and

nonnegative eigenvalues so that
∫

D

R(x,x′)ψn(x′) dx′ = λnψn(x). (7)

Then, the Karhunen-Loève Theorem [9] states that a

continuous second-order stochastic process with auto-
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covariance tensor K(x,x′) can be expanded in a series

analogous to (3) where {ψn} are the eigenfunctions of

the integral operator with kernel K(x,x ′) and {λn} are

the corresponding eigenvalues. Since for v(x, t) the

autocovariance equals its autocorrelation function, we

have thus proved that the expansion stated in Eq. (3) is

realizable. The set {ψn} is formed by the POMs, also

called coherent structures.

The original flow u(x, t) can, therefore, be recon-

structed with reduced dimension through the truncation

of the series Eq. (3) and addition of the mean flow:

u(x, t) =

N
∑

n=1

An(t)ψn(x) + E [u(x, t)] , (8)

where the temporal coefficients An are easily found by

projecting the flow onto each POM ψn, i.e.,

An(t) = 〈v(x, t),ψn〉. (9)

Finally, the eigenvalue may be written, using the

ergodic hypothesis, as

λn = 〈ψn,Rψn〉 = E
[

|〈ψn,v〉|2
]

(10)

= lim
T→∞

1

T

∫ T

0

|〈ψn,v〉|2 dt,

indicating that it is a measure of the mean energy con-

tained in each mode. Besides, it can be shown that the

total mean energy equals the sum of all eigenvalues,

that is, E =
∑

n λn [11].

3. Pratical construction of POMs

As previously mentioned, there are two practical

methods available for the construction of the KL ex-

pansion, namely the original direct and the more recent

snapshot methods. Both will be briefly presented and

the respective advantages discussed, so that later on it

will be clear why the direct method constitutes itself in

the best choice for this work.

3.1. Direct method

In this method, the displacements of a dynamical

system are measured or calculated at N locations and

labelled u1(t), u2(t), . . . , uN(t). Sampling these dis-

placementsM times, we can form the followingM×N
ensemble matrix:

U =
[

u1 u2 . . . uN

]

(11)

=











u1(t1) u2(t1) . . . uN(t1)
u1(t2) u2(t2) . . . uN(t2)

...
...

. . .
...

u1(tM ) u2(tM ) . . . uN (tM )











.

Thus, using the time-stationarity and ergodicity hy-

pothesis, the variation from the mean can be calculated

as

V = U − 1

M
(12)







∑M

i=1 u1(ti)
∑M

i=1 u2(ti) . . .
∑M

i=1 uN (ti)
...

...
. . .

...
∑M

i=1 u1(ti)
∑M

i=1 u2(ti) . . .
∑M

i=1 uN (ti)







and the spatial correlation matrix of dimension N ×N
formed as

R =
1

M
V

T
V. (13)

The POMs are then given by the eigenvectors of R

which are orthogonal due to its symmetry. Eigenvalues

will provide the POVs. Clearly, the matrix dimension is

determined by the number of sampling pointsN . For a

three-dimensional flow, i.e. v(x, t) ∈ R
3, the number

of operations necessary for the diagonalization of R is

O(N3) [1].

3.2. Snapshot method

This method was firstly introduced in [11]. It uses

the fact that due to the assumed ergodicity, the spatial

autocorrelation tensor can be expressed as

R(x,x′) (14)

= lim
M→∞

1

M

M
∑

m=1

v
(m)(x) ⊗ v

(m)(x′),

where v
(m)(x) = v(x,mτ) is referred to as a snapshot

and τ is the sampling time which should be greater

than the correlation time. However, in practice, one

would have to deal with a finite number of snapshots.

Hence, the kernel R(x,x′) in Eq. (15) would become

degenerated and, therefore, would have eigenfunctions

which are a linear combination of the snapshots [3,11]:

ψk(x) =

M
∑

m=1

Akmv
(m)(x), (15)

where the coefficients Akm are still to be determined.

Introducing Eqs (15) and (15) in Eq. (7) these coef-



180 C. Wolter et al. / Obtaining mode shapes through the Karhunen-Lòeve expansion

ficients would present themselves as solutions to the
eigenequation defined by

CAk = λkAk; Cmn =
1

M
〈v(m),v(n)〉. (16)

In the above expression, 〈·, ·〉 defines an inner prod-
uct on anLp

2(D) space, where p = dimv. Thus, the de-
termination of the POMs requires the spectral decom-
position of a matrix whose dimension is determined by
the number of snapshots M . Actually, this procedure
requires O(M 3) operations [1]. The number of sam-
pling points N would only indirectly enter the calcula-
tion through the evaluation of the inner products.

It is thus clear that the direct method should be ap-
plied to experimentally gathered data where there is,
in general, a rich time history obtained in a relatively
small number of locations or to numerically generated
data with moderate spatial resolution. Otherwise, in
the case of multidimensional simulated flows with high
spatial resolutions, the snapshot method is to be pre-
ferred.

4. Relationship between POMs and mode shapes

The first demonstration that the Karhunen-Loève ex-
pansion could be used in order to obtain the eigenfunc-
tions of linear operators appeared in [1]. This would
imply obtaining mode shapes of a distributed-parameter
vibrating system since these are the eigenfunctions of
the spatial linear operator subjected to boundary condi-
tions. A more straightforward demonstration was pre-
sented in [2] for discrete systems and is briefly reviewed
here.

Consider a discretized dynamical system described
by Mẅ + Kw = 0. The motion for this system can
be expressed as

w(t) = a1 sin(ω1t + φ1)w1 + . . .

+aN sin(ωN t + φN )wN (17)

= c1(t)w1 + . . .+ cN (t)wN ,

where the wi and ωi are the mass normalized mode
shapes and respective natural frequencies [5] and a i, φi

are constants to be determined from initial conditions.
Since for an oscillatory system, the mean flow is

zero, using the direct method, one can promptly form
the ensemble matrix:

V =







w(t1)
...

w(tm)







(18)
=

[

c1w
T
1 + . . .+ cNw

T
N

]

,

1 2 3 4 5

6 7 8 9 10

l
1

l
2

Fig. 1. Plane truss.

where ci are M ×1 vectors of ci(t) sampled at M time

instants. Hence, the spatial correlation matrix is

R =
1

M
V

T
V

=
1

M

[

c1w
T
1 + . . . + cNw

T
N

]T
(19)

[

c1w
T
1 + . . .+ cNw

T
N

]

.

Creating an adjusted autocorrelation matrix given by

R̂ = RM, it is possible to show that its eigenvectors

converge to the modal vectors:

R̂wi =
1

M

[

c1w
T
1 + . . .+ cNw

T
N

]T

(20)
[

c1w
T
1 + . . .+ cNw

T
N

]

Mwi.

Using the orthogonality condition w
T
i Mwj = δij ,

the above expression simplifies to

R̂wi =
1

M

(

w1c
T
1 ci + . . .wNc

T
Nci

)

. (21)

Therefore, each term (1/M)wic
T
i cj will tend to zero

as M → ∞, except for the term (1/M)wic
T
i ci which

is proportional to wi. This means that the mode shapes

are eigenvectors of the adjusted autocorrelation ma-

trix. Furthermore, in the case of a global mass matrix

which is equal to or proportional to the identity matrix,

the above result would imply that the mode shapes are

eigenvectors of the autocorrelation matrix and hence

POMs or, alternatively, that the POMs would be con-

verging to the mode shapes when M → ∞. When

damping is present, all functions ci(t) → 0 as t → ∞.

However, it would still be possible to apply this pro-

cedure to structures with very small damping where

a great number of oscillations would be observed [2].

The fact that the convergence of the adjusted matrix

eigenvectors to the mode shapes occurs as M → ∞
was determinant for the choice of the direct method in

the rest of this work. Another interesting point is that

in many experimental cases, the mass matrix may be

unknown and it would be impossible to calculate the

adjusted matrix. This issue will be addressed in the

next section.
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Fig. 2. Analytical mode shapes for the 2D truss with respective frequencies in rad/s.

5. Modal analysis of a plane truss through the KL

expansion

In order to explore the ideas expressed earlier, we

have chosen to perform the KL expansion on a plane

truss depicted in Fig. 1.

5.1. Mode shapes determination

The truss was modelled by the finite element method

using simple bar elements and an inconsistent mass

matrix. The vertical and horizontal bars have lengths

l1 = 15 cm and l2 = 20 cm, respectively, as shown in

Fig. 1. Cross-sectional area for the elements is 1 cm2,

mass density is 7860 kg/m3 and elastic modulus is 200
GPa. Since the truss is clamped in its left extremity,

implying that nodes 1 and 6 are fixed, we arrive at a 16

dof system, for other nodes are capable of moving in

both horizontal and vertical directions. Fig. 2 presents

the truss together with its mass normalized analytical

mode shapes and respective natural frequencies.

The KL expansion was then performed for unitary

impulsive forces acting on node 10 in both horizontal

and vertical directions. The response was measured at

all 8 nodes in both directions. The time sampling rate

was 0.1 s which is slightly greater than the first natural

period for a reason that will be later explained, and the

time span was from 0 to 100 s,so that 1000 time samples

were available. Since the FEM discretization generated

a system with a small number of degrees of freedom,
it is ideal for the application of the direct method. The

eigenvalue problem was solved through the singular

value decomposition, for this is a robust technique that
avoids numerical instabilities in the eigenvalue problem

solution that may appear due to the optimality property

of the expansion. Figure 3 presents the resulting POMs
obtained from the correlation matrixR as in Eq. (20),as

well as the respective POVs expressed as a percentage

of the total energy.
The inconsistent global mass matrix obtained with

the FEM discretization though diagonal is not propor-

tional to the identity matrix. In this case and in many
others where the mass matrix is block diagonal, it is not

possible to assure that the POMs are converging to the

analytical mode shapes, since the hypothesis formu-
lated in section 4 will not be true. However, it is clear

that at least qualitatively, the POMs represent these

mode shapes very well. Naturally, we could have mul-
tiplied the correlation matrix by the global mass matrix

in order to obtain the adjusted correlation matrix R̂ and

then calculate its eigenvectors. This was not performed
because one of the objectives here is to verify whether

the POMs obtained directly from R can be taken as

a good approximation for the discretized model mode
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Fig. 3. Proper orthogonal modes with respective mean energies for impulsive forces applied at node 10 in both directions.

shapes. Moreover, the mode shapes for a physical

structure are the eigenfunctions of an Hermitian oper-

ator (the stiffness operator), and therefore are mutually

orthogonal. Hence, the POMs from R are probably

a better representation for the real mode shapes than

those calculated from the discretized model.

Figure 4 presents the resulting POMs from a vertical

impulse applied at the same node 10. In this case,

there was an increase in the energy contained in the first

POM and in the remaining pure flexural modes such

as the second, third, and tenth POMs, when compared

to the previous case. Furthermore, there were some

difficulties in the representation of some mode shapes.

The ninth POM, for example, is a poor representation

of the fourteenth mode shape and the fifth POM is

completely distinct from any of the mode shapes. This

result is a consequence of the small excitation provided

to some modes due to the restriction of the excitation

force to one single direction.

The optimality property of the KL expansion is

clearly demonstrated in Fig. 5 where the reconstruction

of the horizontal displacement of node 10 is performed

using the first one and the first two POMs presented in

Fig. 4. As stated previously, a great advantage of the

expansion is the fact that the eigenvalues are a direct

measure of the energy contained in the related POMs.

Here, the first one and first two eigenvalues account

for 97.5% and 99.5%, respectively, of the total energy.

One can observe that these first two modes suffice for

a good dynamics representation.

On the other hand, this same optimality property

means that this is a noncausal procedure where the em-

pirical modes cannot be determined before the system

response is known. Moreover, changing the impulse

excitation direction will result in a completely different

energy distribution among the POMs. Figure 6 shows

the POMs obtained for a horizontal impulse applied at

node 10.

In this case, we have a more homogeneous energy

distribution where the first POM accounts for only

37.8% of it. This results in a necessity of using a greater

number of POMs to accomplish an accurate dynamics

representation. The first graph in Fig. 7 depicts the

same horizontal displacement of node 10 used in the

former case. One can note that even using 4 POMs,

a good representation is not attained. This happens

because for the dynamics resulting from the horizontal

impulse application, the first four POMs respond for

only 87% of the energy, far from the 99% threshold usu-

ally recommended [11]. The dynamics reconstruction

is even worse if one attempts to use the first four POMs

obtained from the vertical impulse excitation (Fig. 4),

as shown in the second graph. Although in that former

case these four POMs accounted for more than 99% of
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Fig. 4. Proper orthogonal modes with respective mean energies for vertical impulsive force applied at node 10.
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Fig. 5. Dynamics reconstruction of the horizontal displacement at node 10 for a vertical impulse applied at the same node.

the energy, this is not true for the dynamics resulting
from the horizontal impulse. Comparing Figs 4 and 6,
one notes that for the present case, those four POMs
represent less than 50% of the energy and thus are un-

able to accurately represent the horizontal displacement
of node 10. Therefore, it is possible to conclude that
the KL expansion may not be robust enough to gener-
ate a reduced-order model when excitation conditions
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change dramatically.

The third graph also presents a modal reconstruction

using the first four analytical mode shapes. The result is

not bad because the first three mode shapes correspond

qualitatively to the first 3 POMs obtained for the hori-

zontal impulse. Another reconstruction was then per-

formed in the same graph using POMs one, two, three

and six which are related to the first four mode shapes.

One can observe that this representation is practically

indistinguishable from the modal one. However, the

evaluation of the error norm between both reconstruc-

tions and the original response yields 4, 90 × 10−3 for

the modal case and 4, 61× 10−3 for these POMs. This

is an interesting result and demonstrates once again

how the optimality property works in order to provide

empirical modes that better represent the sampled dy-

namics.

Finally, the effect of structural damping was inves-

tigated. Damping was introduced in the system of

second-order ODEs through a damping matrix which

was proportional to the stiffness matrix, that is C =
βK, where β = 1 × 10−4. This proportional damping

corresponds to modal damping factors ranging from

ζ1 = 0.0057 to ζ16 = 0.1930 according to the rela-

tion ζi = βωi/2. The truss was once again excited by

means of impulsive forces acting on node 10 in both

directions and the same sampling conditions were ob-

served. The POMs obtained with the KL expansion for

this case are presented in Fig. 8.
It is clear that the presence of proportional damp-

ing had the effect of concentrating the energy in the

first POM because the first mode shape has the small-
est damping factor. Moreover, damping made it more

difficult for some POMs to approximate the respective
mode shapes.

5.2. Natural frequencies determination

So far nothing has been mentioned about how to ob-

tain the system natural frequencies from the KL expan-
sion. At a first glance, the expansion provides only the

mode shapes, in the case of linear systems. However,
this drawback can be overcome by using the POMs as

initial conditions and performing a Fast Fourier Trans-
form of the resulting dynamical response. Hence, the

first three POMs depicted in Fig. 4 and that correspond
to the first, second, and fourth mode shapes were given

as initial conditions to the truss in three distinct occa-

sions. The vertical displacement of node 10 was then
sampled in 0.001s steps until 1s and the FFT of this sig-

nal performed. The result is presented in Fig. 9 where
the natural frequencies characteristic peaks for these

mode shapes are clearly visible.
Nonetheless, in the real world, it is usually not re-

alizable to give a certain spatial form to a structure.
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Fig. 7. KL and mode shape reconstruction for an horizontal impulse applied at node 10.
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A more straightforward strategy for finding the natural

frequencies is to perform a FFT of the temporal coeffi-

cients (also called principal coordinates) of the expan-

sion Eq. (8) since, in the linear case, they correspond

to the modal amplitudes. Figure 10 presents the re-

sults of the FFT performed on the temporal coefficients
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calculated from the dynamics projection onto the first

three POMs, according to Eq. (9). These POMs appear

in Fig. 3 and correspond to the first, third and second

mode shapes. Once again, the respective natural fre-

quencies peaks are clearly visible. Table 1 compares

the natural frequencies obtained using the FFT through

both methods with the analytical natural frequencies.

An excellent agreement is observed.
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Table 1

Comparison between the truss natural frequencies obtained analytically and

through FFTs

Natural frequencies Analytical FFT (initial cond.) FFT (coefficients)

First mode shape 112.84 rad/s 112.98 rad/s 112.98 rad/s

Second mode shape 509.54 rad/s 508.43 rad/s 508.43 rad/s

Third mode shape 701.90 rad/s – 703.01 rad/s

Fourth mode shape 1062.45 rad/s 1060.80 rad/s –
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Fig. 11. First twelve POMs for impulsive force applied at the middle of plate.

6. Dynamics of a uniform rectangular simply

supported plate

The equation of free motion for such a plate of di-

mensions a× b is [5]:

DE∇4w(x, t) + ρ
∂2w(x, t)

∂t2
= 0;

(22)

DE =
Eh3

12(1 − ν2)
,

where x = (x, y) and with the following mode shapes

and natural frequencies:

wmn(x, y) =
2√
ρab

sin
mπx

a
sin

nπy

b
;

(23)

ωmn = π2

√

DE

ρ

[

(m

a

)2

+
(n

b

)2
]

,

satisfying the orthogonality condition

∫ a

0

∫ b

0

ρwmn(x, y)wkl(x, y) dx dy

= ρ

∫ a

0

∫ b

0

wmn(x, y)wkl(x, y) dx dy (24)

= δmn,kl.

Thus, the plate dynamics for zero initial conditions

and an unitary impulsive force applied at x = f1 × a

and y = f2 × b, where f1 ∈ [0, 1], f2 ∈ [0, 1], is given

by

w(x, y, t)

=
∞
∑

m=1

∞
∑

n=1

4

ρab

sin(f1mπ) sin(f2nπ)

ωmn

(25)

sin
mπx

a
sin

nπy

b
sinωmnt.
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Fig. 12. First twelve POMs for impulsive force applied at f1 = f2 = 1/4.
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Fig. 13. Effect of noise contamination on the POMs.

7. Application of the KL decomposition to the

dynamics of a simply supported plate

A distributed-parameter system such as this can be
viewed as a natural extension of a discrete system with

the number of modes tending to infinity. Indeed, since

the independent mode shapes for the plate are known,

the orthogonality relation Eq. (25) is equivalent to a

discrete system with a mass matrix proportional to the
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Fig. 14. Effect of reducing sample time on POMs.

Table 2

Relation between sampling interval and error in the convergence of

the first POM to the first mode shape

Sampling interval Frobenius norm of the error

0,0001 2,072 × 10−1

0,001 1,140 × 10−1

0,01 1,098 × 10−2

0,1 2,163 × 10−3

1 1,022 × 10−3

2 4,898 × 10−3

5 7,714 × 10−4

identity matrix. Hence, it is expected that the spa-

tial correlation matrix eigenvectors found through the

direct method will converge to the analytical mode

shapes.

As an example, an impulsive force was applied to

the middle (f1 = f1 = 1/2) of a retangular (a = 1.9m,

b = 1m) steel plate 5mm thick. In order to compute the

analytical response, 256 mode shapes were employed.

These particular dimensions assure us that there are no

repeated natural frequencies. The spatial domain was

discretized in a grid with points spaced by 0.05m. The

response was sampled using a 1s time interval (this will

be later discussed) which is slightly greater than the

first mode oscillation period. The resulting POMs were

computed and are shown in Fig. 11. One thousand time

samples were needed to attain these results. Notice also

that the POVs are normalized, so that their sum is one.

Although the results are good, it is clear that no mode

shape with m or n even was encountered. That is, nat-

urally, due to the position of the impulsive force. Mode

shapes with a node in the middle of the plate would not

be excited and, thus, do not appear in the statistically

determined POMs. Shifting the force application point

to f1 = f2 = 1/4 yields the new POMs depicted in

Fig. 12. It is possible to observe some new even mode

shapes and the fact that the energy is less concentrated

in the first POM.

Shifting the force far away from the center affects

negatively the results since the most excited mode

shapes are high frequency ones that are seldom of in-

terest. Furthermore, the number of time samples to

achieve convergence increases a lot. Fortunately, in a

physical experiment, the singularity present in the ap-

plication of a numerical impulse would be avoided and

there should be no difficulty in obtaining low frequen-

cies mode shapes through the use of an impact hammer

around the center of the plate.

The robustness of the procedure to noise was also in-

vestigated. The data were contaminated by addition of

gaussian white noise. The procedure consisted in sum-

ming the exact response to numeric generated gaussian

white noise previously to calculating the POMs. How-

ever, these proved to be quite insensitive to noise. Only

when the signal to noise ratio was of O(10) was there

noticeable qualitative change in the POMs as shown in
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Fig. 13. Even then, the mode shapes are clearly rec-

ognizable in the POMs. However, this level of noise

is quite high and not to be expected in experimental

setups. In this example, the impulsive force was also

applied at f1 = f2 = 1/4.

The time span of 1000s used so far is rather unrealis-

tic since structural damping will always be present and

because of that, free plate vibrations will not be sus-

tained for so long. As mentioned previously, if a struc-

ture is lightly damped, then it should be possible to find

its mode shapes through the KL decomposition. The

presence of damping and consequent decrease in avail-

able time span and the necessity of a great number of

snapshots or time samples to attain convergence would

mean decreasing dramatically the sampling interval.

On the other hand, the ergodicity assumption used so

far implies the use of uncorrelated snapshots. But we

are actually dealing with a deterministic system, mean-

ing that this would, indeed, be impossible. Choosing

the sampling time of 1 s (above the first period) was
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a strategy to minimize this problem. Results showed

that increasing the sampling time above this threshold

made no difference but decreasing it did. Introducing

a modal damping factor ζmn = 0.01 and sampling the

plate dynamics in 0.001 steps until 1s (giving the same

1000 samples) produces the POMs depicted in Fig. 14.

Table 2 also presents the Frobenius norm of the differ-

ence between the first POM and the first plate mode

shape for different sampling intervals and considering

the undamped case. It is clear that the error monotoni-

cally decreases when the interval is increased until past

the first natural period. From then on, there is no estab-

lished pattern and the error seems to oscillate around

the value associated with the first period. Therefore, it

is logical to conclude that decreasing sampling time to

deal with damping is not a good strategy. Perhaps a bet-

ter option, specially in an experimental case, would be

to apply another impulsive force after some time, thus

increasing the available time span for measurements.

Finally, the behavior of a square plate was investi-

gated. This system has infinite pairs of equal frequen-

cies. It was excited by means of an unitary impulse

applied to its center. The time span was 1000s sam-

pled at every second. The first four resulting POMs are

presented in Fig. 15. It is interesting to note that the

KL decomposition was unable to differentiate between

mode shapes having the same frequency. Because they

are vibrating in phase, statistically they cannot be dis-

tinguished and ended up added by the procedure. One

result, for instance, is the second POM which is, in real-

ity, the sum of mode shapesw13(x, y)+w31(x, y). And

the fourth POM is the result of w15(x, y) + w51(x, y)
(note that the even modes do not appear due to the

applied impulse position, as discussed earlier).

This is a great disadvantage for performing modal

analysis in unknown systems via the KL decomposi-

tion. However, if the objective is to construct a reduced-

order model, the method continues to be optimal. Us-

ing only the first two POMs, it is possible to practically

reconstruct the original dynamics for the plate central

point as can be seen in Fig. 16.

8. Conclusions

This work discussed the use of the Karhunen-Loève

expansion as a tool to perform modal analysis of

distributed-parameter linear system. It was shown that

the proper orthogonal modes obtained with the proce-

dure are a good approximation for the analytical mode

shapes of a discretized model with diagonal global mass

matrix. A great advantage of using the KL expansion

for modal analysis is that the proper orthogonal values

provide the contribution of the associated POMs in the

global dynamics. Moreover, it was also demonstrated

that the convergence capacity of the expansion is little

affected by the existence of gaussian noise.

Nevertheless, there are also some disadvantages in

its application. First of all, the sampling time should

be at least close to the first oscillation period, what

possibly will not be known a priori in an experimental

case. Moreover, only lightly damped structures can be

the object of analysis by this method. Besides that, the

expansion cannot differentiate mode shapes with the

same frequency which end up added. Finally, there is

also the necessity of measuring the structure dynamical

response in a fairly large number of points.

Therefore, although it is possible that the Karhunen-

Loève expansion may replace traditional modal analy-

sis in some applications, it is for now more likely that

it will be used as an additional tool, specially when

choosing a modal basis for a reduced order model, due

to its optimality property.
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the transient dynamics of a multibay truss, AIAA Journal 37(8)

(1999), 939–946.



192 C. Wolter et al. / Obtaining mode shapes through the Karhunen-Lòeve expansion
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