
 Open access  Posted Content  DOI:10.1101/2021.07.08.451443

Obtaining Spatially Resolved Tumor Purity Maps Using Deep Multiple Instance
Learning In A Pan-cancer Study — Source link 

Mustafa Umit Oner, Mustafa Umit Oner, Jianbin Chen, Egor Revkov ...+18 more authors

Institutions: National University of Singapore, Agency for Science, Technology and Research,
Singapore General Hospital, Chinese Academy of Sciences

Published on: 09 Jul 2021 - bioRxiv (Cold Spring Harbor Laboratory)

Share this paper:    

View more about this paper here: https://typeset.io/papers/obtaining-spatially-resolved-tumor-purity-maps-using-deep-
3hqab9x0yr

https://typeset.io/
https://www.doi.org/10.1101/2021.07.08.451443
https://typeset.io/papers/obtaining-spatially-resolved-tumor-purity-maps-using-deep-3hqab9x0yr
https://typeset.io/authors/mustafa-umit-oner-24i758xyaz
https://typeset.io/authors/mustafa-umit-oner-24i758xyaz
https://typeset.io/authors/jianbin-chen-2acsog4juy
https://typeset.io/authors/egor-revkov-19dbl4odgn
https://typeset.io/institutions/national-university-of-singapore-24b050gz
https://typeset.io/institutions/agency-for-science-technology-and-research-1mg94i02
https://typeset.io/institutions/singapore-general-hospital-32b5d4c2
https://typeset.io/institutions/chinese-academy-of-sciences-30n6xdz2
https://typeset.io/journals/biorxiv-318tydph
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/obtaining-spatially-resolved-tumor-purity-maps-using-deep-3hqab9x0yr
https://twitter.com/intent/tweet?text=Obtaining%20Spatially%20Resolved%20Tumor%20Purity%20Maps%20Using%20Deep%20Multiple%20Instance%20Learning%20In%20A%20Pan-cancer%20Study&url=https://typeset.io/papers/obtaining-spatially-resolved-tumor-purity-maps-using-deep-3hqab9x0yr
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/obtaining-spatially-resolved-tumor-purity-maps-using-deep-3hqab9x0yr
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/obtaining-spatially-resolved-tumor-purity-maps-using-deep-3hqab9x0yr
https://typeset.io/papers/obtaining-spatially-resolved-tumor-purity-maps-using-deep-3hqab9x0yr


Obtaining Spatially Resolved Tumor Purity Maps Using

Deep Multiple Instance Learning In A Pan-cancer Study

Mustafa Umit Oner1,2, Jianbin Chen3, Egor Revkov3,2, Anne James4, Seow Ye
Heng4, Arife Neslihan Kaya3, Jacob Josiah Santiago Alvarez3,2, Angela Takano4, Xin

Min Cheng4, Tony Kiat Hon Lim4, Daniel Shao Weng Tan5,6,3, Weiwei Zhai3,7,8,
Anders Jacobsen Skanderup3,2,5, Wing-Kin Sung2,3,*, and Hwee Kuan Lee1,2,9,10,11,12

1Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR),
Singapore, Singapore

2School of Computing, National University of Singapore, Singapore, Singapore
3Genome Institute of Singapore, Agency for Science, Technology and Research

(A*STAR), Singapore, Singapore
4Department of Anatomical Pathology, Singapore General Hospital, Singapore,

Singapore
5Division of Medical Oncology, National Cancer Centre Singapore, Singapore,

Singapore
6Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore,

Singapore
7Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology,

Chinese Academy of Sciences, Beijing, China
8Center for Excellence in Animal Evolution and Genetics, Chinese Academy of

Sciences, Kunming, China
9Singapore Eye Research Institute (SERI), Singapore, Singapore
10Image and Pervasive Access Lab (IPAL), Singapore, Singapore

11Rehabilitation Research Institute of Singapore, Singapore, Singapore
12Singapore Institute for Clinical Sciences, Singapore, Singapore

*Corresponding author: ksung@comp.nus.edu.sg

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451443


Abstract

Tumor purity is the proportion of cancer cells in the tumor tissue. An accurate tumor
purity estimation is crucial for accurate pathologic evaluation and for sample selection to
minimize normal cell contamination in high throughput genomic analysis. We developed a
novel deep multiple instance learning model predicting tumor purity from H&E stained
digital histopathology slides. Our model successfully predicted tumor purity from slides of
fresh-frozen sections in eight different TCGA cohorts and formalin-fixed paraffin-embedded
sections in a local Singapore cohort. The predictions were highly consistent with genomic
tumor purity values, which were inferred from genomic data and accepted as the golden
standard. Besides, we obtained spatially resolved tumor purity maps and showed that
tumor purity varies spatially within a sample. Our analyses on tumor purity maps also
suggested that pathologists might have chosen high tumor content regions inside the slides
during tumor purity estimation in the TCGA cohorts, which resulted in higher values than
genomic tumor purity values. In short, our model can be utilized for high throughput
sample selection for genomic analysis, which will help reduce pathologists’ workload and
decrease inter-observer variability. Moreover, spatial tumor purity maps can help better
understand the tumor microenvironment as a key determinant in tumor formation and
therapeutic response.
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High throughput genomic analysis is indispensable for cancer research, and it has
penetrated clinical practice with the promise of personalized medicine [1, 2]. One of the
crucial factors affecting the quality of genomic analysis is the tumor content of the samples,
which is quantified as tumor purity. A tumor consists of a complex mixture of cells, such as
cancer cells, normal epithelial cells, stromal cells, and infiltrating immune cells [3], and the
percentage of cancer cells within the tumor is called tumor purity [4].

The tumor purity affects both high throughput data acquisition and analysis. To detect
genetic variations of a tumor sample by next-generation sequencing, the sample needs
to have enough tumor content [5–7]. Therefore, an accurate tumor purity estimation is
of great clinical importance. A sample selected based on an overestimated tumor purity,
for example, may lead to a false-negative test result, which may withhold a patient from
getting highly promising therapies [5]. Besides, the genomic analysis should incorporate
the tumor purity to account for normal cell contamination, which can directly confound
results and subsequent clinical decisions [4, 8–13]. A novel immunotherapy gene signature
missed by traditional methods, for example, was discovered using a differential expression
analysis incorporating tumor purity [4]. The tumor purity is also associated with clinical
variables [14–16]. Low tumor purity, for instance, was associated with poor prognosis
in glioma [14], colon cancer [15], and gastric cancer [16]. Moreover, tumor purity was a
promising predictor for therapeutic response in colon cancer [15] and gastric cancer [16].

Tumor purity is estimated by two main approaches: percent tumor nuclei estimation
and genomic tumor purity inference. A pathologist estimates tumor purity by reading H&E
stained histopathology slides. Essentially, the pathologist counts the percentage of tumor
nuclei over a region of interest in the slide. The tumor purity estimated in this way is
referred to as percent tumor nuclei in this study. The percent tumor nuclei estimates are
usually used for sample selection and interpretation of results in the molecular analysis.
The pathologist can read any H&E stained slide and estimate percent tumor nuclei based
on a cellular level analysis. Thus, this approach is widely applicable, and it has a cellular
level resolution. However, counting tumor nuclei is tedious and time-consuming. More
importantly, there exists inter-observer variability between pathologists’ estimates [5, 17].

Recently, tumor purity is inferred from different types of genomic data, such as somatic
copy number data [18–22], somatic mutations data [23–27], gene expression data [28, 29],
and DNA methylation data [30–33]. The tumor purity obtained from these methods will be
referred to as genomic tumor purity in this study. Genomic tumor purity values are usually
used in genomics analysis to mitigate confounding effects of normal cell contamination [34–
36] and in correlational studies to investigate the associations between tumor purity and
clinical variables [37]. Nowadays, genomic tumor purity is accepted as the golden standard.
Genomic methods produce consistent values on different cancer data sets in The Cancer
Genome Atlas (TCGA) [4]. However, they do not apply to the low tumor content samples.
Besides, they do not provide spatial information of the locations of the cancer cells. In other
words, we lose information about the spatial organization of the tumor microenvironment,
which is an essential factor in therapeutic response [38]. Hence, both genomics methods
and pathologists’ slide reading approach have different strengths and limitations.

This study develops a machine learning model that predicts the tumor purity from H&E
stained histopathology slides such that the predictions are consistent with the genomic tumor
purity values. Our model is cost-effective compared to genomics methods or pathologists’
readings since it uses readily available histopathology slides in the clinic and involves
few manual steps. It also provides information about the spatial organization of the
tumor microenvironment. Furthermore, previous studies showed that percent tumor nuclei
estimates by different pathologists are not only inconsistent but also different from genomic
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tumor purity values [4, 12]. However, we still do not know the causes of the difference. This
study provides some insights into the probable causes of the difference.

Two types of machine learning models can be utilized to predict tumor purity from digital
histopathology slides: patch-based models and multiple instance learning (MIL) models.
A patch-based model is trained on a patch cropped from a slide using the corresponding
patch label determined based on pathologists’ pixel-level annotations. During inference, the
predictions for all patches within the slides are obtained from the trained model, and they
are aggregated to obtain sample-level tumor purity prediction. Although different studies
employed this approach for tumor purity prediction [39–44], they had limited coverage since
they required pathologists’ pixel-level annotations, which are rarely available, expensive,
and tedious. On the other hand, the MIL paradigm does not require pixel-level annotations.
It represents a sample as a bag of patches cropped from the sample’s slides and uses a
sample-level label as the bag label [45–48]. Sample-level labels are weak labels providing
only aggregate information rather than pixel-level information. Yet, they can easily be
collected from pathology reports, electronic health records, or different data modalities.

This study designed a novel MIL model to predict tumor purity from H&E stained
histopathology slides (Figure 1a). We represent each sample as a bag of patches cropped
from the sample’s top and bottom slides and use the sample’s genomic tumor purity as
the bag label (Methods). Our MIL model has a novel ‘distribution’ pooling filter that
produces stronger bag-level representations from patches’ features than standard pooling
filters like max and mean pooling (Methods). Our analysis used data from ten different
TCGA cohorts and a local Singapore cohort (Table 1). The histopathology slides in each
cohort were randomly segregated at the patient level into training, validation, and test sets.
Then, we trained our MIL model on the training set, chose the best set of model weights
based on validation set performance, and evaluated the best model on the held-out test set.

Our MIL models successfully predicted tumor purity from histopathology slides in
different TCGA cohorts (Figure 2). The slides were of fresh-frozen sections in TCGA
cohorts. However, we also showed that our MIL model could successfully predict tumor
purity from H&E stained histopathology slides of formalin-fixed paraffin-embedded (ffpe)
sections in the Singapore cohort using transfer learning (Figure 2i). The predictions were
consistent with genomic tumor purity values. Besides, we found that the top and bottom
slides of a sample were significantly different in tumor purity, which showed that tumor
purity varies spatially within the sample (Figure 3c). Our findings also suggested that it
was better to use both slides of the sample for tumor purity prediction whenever available.
Moreover, we obtained spatially resolved tumor purity maps showing the variation of tumor
purity over a slide (Figure 1b, Figure 4b, and Figure 4e).

In TCGA cohorts, pathologists’ percent tumor nuclei estimates were usually higher
than genomic tumor purity values (Supp. 2.2). We investigated the probable causes of that
difference. Our findings suggested that pathologists might have selected high tumor content
regions to estimate percent tumor nuclei, which might have caused high percent tumor
nuclei estimates (Figure 4g). We also observed that besides selecting the region-of-interest,
its size is also crucial for some cancer types.

Our MIL models learned discriminant features for cancerous vs. normal histology while
being trained on the weak labels of genomic tumor purity values. By conducting clustering
over these features, we successfully obtained cancerous vs. normal segmentation maps for
H&E stained slides of the TCGA LUAD cohort. Our qualitative validation showed that
our segmentation is correct (Figure 1c and Figure 5).

Lastly, as an essential property of tumor purity predictors, we showed that our MIL
models classified samples into tumor vs. normal almost perfectly in all cohorts (Figure 1d
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Figure 1: A novel MIL model predicts sample-level tumor purity from H&E stained
digital histopathology slides. (a) Our model accepts a bag of patches cropped from the top
and bottom slides of a sample as input and predicts the sample’s tumor purity at its output. The
feature extractor module extracts a feature vector for each patch inside the bag. The MIL pooling

filter, namely ‘distribution’ pooling, summarizes extracted features into a bag-level representation
by estimating marginal feature distributions. Finally, the bag-level representation transformation

module predicts the sample-level tumor purity. We use tumor purity values inferred from genomic
sequencing data by ABSOLUTE [18] as ground-truth labels during training. (b) We obtain a
spatial tumor purity map for a slide by inferring tumor purity over each 1mm2 region of interest
within the slide in a sliding window fashion. The map shows the variation of tumor purity over
the slide. (c) Our MIL model learned discriminant features for cancerous vs. normal histology
from sample-level genomic tumor purity labels without requiring exhaustive annotations from
pathologists. We used discriminant features to obtain cancerous vs. normal segmentation maps
for tumor slides. Trained feature extractor module extracts features of patches from tumor and
normal slides of a patient. Then, segmentation maps are obtained by hierarchical clustering over
the extracted feature vectors. (d) As an essential property of tumor purity predictors, our MIL
model successfully classifies samples into tumor vs. normal.
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Table 1: The TCGA and Singapore cohorts. In each cohort, a patient has only one
tumor sample and one matching normal sample if available. The number of tumor and
matching normal samples in training, validation, and test sets are presented for each cohort.

tumor samples normal samples

Cohorts train validation test train validation test

BRCA - Breast Invasive Carcinoma 559 185 185 76 27 30

GBM - Glioblastoma Multiforme 285 95 94 0 0 0

KIRC - Kidney Renal Clear Cell Carcinoma 261 85 89 220 71 73

LGG - Brain Lower Grade Glioma 273 91 90 0 0 0

LUAD - Lung Adenocarcinoma 266 90 90 101 37 33

LUSC - Lung Squamous Cell Carcinoma 273 90 90 132 41 47

OV - Ovarian Serous Cystadenocarcinoma 310 103 103 53 13 18

PRAD - Prostate Adenocarcinoma 258 85 85 72 15 24

THCA - Thyroid Carcinoma 258 85 85 48 18 17

UCEC - Uterine Corpus Endometrial Carcinoma 270 90 89 18 4 10

LUAD_SG - Lung Adenocarcinoma (Singapore) 107 36 36 0 0 0

and Figure 3b).

Results

We formulate predicting tumor purity of a sample from its H&E stained histopathology slides
as a MIL task. The sample’s top and bottom slides are cropped into many patches, and these
patches are collected to form a bag. Then, the task is to predict the bag level label of tumor
purity. To achieve this task, we develop a novel MIL model consisting of three modules:
feature extractor module, MIL pooling filter, and bag-level representation transformation
module (Figure 1a). We use neural networks to implement the feature extractor module and
the bag-level representation transformation module to parameterize the learning process
fully (Methods). As the MIL pooling filter, we use our novel ‘distribution’ pooling filter. It
is superior to standard pooling filters (like mean and max pooling) regarding the amount
of information captured while obtaining bag-level representations [49]. Given a bag of
patches, the feature extractor module extracts a feature vector for each patch inside the bag.
Then, thanks to its superiority, the ‘distribution’ pooling filter obtains a strong bag-level
representation by estimating the marginal distributions of the extracted features. Finally,
the bag-level representation transformation module predicts tumor purity. This system of
neural network modules is end-to-end trainable (see Methods for details).

In this study, there were ten different cohorts from TCGA and a local cohort from
Singapore. Each TCGA cohort had more than 400 patients, and the Singapore cohort
had 179 patients, such that each patient had both histopathology slides and corresponding
genomic sequencing data (Table 1). In each cohort, we evaluated the performance of our
trained MIL model on the data of completely unseen patients in the hold-out test set to
simulate clinical workflow. In other words, each patient in the test set is like a new patient
walking into the clinic in a real-world clinical setup [50].
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The MIL model’s tumor purity predictions correlate significantly with

genomic tumor purity values

To evaluate our models’ performance in 10 different TCGA cohorts, correlation analyses
between genomic tumor purity values (obtained from ABSOLUTE [18]) and our MIL
models’ predictions are conducted. Spearman’s rank correlation coefficient is used as the
performance metric.

In 8 cohorts, namely BRCA, GBM, LGG, LUAD, LUSC, OV, PRAD, and UCEC, we
obtained significant correlations (P < 0.05) between genomic tumor purity values and our
models’ predictions from digital histopathology slides (Figure 2). While the minimum
Spearman’s ρmil = 0.418 (P = 4.1e-05; 95% CI: 0.226 - 0.574) was obtained in the LGG
cohort, the maximum Spearman’s ρmil = 0.655 (P = 4.6e-24; 95% CI: 0.547 - 0.743) was
obtained in the BRCA cohort.

We repeated the same analyses between genomic tumor purity values and pathologists’
percent tumor nuclei estimates (Supp. 2.1). While the minimum Spearman’s ρpath = 0.240
(P = 2.7e-02; 95% CI: 0.009 - 0.446) was obtained in the THCA cohort, the maximum
Spearman’s ρpath = 0.344 (P = 9.8e-04; 95% CI: 0.139 - 0.531) was obtained in the UCEC
cohort. There was no significant correlation in the GBM and LGG cohorts. Hence, the
minimum correlation value obtained with MIL predictions (ρmil = 0.418 in the LGG cohort)
was higher than the maximum correlation value obtained with pathologists’ percent tumor
nuclei estimates (ρpath = 0.344 in the UCEC cohort). This implies that MIL predictions
are more consistent with genomic tumor purity values than the pathologists’ percent tumor
nuclei estimates.

Moreover, we conducted statistical tests on correlation coefficients to compare: (i) our
MIL models’ predictions and (ii) pathologists’ percent tumor nuclei estimates. We used the
Fisher’s z transformation based method of Meng et al. [51]. We compared two methods
only when there was a significant correlation for both methods in a cohort (Supp. Table 21).
We observed that correlation coefficients obtained from MIL predictions were significantly
better than ones obtained from pathologists’ estimates in all cohorts except LUSC and
PRAD. For these cohorts, two methods performed on par (Pcomp = 1.7e− 01 > 0.05 for
the LUSC and Pcomp = 2.0e− 01 > 0.05 for the PRAD) in the test sets.

MIL models’ predictions have lower mean absolute error than percent

tumor nuclei estimates

Apart from Spearman’s correlation coefficients, we also checked the mean-absolute errors
between genomic tumor purity values and MIL models’ predictions, and genomic tumor
purity values and pathologists’ percent tumor nuclei estimates (see Supp. 2.2 for the
complete analysis).

In the analyses of MIL predictions, the minimum and maximum mean-absolute-error
values of µemil

= 0.105 (standard deviation σemil
= 0.091) and µemil

= 0.173 (σemil
= 0.154)

were obtained in the OV cohort and the PRAD cohort, respectively. On the other hand, in
the analyses of pathologists’ percent tumor nuclei estimates, the minimum and maximum
mean-absolute-error values of µepath = 0.132 (σepath = 0.124) and µepath = 0.280 (σepath =
0.151) were obtained in the UCEC cohort and the LUAD cohort, respectively. In all cohorts,
percent tumor nuclei estimates were generally higher than genomic tumor purity values.

Similar to our comparison in correlation analyses, we compared two methods based
on absolute errors in the test sets of different cohorts. We used the Wilcoxon signed-rank
test [52] on absolute error values for tumor samples in the test sets (Supp. Table 32).
Absolute error values in MIL predictions were significantly lower than ones in pathologists’
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Figure 2: The MIL model’s tumor purity predictions correlate significantly with ge-
nomic tumor purity values. A scatter plot of genomic tumor purity obtained from ABSO-
LUTE [18] vs. tumor purity prediction obtained from the MIL model is given for only tumor
samples in the test set of each cohort. Spearman’s correlation coefficients with 95% confidence
intervals are summarized at the top of each plot. Note that the red dotted line in each plot shows
the diagonal (i.e., y=x line). All data points would align on the diagonal line in case of zero
prediction error.

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.08.451443doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.08.451443


percent tumor nuclei estimates in all cohorts except the LGG cohort. Two methods
performed similar (Pcomp = 5.4e− 02 > 0.05) in the test set of the LGG cohort.

Our findings in correlation and absolute error analyses are summarized in Figure 3a.
We observed that MIL predictions had lower mean-absolute-error and higher Spearman’s
correlation coefficient than pathologists’ percent tumor nuclei estimates.

The MIL model predicts tumor purity from H&E stained slides of FFPE

sections in the Singapore cohort

Our MIL models successfully predicted tumor purity from H&E stained digital histopathol-
ogy slides of fresh-frozen sections in different TCGA cohorts. Besides, we evaluated their
performance on slides of formalin-fixed paraffin-embedded (ffpe) sections in a local Singa-
pore cohort consisting of 179 lung adenocarcinoma patients. Similar to TCGA cohorts, we
segregated data at the patient level (Table 1).

We used transfer learning and initialized the model with the weights of the MIL model
trained on the TCGA LUAD cohort. Then, we freeze the weights of all layers in the network
except the first convolutional layer in the feature extractor module (Figure 1a). This helped
the network adapt the first layer weights to learn the tissue morphology in slides of ffpe
sections, which were different from fresh-frozen sections (Supp. 3). Note that while the ffpe
method preserves morphology better and is the routine in histopathology, the fresh-frozen
method preserves nucleic acids better and is preferred for molecular analysis [53].

Similar to the performance in the TCGA LUAD cohort, we obtained a Spearman’s
ρmil = 0.554 (P = 4.6e-04; 95% CI: 0.283 - 0.745) and the mean-absolute-error of µemil

=
0.120 (σemil

= 0.091) in the test set of the Singapore LUAD cohort (Figure 2i, Figure 3a,
and Supp. 3 for the complete analysis). There were substantial differences between the
TCGA and Singapore LUAD cohorts, such as tissue preservation method (fresh-frozen
vs. ffpe) and ancestry of patients (European vs. East Asian). However, our MIL model
successfully predicted tumor purity from slides of ffpe sections using transfer learning with
minimal training only in the first convolutional layer of the feature extractor module. The
results suggested that our MIL models learned robust features for tumor purity prediction
tasks at the higher levels of the network. We also checked the performance of the TCGA
LUAD model directly on the Singapore LUAD cohort used as an external validation set
(Supp. 3). Nevertheless, we could not get as good results as we got in transfer learning,
which highlighted the necessity of adapting the weights of the first layer in feature extractor
to ffpe slides.

Tumor purity varies spatially within a sample: top and bottom slides of

a sample are different in tumor purity

Intra-tumor heterogeneity is a well-known phenomenon in solid cancers [54–58]. It results
in therapeutic failure and drug resistance [59]. We checked whether it is observable from
tumor purity predictions of the trained MIL model on the top and bottom slides of a sample
(see Methods). For each slide of a tumor sample with both top and bottom slides in a
cohort, 100 bags are created by randomly sampling from available patches of the slide and
predictions are obtained from the trained MIL model. Then, the predictions of two slides
are statistically compared using the Wilcoxon signed-rank test [52] (see Supp. 2.3 for the
complete analysis).

Figure 3c shows the box plot of p-values obtained from the statistical tests in each
cohort’s test set. There is a significant difference between the MIL predictions on the top
and bottom slides of the same tumor sample. In all cohorts, at least 75% of samples have
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Figure 3: (a,b) MIL models perform better than percent tumor nuclei estimates and
successfully classify samples into tumor vs. normal. (a) Spearman’s correlation coefficient
vs. mean absolute error plot is given for MIL models’ tumor purity predictions (represented by
triangles) and pathologists’ percent tumor nuclei estimates (represented by circles) in the test
sets of different cohorts (showed in different colors). MIL models’ predictions achieve lower mean
absolute error and higher Spearman’s correlation coefficient than percent tumor nuclei estimates.
(b) Receiver operating characteristic curve analysis over MIL models’ predictions for tumor vs.
normal sample classification. The area under curve values with 95% confidence intervals are given
in the legend. MIL models successfully classified samples into tumor vs. normal in all cohorts.
(c,d) The top and bottom slides of a tumor sample are different in tumor purity. In
the test set of each cohort, for a tumor sample having top and bottom slides, we conducted two
experiments. (c) The trained MIL model’s predictions from the top and bottom slides of a sample
are statistically compared using Wilcoxon signed-rank test [52]. Each box plot summarizes the
p-values obtained in a cohort. For at least 95% of the samples in each cohort, the top and bottom
slides are significantly different (P<0.05) in tumor purity. The dashed line shows P=0.05. (d)
For each sample, the absolute error between genomic tumor purity value and the MIL model’s
prediction using both slides and the expected value of absolute errors between genomic tumor purity
value and the MIL model’s predictions over individual slides are calculated. Box plots summarize
the absolute errors in two approaches. They are statistically compared using Wilcoxon signed-rank
test [52], and the results are presented on top of the plots such that P > 0.05 (ns: not significant),
P ≤ 0.05 (*), P ≤ 0.01 (**), and P ≤ 0.001 (***). Whiskers show 5th and 95th percentiles, and red
lines show median values. n: number of tumor samples with two slides.
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p-value P < 1.0e − 08 and at least 95% of samples have p-value P < 0.05. Hence, we
conclude that there is a variation in tumor purity between the top and bottom sections of
a tumor sample, i.e., tumor purity varies spatially within the sample.

The degree of spatial variation in tumor purity is different for different cancer types
(Supp. 2.3). The UCEC, LGG, and GBM cohorts had the lowest mean absolute differences
(µdabs) between top and bottom slides’ predictions (µdabs ≤ 0.090), i.e., they were the most
spatially homogeneous cancers among all cohorts (Supp. Table 41). On the other hand,
the PRAD cohort had the highest mean absolute difference (µdabs = 0.144), i.e., it was the
most spatially heterogeneous cancer in tumor purity.

Predicting the tumor purity of a sample by using both top and bottom

slides is better than using only one slide

We checked if there is a significant difference between predicting a sample’s tumor purity by
using both slides (top and bottom) and using only one slide. For a tumor sample with two
slides in a cohort, let psmpl be genomic tumor purity value of the sample; p̂smpl be tumor
purity prediction obtained from trained MIL model by using both of the slides together;
p̂sld1 and p̂sld2 be tumor purity predictions obtained from trained MIL model for individual
slides. We compared the absolute error of sample level prediction esmpl = |p̂smpl−psmpl| and
the expected value of absolute errors of slide level predictions esld = 0.5 ∗ (|p̂sld1 − psmpl|+
|p̂sld2 − psmpl|) (see Supp. 2.4 for complete analysis). We used the Wilcoxon signed-rank
test [52] on the difference of esmpl − esld (Supp. Table 50). Note that the PRAD (n=21)
and UCEC (n=23) cohorts were excluded from this study due to few samples with two
slides.

In the test sets of BRCA, LUAD, LUSC, and OV cohorts, using both slides for tumor
purity prediction gave better results in terms of absolute error (Figure 3d). However, in
the test sets of GBM and LGG cohorts, there was no significant difference using both
slides or one slide alone. Indeed, this is not surprising since they had the lowest mean
absolute differences between the slides’ predictions (Supp. Table 41), i.e., the most spatially
homogeneous tumors. In fact, when both slides are the same, sample level prediction and
slide predictions would be the same.

We conclude that predicting a sample’s tumor purity using both the top and bottom
slides together is better than using only one of them whenever possible.

Spatial tumor purity map analysis reveals the probable cause of patholo-

gists’ high percent tumor nuclei estimates

Pathologists’ percent tumor nuclei estimates were generally higher than genomic tumor
purity values for all TCGA cohorts in our analysis (Supp. 2.2). We hypothesized that
inappropriate size and selection of region-of-interest might be the cause. We obtained tumor
purity maps by our trained MIL models in different TCGA cohorts and conducted error
analysis over them to test our hypothesis.

We followed the same procedure in Smits et al. [5] to simulate pathologists’ percent
tumor nuclei estimation. Tumor purity is predicted over a region-of-interest of 1mm×1mm

around each patch in a slide, which corresponds to 16 patches at 20× zoom level (each
patch is around 256µm× 256µm at the specimen level) (Figure 4a). Then, the predicted
value is assigned to the patch in the tumor purity map (Figure 4b). We also obtained
tumor purity maps for slides in the Singapore cohort (Figure 4d and Figure 4e).

We observed that a tumor purity map shows variation within the slide, which implies that
region-of-interest selection is crucial in pathologists’ percent tumor nuclei estimation. Since
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tumor purity was higher in pathologists’ percent tumor nuclei estimates, we investigated
whether pathologists might have selected high tumor content regions over the slides for
percent tumor nuclei estimation. The highest prediction in a slide’s tumor purity map
was used as the slide’s tumor purity value. Then, error analyses were conducted over the
slides’ tumor purity values compared to pathologists’ percent tumor nuclei estimates and
genomic tumor purity values. The error analyses were repeated by gradually extending the
region-of-interest such that a slide’s tumor purity was calculated as the average of top-k%
of the patches with the highest scores (k = 0, · · · , 100) in the slide’s tumor purity map.

We discovered that the mean-absolute-error between the slides’ predictions and patholo-
gists’ percent tumor nuclei estimates increases as we extend the region-of-interest to cover
the lower tumor purity regions (Figure 4g). These observations suggested that pathologists
may tend to select high tumor content regions to estimate percent tumor nuclei. The LGG
and UCEC cohorts may look exceptional with almost constant mean-absolute-error plots.
However, this is expected since these two cohorts’ samples have high genomic tumor purity
values (Supp. 1.2), so the variation within the slides is very low. The PRAD cohort’s plot
also has a different pattern than the others. It has an initial decrease and an increase in the
latter stages, emphasizing the importance of the region-of-interest size. The pathologists
may need to analyze a bigger region-of-interest depending on the morphology of the tissue
origin to reach a certain nuclei count while estimating percent tumor nuclei. The PRAD
may be one of them due to the glandular structure of the prostate.

Furthermore, as the region-of-interest grows, the mean-absolute-error between the slides’
predictions and genomic tumor purity values decreases (Figure 4h). Indeed, this is expected
since our MIL models converge to their original performance of prediction over the whole
slide (Figure 2). It is even more evident in the LUSC and OV cohorts. The error decreases
initially but increases later since our MIL models underestimated the tumor purity compared
to genomic tumor purity values in these cohorts.

The MIL model learns discriminant features for cancerous vs. normal

tissue histology

We explored the capability of our MIL model’s feature extractor on learning discriminant
features for cancerous vs. normal tissue histology while being trained on sample-level
genomic tumor purity labels. For each patient having both tumor and matching normal
samples, features of patches cropped over the slides of the tumor and normal samples were
extracted using the trained feature extractor module of the MIL model. Then, slide-level
cancerous vs. normal segmentation maps were obtained by performing a clustering over
the extracted feature vectors (see Methods). The resolution of segmentation was at the
patch level, and each patch was around 256µm× 256µm at the specimen level.

In the test set of the LUAD cohort, there were 33 patients both with tumor and matching
normal samples. We constructed slide-level segmentation maps for these patients (Figure 5).
We observed that segmentation maps were consistent with the LUAD histopathology during
the qualitative assessment of the segmentation maps. While healthy tissue components, like
blood vessels, stroma regions, and normal tissue structures, were labeled normal, regions
invaded by neoplastic cells were labeled cancerous. Hence, we qualitatively validated that
our MIL model learned discriminant features for cancerous vs. normal tissue histology
in LUAD from sample-level genomic tumor purity labels without requiring exhaustive
annotations from pathologists.
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Figure 4: Incorrect size and selection of region-of-interest might cause overestimation
in percent tumor nuclei estimates. For a slide of a fresh-frozen section in the TCGA LUAD
cohort, (a) shows the region-of-interest (ROI) centered around a patch and consisting of 16 closest
patches to that particular patch (≈ 1mm2 at the specimen level). Tumor purity corresponding to
the patch is predicted over the ROI. (b) shows the tumor purity map for all patches within the slide.
Similarly, (d) shows a slide of a formalin-fixed paraffin-embedded (ffpe) section in the Singapore
LUAD cohort, and (e) shows its corresponding tumor purity map. (c) and (f) show example
patches cropped from cancerous regions in the slides shown in (a) and (d), respectively. (g, h) To
investigate the effect of the size and selection of region-of-interest on pathologists’ percent tumor
nuclei estimates, we conducted error analyses over the slides’ tumor purity values by gradually
extending the region-of-interest. We calculated the slide’s tumor purity as the average of top-k% of
the patches with the highest scores (k = 0, · · · , 100) in the tumor purity map (k = 0: the patch
with the highest tumor purity). In different cohorts, we plotted mean-absolute-error vs. top-k% of
the patches for error analyses between slides’ predictions and pathologists’ percent tumor nuclei
estimates in (g) and slides’ predictions and genomic tumor purity values in (h).
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The MIL model successfully classifies samples into tumor vs. normal

Tumor vs. normal discrimination is one of the essential properties of a tumor purity
predictor. To be able to predict tumor purity correctly, it must learn to discriminate
between tumor and normal. We checked our MIL model’s performance in the tumor vs.
normal sample classification task.

Tumor purity predictions for all samples in the test set of each cohort were obtained
and a receiver operating characteristic (ROC) curve analysis was conducted. Then, the area
under the ROC curve (AUC) was calculated and a 95% confidence interval was constructed
using the percentile bootstrap method [60]. Note that GBM and LGG cohorts were excluded
from analysis since there were no normal slides in these cohorts.

Our MIL models successfully discriminated tumor samples from normal samples in all
cohorts with AUC values greater than or equal to 0.927 (Figure 3b). We got the minimum
and maximum AUC values of 0.927 (95% CI: 0.826 - 0.993) and 1.000 (95% CI: 1.000 -
1.000) on the test sets of THCA and BRCA cohorts, respectively. Note that although we
did not get a strong correlation between genomic tumor purity values and MIL predictions
in the test sets of KIRC and THCA cohorts, our models successfully classified samples into
tumor vs. normal in these cohorts.

Furthermore, we obtained an AUC value of 0.991 (95% CI: 0.975 - 1.000) on the test set
of the LUAD cohort. Our model outperformed the classical image processing and machine
learning-based method of Yu et al. (AUC: 0.85) [61] and the DNA plasma-based method
of Sozzi et al. (AUC: 0.94) [62]. Besides, our model performed on par with the deep
learning model of Coudray et al. [63] (AUC: 0.993), which was trained on tumor vs. normal
classification, and the deep learning model of Fu et al. [64] (AUC: 0.977 with 95% CI: 0.976
- 0.978), which was fine-tuned on pathologists’ percent tumor nuclei estimates in a transfer
learning setup. However, there is one concern about the dataset preparation methods of
Coudray et al. [63] and Fu et al. [64]. They obtained the datasets by segregating data either
at slide level [63] or at patch level [64]. These data segregation methods might lead to a
severe data leakage problem, and the models’ performance might be illusory.
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Discussion

Tumor purity is a crucial prognostic biomarker. It also affects the quality of molecular data
acquisition and analysis. However, percent tumor nuclei estimation by pathologists is tedious
and time-consuming. Besides, pathologists’ estimates suffer from inter-observer variability.
To overcome these challenges, we developed a novel MIL model with a distribution pooling
filter. It predicted tumor purity from H&E stained histopathology slides of fresh-frozen
and formalin-fixed paraffin-embedded sections in different TCGA cohorts and a Singapore
cohort, respectively. The predictions were consistent with genomic tumor purity values,
and they outperformed pathologists’ percent tumor nuclei estimates in the TCGA cohorts.

Hence, our MIL models can be utilized in sample selection for molecular analysis, which
will help reduce pathologists’ workload and decrease inter-observer variability. Moreover,
spatially resolved tumor purity maps obtained using our MIL models can substantially
contribute to a better understanding of the tumor microenvironment. Lastly, our models’
predictions can be used as prognostic biomarkers to stratify patients.

Weak tumor purity labels innately necessitated a MIL approach

The necessity of automated tumor purity prediction from H&E stained digital histopathology
images has recently been recognized. There have been few studies in different cancer types,
like breast cancer [41–44], lung cancer [40, 44], and colon cancer [39, 44]. They were all
patch-based methods, and they relied on expensive pixel-level annotations. Some of them
extracted intensity and morphology-based hand-crafted features over the annotated regions
and employed traditional machine learning methods, such as support vector machines
(SVMs) [40, 41] or random forest [44], to classify the patches into malignant vs. benign.
Then, they estimated tumor purity. Besides, recent two studies used deep neural networks
(DNNs) for tumor cellularity estimation in image patches [42, 43]. One extracted the patch
features using a pre-trained DNN and trained decision trees and SVMs to predict the tumor
cellularity [42]. The other one predicted tumor cellularity directly from image patches [43].

The limiting factor in these studies was the requirement for pixel-level annotations,
which usually do not exist since it is a time-consuming and tedious process. However,
sample-level weak labels are easier to obtain from pathology reports, electronic health
records, or different data modalities. This study used genomic tumor purity values obtained
from genomic sequencing data by ABSOLUTE [18] as sample-level weak labels.

While previous studies worked on few cancer types with relatively few patients (like 10
patients [41] or 64 patients [42, 43]), this study conducted a pan-cancer study on 10 different
TCGA cohorts, where each cohort had more than 400 patients. In this study, genomic
tumor purity values as ‘accurate’ labels helped us obtain strong models. However, unlike
pixel-level annotations providing whether each cell is cancerous or normal, the genomic
tumor purity of a sample tells us only the proportion of cancer cells within the sample, so
it is a sample-level weak label. Besides, a sample is best represented using both top and
bottom slides. Therefore, training a machine learning model, which predicts sample-level
tumor purity, using weak genomic tumor purity labels innately necessitated a MIL approach.
This approach represented a sample as a bag of patches from the sample’s slides and used
the sample’s genomic tumor purity value as the bag’s label.

The sources of error in MIL predictions

Our MIL models successfully predicted tumor purity (Figure 2). However, they slightly
deviated from the genomic tumor purity values. There may be different sources of prediction
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errors. While some of them can be eliminated, some are inevitable.
Firstly, we have fewer patients in our data sets than traditional deep learning data

sets containing millions of independent samples [65]. There are around 500 patients per
dataset on average, so around 300 patients per training set. Considering the complexity of
cancer, our MIL models effectively captured features that distinguish cancerous vs. normal.
We also expect that the performance will improve with the increasing number of patients.
Indeed, we obtained the best performance in our largest cohort of BRCA, which had 559
patients in the training set.

Secondly, our MIL model uses histopathology slides from the top and bottom sections
of the tumor portion. We have already shown the variation in tumor purity between the
top and bottom sections of the tumor samples. Thus, for samples with only one slide, the
prediction error is expected to be higher.

Lastly, our model’s predictions are based on morphology in H&E stained histopathology
slides. However, genomic tumor purity values were based on DNA data, and all the
effects of genetic changes (so, the genomic tumor purity changes) may not be observable
from the slides due to the selective dying characteristics of H&E staining. Besides, it
is a well-known fact that DNA manifests morphology, which is the basis of this study
as well. Nevertheless, there is a long way from DNA to morphology. Some factors, like
epigenetics, cell differentiation, or gene expression stochasticity, may hinder the effects of
some mutations occurring in DNA from manifesting themselves in morphology [66].

Superiority of MIL predictions over percent tumor nuclei estimates

Comparing with the percent tumor nuclei estimates by pathologists, our MIL models’
predictions gave a higher correlation and lower mean-absolute-error with genomic tumor
purity values (Figure 3a). One of the primary reasons for this superiority is that the MIL
models were trained directly on genomic tumor purity values, which enabled the MIL
models to learn associated features.

Another reason might be that pathologists concentrate more on tumor cells than
infiltrating normal cells within the tumor, which may result in missed normal tissue
components. Moreover, cancer cells are usually enlarged. They occupy more space than
normal tissue components, stromal cells, and infiltrating lymphocytes, which may create an
implication of high tumor content [17]. Pathologists may fail to incorporate this effect in
their estimates correctly and may overestimate percent tumor nuclei. Indeed, this was the
case in the cohorts we analyzed (Supp. 2.1).

Finally, while our MIL models predict tumor purity over the whole slide, pathologists
estimate the percent tumor nuclei by analyzing some selected region-of-interest over the slide.
Therefore, the size and selection of the region-of-interest might cause the overestimation in
pathologists’ percent tumor nuclei estimates (Figure 4g).

Spatially resolved tumor purity maps can complement spatial-omics

We obtained tumor purity maps showing the variation of tumor purity in slides using our
trained MIL models (Figure 4b and Figure 4e). They can potentially help understand the
interaction of cancer cells with other tissue components (like normal epithelial, stromal, and
immune cells) in the tumor microenvironment, which is a key player in tumor formation and
primary determinant of therapeutic response [38, 67]. Furthermore, they can complement
spatial-omics analyses revealing the spatial distribution of omics features [68–70].
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The MIL model learns discriminant features from weak labels

Our MIL model in the TCGA LUAD cohort learned discriminant features that can classify
cancerous and normal tissues correctly in LUAD dataset (Figure 5). Note that our MIL
model learned discriminant features from genomic tumor purity values (which are sample-
level weak labels) without requiring pixel-level annotations from pathologists, which are
expensive and tedious. It is pretty promising to explore weak labels further for new
biomarkers in cancer studies. In other words, the question of ‘How strong are the weak
labels?’ is still a valid research question to be explored in digital histopathology.

Limitations

Our MIL models, by design, apply to any tumor sample with H&E stained histopathology
slides. We tested them on tumor samples with a broad range of tumor purity values. However,
checking their performance on samples with low tumor content (where ABSOLUTE cannot
determine the tumor purity values accurately) would strengthen the applicability of our
MIL models. It is reserved for future work.

We evaluated our MIL models on hold-out test sets to simulate real-world clinical
workflow and obtained successful results. Besides, our analysis on the Singapore LUAD
cohort using transfer learning with minimal training for domain adaptation showed that
our MIL models learned robust features for tumor purity prediction tasks. However, we
could not validate our models on external cohorts due to differences between fresh-frozen
and formalin-fixed paraffin-embedded tissue preservation methods, which might further
consolidate their robustness.

Lastly, our MIL models are deep learning based, and deep learning algorithms perform
better with more data. Training of the models with larger cohorts would help to improve
the model performance by better capturing patient-to-patient variations.
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Methods

Data Sets

We downloaded H&E stained fresh-frozen section histopathology slides and corresponding
genomic sequencing data for ten different cohorts in TCGA (BRCA, GBM, KIRC, LGG,
LUAD, LUSC, OV, PRAD, THCA, and UCEC). We selected these cohorts since they
have more than 400 patients with both histopathology slides and corresponding genomic
sequencing data in TCGA (Table 1). Each patient had a tumor sample, and some patients
also had matching normal samples.

In TCGA, each sample was chopped into portions following the TCGA Standard
Operating Procedures [71–74]. Then, one of the portions was sequenced for genomic
analysis. One or two associated histopathology slides (namely top and bottom slides) were
also prepared from the top and bottom sections of the same portion.

We also collected digital histopathology slides of an East Asian cohort consisting of
179 lung adenocarcinoma patients in Singapore. The genomic data for this cohort is
publicly available from OncoSG (https://src.gisapps.org/OncoSG/) under dataset ‘Lung
Adenocarcinoma (GIS, 2019)’. Although slides are not publicly available, this site serves
representative histological images for each patient. In the Singapore cohort, only one slide
was prepared for each tumor sample from the top section of the tissue used for sequencing,
and there were no normal samples.

In each cohort, we randomly segregated the data at the patient level (i.e., slides from the
same patient should be in the same set) into training, validation, and test sets, which had
similar tumor purity distributions (Supp. 1.2). Note that segregating data at the patient
level is crucial to prevent data leakage while training machine learning models [50]. The
training set was used to train the machine learning model, the validation set was used to
choose the best model, and the test set was held out as unseen data for evaluation of the
best model. The list of patients and slides in each set are given in Supp. File 1.

Tissue regions inside histopathology slides were detected by applying OTSU thresholding,
image dilation, median filtering, and hole-filling, respectively. Over the detected tissue
regions, non-overlapping 512× 512 RGB images at 20× zoom level (specimen-level pixel
size, 0.5µm× 0.5µm) were cropped. For each cohort, detailed information about the data
in training, validation, and test sets are given in Supp. 1.

MIL Model

Problem formulation and notation

The objective is to predict a bag label Y for a given bag of instances X = {xi|xi ∈ I, i =
1, 2, · · · , N} where I is the instance space and N is the number of instances inside the bag.
Here, a bag label Y is the genomic tumor purity of a sample, and a bag X is a collection of
cropped patches over the sample’s slides.

Let D be a MIL dataset such that D = {(X,Y ) | X ∈ X and Y ∈ Y}, where X = IN is
the bag space and Y is the bag label space. Given any pair (X,Y ) ∈ D, our objective is to
predict bag label Y for a given bag of instances X = {xi|xi ∈ I, i = 1, 2, · · · , N}. Let Ŷ be
the predicted bag label of X. To obtain Ŷ , we designed a novel MIL framework consisting
of three stages.

The first stage is a feature extractor module θfeature : I → F , where F is the feature
space. For each xi ∈ X, it takes xi as input, extracts J features and outputs a feature
vector: fxi

= θfeature(xi) = [f j
xi |f j

xi ∈ R, j = 1, 2, · · · , J ] ∈ F where F = R
J . Let
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FX = [fxi
|fxi

∈ R
J , i = 1, · · ·N ] ∈ R

JN be a feature matrix constructed from extracted
feature vectors such that ith column corresponds to fxi

.
The second stage is a MIL pooling filter module θfilter : RJN → H, where H is the

bag-level representation space. It takes the feature matrix FX as input and aggregates the
extracted feature vectors into a bag-level representation: hX = θfilter(FX) ∈ H.

The last stage is a bag-level representation transformation module θtransform : H → Y . It
transforms the bag level representation into the predicted bag label: Ŷ = θtransform(hX).

We use neural networks to implement θfeature and θtransform so that we can fully parameter-
ize the learning process. For θfilter, we use our novel ‘distribution’ pooling filter [49], which
we have shown to be superior to point-estimate based MIL pooling filters, like max-pooling
or mean-pooling. This system of neural networks is end-to-end trainable.

Distribution Pooling Filter

We have defined the family of distribution-based pooling filters in [49] as: Given a feature
matrix FX = [f j

xi |f j
xi ∈ R, i = 1, 2, · · · , N and j = 1, 2, · · · , J ] obtained from a bag

X = {x1, x2, · · · , xN}, its bag level representation is obtained by estimating a marginal
distribution over each extracted feature. Let p̃jX : R → R

+ ∪ {0} be the estimated marginal

distribution obtained over jth extracted feature and p̃
j
X ∈ P where P is the set of all possible

marginal distributions. p̃
j
X is calculated by using kernel density estimation [75], which

employs a Gaussian kernel with standard deviation σ, as shown in the Eq. 1. Each instance
has two attention based weights, feature weight αi and kernel weight βi, obtained from
neural network modules. Hence, the bag level representation hX = [p̃jX |p̃jX ∈ P, j =
1, 2, · · · , J ] ∈ H where H = P

J . Note that the estimated marginal distributions are
uniformly binned during training neural network models for computational purposes.

p̃
j
X(v) =

N∑

i=1

βi
1√
2πσ2

e
−

1

2σ2 (v−αif
j
xi)

2

∀j=1,2,··· ,J (1)

In [49], we formally proved that the distribution-based pooling filters are superior to
the point estimate-based counterparts (like max and mean pooling) regarding the amount
of information captured while obtaining bag-level representations. Then, we empirically
showed that models with distribution-based pooling filters perform equal or better than
that with point estimate-based pooling filters on distinct real-world MIL tasks.

In this study, we used standard deviation of σ = 0.05 and the estimated marginal
distributions were uniformly binned into 21 bins. Note that attention weights in ‘distribution’
pooling were fixed to αi = 1 ∀i and βi =

1

N
∀i where N is the number of instances per bag.

Neural network architectures and hyper-parameters

We used a ResNet18 [76] model as the feature extractor module and a three-layer multi-
layer-perceptron as the bag-level representation transformation module.

During the training of the models, we prepared bags on the go. A bag was created by
randomly sampling 200 patches (instances) from all available patches previously cropped
over a sample’s slides. The patch size was 512× 512. Data augmentation (random cropping
with a size of 299× 299 and random horizontal/vertical flipping) was also applied on the
patches. We extracted 128 features for each instance inside the bag.
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Training of MIL Model

We trained the MIL model on samples of patients in the training set. We used a bag of
patches from slides of the tumor sample as the input and tumor purity value obtained
from genomic sequencing data by ABSOLUTE [18] as the ground-truth label (Supp. 1.2).
Genomic tumor purity values were extracted from publicly available data in the Genomic
Data Commons (https://gdc.cancer.gov/about-data/publications/pancanatlas) under file-
name “TCGA_mastercalls.abs_tables_JSedit.fixed.txt” for the TCGA cohorts and in the
OncoSG (https://src.gisapps.org/OncoSG/) under dataset ‘Lung Adenocarcinoma (GIS,
2019)’ for the Singapore cohort. We also used the matching normal sample of the same
patient whenever available to enable our model to capture the information related to normal
tissue histology. We assigned a tumor purity value of 0.0 to a matching normal sample as
the ground-truth label. Note that there were no normal samples in the Singapore cohort.

We initialized the neural networks randomly and trained them end-to-end. We trained
models using the ADAM optimizer with a learning rate of lr = 0.0001 and L2 regularization
on the weights with a weight decay of weight_decay = 0.0005. The batch size was 1. We
used absolute error as the loss function and employed early-stopping based on loss in the
validation set to avoid overfitting. Then, we evaluated our model on the unseen test set.

Predicting Tumor Purity of a Sample

We created 100 bags for each sample in the test set and obtained tumor purity predictions
from the trained model. We used the average of 100 predictions as the sample’s tumor
purity prediction during performance evaluation.

Segmentation of Histopathology Slides

Understanding the structure of tumor composition is essential. We developed a cancerous
vs. normal segmentation algorithm in the TCGA LUAD cohort to visually inspect the
structure of the tumor microenvironment.

In principle, a tumor purity predictor must learn discriminant features for cancerous
and normal components in the tissue to predict tumor purity correctly. For each patient
with a matching normal sample, we used the trained feature extractor module of our MIL
model to extract features of patches cropped over the slides of the tumor and normal
samples of the patient. Then, we clustered the patches using hierarchical clustering over the
extracted feature vectors (Figure 1c). We calculated patient-specific distance thresholds in
hierarchical clustering to capture inter-patient variations. Finally, we assigned a cancerous
or normal label to each cluster based on the slide type (tumor slide or normal slide) that
the patches within the cluster belong to (Supp. 4).

Statistical Analysis

We obtained 95% confidence intervals for Spearman’s rank correlation coefficients and area
under the receiver operating characteristic curves using the percentile bootstrap method [60].

To compare the performance of two methods (our MIL models’ predictions and patholo-
gists’ percent tumor nuclei estimates), we used Fisher’s z transformation based method
of Meng et al. [51] on Spearman’s rank correlation coefficients and Wilcoxon signed-rank
test [52] on absolute error values.

All statistical tests were two-sided and statistical significance was considered when P <
0.05. We used scipy.stats (v1.4.1) python library for statistical tests.
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Data Availability

All TCGA datasets are publicly available. Manifest files can be obtained from the GitHub
repository (https://github.com/onermustafaumit/SRTPMs) to download H&E stained
digital histopathology slides using GDC Data Transfer Tool. Genomic tumor purity values
can be downloaded from https://gdc.cancer.gov/about-data/publications/pancanatlas under
filename “TCGA_mastercalls.abs_tables_JSedit.fixed.txt”. For the Singapore cohort,
genomic tumor purity values and representative histological images are publicly available
from OncoSG (https://src.gisapps.org/OncoSG/) under dataset ‘Lung Adenocarcinoma
(GIS, 2019)’.

Code Availability

The source code is available at https://github.com/onermustafaumit/SRTPMs. The reposi-
tory provides a detailed step-by-step explanation, from downloading H&E stained digital
histopathology slides to obtaining Spatially Resolved Tumor Purity Maps (SRTPMs).
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