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Universidad de Alicante, E-03080 Alicante, Spain

and
Laboratory for Chemistry of Novel Materials,
University of Mons, B-7000 Mons, Belgium
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Abstract

The non-covalent interactions in organic molecules are known to

drive their self-assembly to form molecular crystals. We compare, in

the case of anthracene and against experimental (electronic-only) sub-

limation energy, how modern quantum-chemical methods are able to

calculate this cohesive energy taking into account all the interactions

between occurring dimers in both first- and second-shells. These in-

clude both O(N6)- and O(N5)-scaling methods, LPNO-pCCSD and

SCS-MP2, respectively, as well as the most modern family of con-

ceived density functionals: double-hybrid expressions in several vari-

ants (B2-PLYP, mPW2-PLYP, PWPB95) with customized dispersion

corrections (–D3 and –NL). All-in-all, it is shown that these methods

behave very accurately producing errors in the 1–2 kJ/mol range with

respect to the experimental value taken into account the experimental

uncertainty. These methods are thus confirmed as excellent tools for

studying all kind of interactions in chemical systems.
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1 Introduction

Quantum and Computational Chemistry fields need more than ever to

achieve a balanced description of all kind of systems, be they organic, in-

organic or hybrid, and interactions, be they covalent or non-covalent, keep-

ing at the same time the pervasive compromise needed between accuracy

and cost to address nanotechnological or biological related issues. This is

so because the bottom-up approach, lately followed to design new materi-

als with targeted properties, new molecular nanoarchitectures or host-guest

systems, or to study key biomolecules and their associated processes, can

not accept large errors at the nanoscale, the first step in the size hierarchy,

without affecting too much the specific properties at the mesoscale, where

atomistic-like pictures are normally used to establish the link between both

extremes of nature (micro- and macroscopic descriptions). Thus, working at

the nanoscale demands the most of theoretical methods, which thus repre-

sents a real challenge since all quantum electronic effects truly manifest in

these small dimensions and universally affect all systems.

As a matter of illustration, if one wants to study the key processes [1, 2]

taking place within new organic-based electronic devices (ranging from field-

effect transistors to clean energy devices or display technologies [3]) made

from oligoacenes samples, it is needed to accurately describe any expected

change in the self-assembly of the molecules driven by the underlying sub-

tle forces between adjacent molecules (i.e. intermolecular interactions [4–6]).

Despite the weakness of these forces, they really matter since any chemical

functionalization of the molecular backbone might alter the mode of pack-

ing [7–9] and thus all the intended properties. On the other hand, polymor-

phism is a common issue affecting drug discoveries, crystal engineering or
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final composition of samples, demanding also the greatest possible accuracy

to energetically rank the competing structures, which in many cases differ

by just few kJ/mol [10–17]. In this context, it is easy to understand why

the clasically used metric known as “chemical accuracy” (deviation of ± 1

kcal/mol with respect to benchmark values) needs to be substituted here

by the most stringent “calibration accuracy” (deviation of ± 1 kJ/mol with

respect to benchmark values).

However, achieving this accuracy is far to be a trivial task. First, high-

scaling quantum-chemical methods can give values close to it for the right

reason [18, 19], but the price to be paid is of course the system size (N).

On the other hand, at the other extreme of the scale, methods based on

Density Functional Theory (DFT) are very favorable in this respect, but

they completely neglect long-range forces since, due to their specific con-

struction, they can accurately describe electronic effects only at a limited

neighborhood around the reference electronic position (the problem dubbed

as near-sightedness of matter) and thus need specific corrections to become

workable tools [20–37] able to deal with non-covalent interactions. Note

that we have previously investigated [38] the performance of some low-cost

DFT-based methods in the case of anthracene (see Figure 1), for which the

crystalline structure and corresponding lattice energy were known. We will

further investigate here if some of the most recently developed theoretical

methods are able to achieve greater accuracy. This would allow to bracket

their expected performance as well as to establish (if any) the existing rela-

tionships between accuracy and cost for these complicated interactions.
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2 Theoretical methods

2.1 LPNO-pCCSD: O(N 6)

Briefly speaking, this method is a parameterized (p) Coupled-Cluster Sin-

gle and Double (CCSD) model within the Local Pair Natural Orbital (LPNO)

approach, specifically devised to give accurate results with large basis sets.

This is so because the virtual space expanded by large basis sets is much

larger than the valence space, but the use of the corresponding natural or-

bitals largely accelerates the convergence of equations. Next, the introduction

of some empirical parameters (α, β, γ) into the full CCSD equations, in fact

into the contributions arising from the key term 1
2
T̂ 2

2 (α and β) and into the

T̂1T̂2 term (γ), leads to an accuracy close to that achieved by CCSD(T), the

’golden-standard’ today, but at a non-negligible reduction of computational

cost: O(N6) instead of O(N7). More details can be found in Refs. [39–43]

while some of the specific applications to weak molecular interactions are

gathered in Refs. [44–47].

2.2 SCS-MP2 and SCS-S66-MP2: O(N 5)

We start by recognizing the well-known fact that Møller-Plesset perturba-

tion theory at second-order (MP2) is able to only partly capture the physics

behind weak interactions, and it is thus considered as the pioneering yet sim-

plest theoretical ab initio method to be applied for it, although is is also well-

known how these interactions are systematically overestimated [48]. Briefly

speaking again, starting from the uncorrelated Hartree-Fock (HF) energy,

we can consider to scale differently the energy contributions arising from

opposite- or same-spin interactions, in search of a greater accuracy than

original MP2 does and actually close to that achieved by higher-order terms
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of the perturbation expansion, by doing:

EMP2 = EHF + EPT2
c = EHF + c↑↓E

↑↓
c +

1

2
c↑↑E

↑↑
c +

1

2
c↓↓E

↓↓
c (1)

and try to find a set of optimal values for cij against a respected and sound

training set of accurate energies. This was initially implemented by S.

Grimme [49] leading to the so-called Spin-Component-Scaled (SCS-) MP2

method. Admittedly, if we restrict the kind of interactions which are present

in the training set, one can also obtain a set of parameters aiming at better

describing those selected interactions. This has been recently done for the

weak interactions contained in the S66 database [50] of weakly interacting

complexes (SCS-S66-MP2). Note, however, that the general-purpose SCS-

MP2 behaves also successfully for these weak forces, as it exemplified by

para-diiodobenzene [51] and rubrene [52] dimers, or paracyclophane deriva-

tives [53], although perhaps tends to slightly underestimate these stabilizing

weak effects [54]. We will apply here these two methods for the set of in-

termolecular interactions found in the anthracene crystal, in an attempt to

further evaluate their reliability, and maked use of the default parameters

defined for SCS-MP2 (c↑↓ = 6/5 and c↑↑ = c↓↓ = 1/3), SCS-S66-MP2/def2-

TZVP (c↑↓ = 0.04 and c↑↑ = c↓↓ = 2.00), and SCS-S66-MP2/def2-QZVP

(c↑↓ = 0.26 and c↑↑ = c↓↓ = 1.56). Note how the parameters depend on the

basis set chosen for the SCS-S66-MP2 variant.

2.3 Double-hybrid density functionals: O(N 5)

These methods are robustly rooted into the adiabatic connection frame-

work [55–57], from which the hybrid functionals are also obtained after im-

posing some analytical path connecting the non-interacting particle system

and the real interacting one [58–60], by introducing an additional depen-
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dence on the correlation energy obtained from perturbation theory up to

second-order (PT2). Thus, together with the known mixture between exact-

like exchange (EXX) energy, EEXX
x , and density functional exchange energy,

Ex[ρ], one adds now the mixture between the correlation energy obtained by

perturbation theory, EPT2
c , and the corresponding density functional corre-

lation energy, Ec[ρ], to get a general-purpose expression such as:

EDH
xc = wEXX EEXX

x +(1 − wEXX) Ex[ρ]+wPT2 EPT2
c +(1 − wPT2) Ec[ρ], (2)

receiving correspondingly the name of double-hybrid (DH) density function-

als. We will use the specific forms [61–63] called B2-PLYP (wEXX = 0.53 and

wPT2 = 0.27), mPW2-PLYP (wEXX = 0.55 and wPT2 = 0.25), and PWPB95

(wEXX = 0.50 and wPT2 = 0.27 for the c↑↓ coefficient entering into the EPT2
c

contribution, vanishing otherwise for same-spin contributions).

Final accuracy of DH functionals is believed to be determined by the

value of wPT2 (i.e., indeed the wPT2/wEXX ratio) found in each case as a

compromise. Without loss of generality, these DH forms can predict gen-

uinely a bound dimer, contrarily to older DFT-based expressions. However,

pairwise dispersion (2-body interactions) energy needs to be concomitantly

added through a correction coined as –D2 [64, 65] or –D3 [66, 67] taking the

form:

E2−body ≈ ED3 = −
N

∑

B>A

∑

n=6,8

sn
CAB

n

Rn
AB

fn(RAB, sr,n), (3)

which runs over all atoms A and B of the system at their fixed (experimental

here) positions. Note that: (i) CAB
n are the nth-order interatomic dispersion

coefficients; (ii) fn(RAB, sr,n) is a damping function peaking at the sum of

van der Waals radii of A and B avoiding at the same singularities for short

distances between atoms; (iii) sn and sr,n are the set of parameters efficiently
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coupling this term to the electronic energy given by eq. (2); (iv) the expres-

sion can be further simplified by keeping only the first term of the expansion,

needing thus only the corresponding s6 parameter, together with a system-

independent damping function or coefficients, to give the approach known as

–D2; and (v) these corrections work independently of basis set issues and add

at no extra computational cost. Furthermore, another way (not longer based

on atom-to-atom pairwise interactions) to capture these long-range disper-

sion interactions relies on the instantaneous response of matter at a point r

to a fluctuation of charge density at another point r′, which manifests in a

truly nonlocal (–NL) correction to the electronic energy in the way:

ENL =
∫

drρ (r)
[

β(b) +
1

2

∫

dr′ρ (r′) Φ (r, r′)
]

, (4)

needing to complementarily define the function Φ (r, r′) coupling the den-

sities at both points. We will use for it the specific modern construction

VV10 [68] which can be added to any existing functional after defining the

attenuation parameter (b) entering into its formulation through β. This has

been formerly done for pure and hybrid methods [69, 70] and recently ex-

tended by some of us to the case of double-hybrids [71]. Table 1 summarizes

all the parameters used along this work for the dispersion corrections selected.

2.4 Technical details

The ORCA program [72] was used for all calculations, employing the

sequence of def2-TZVP and def2-QZVP basis sets. Note that to reduce as

much as possible the errors due to the basis set incompleteness, which are

expected to largely affect intermolecular interaction energies, we always: (i)

use for production purposes at the DFT level the very large def2-QZVP basis

set; and (ii) extrapolate to the Complete Basis Set (CBS) limit the results of
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the ab initio calculations, for which a slower convergence pattern is known,

using numerical techniques allowing to reach the asymptotic regime. The

Basis Set Superposition Error (BSSE) is expected to be thus negligible in

both cases and, consequently, the interaction energies are not counterpoise

corrected. Note also that the counterpoise method to estimate the (pos-

sible) BSSE is believed to overestimate its effect, and some authors even

propose to scale it down by half of its value [37]. The computational effort

is significantly reduced in all the cases by making use of the ’resolution of

the identity’ (RI) [73] and the ’chain-of-spheres’ (COSX) [74] algorithms, for

Coulomb or exchange integrals, respectively, using for it the corresponding

matching auxiliary basis sets [75]. The quadrature grids needed for numerical

integration of density functionals are also increased with respect to defaults,

which is strongly recommended for intermolecular interaction energies, as

well as the corresponding thresholds for converging energies self-consistently.

The MERCURY program [76] is employed for visualizing and manipulating

crystal structures in three dimensions.

3 Accessing cohesive energy from intermolec-

ular interactions

The lattice energy, actually the binding energy arising from all inter-

molecular interactions, is related to the sublimation enthalpy of the molec-

ular crystal. However, thermal and vibrational effects need to be carefully

taken into account before any comparison between experiments and theory

can be made. Fortunately, this has been recently done for a set of organic

solids of the most interest [77], starting from experimental data and correct-

ing for temperature effects and solid vibrations, readily allowing to compare
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the estimates of approximate yet accurate methods. Therefore, in the case

of interest here, the anthracene crystal, an (electronic-only) experimental

lattice energy (∆Elatt) of 100.6 kJ/mol is obtained, although we also need

to consider the average experimental error for sublimation energies (± 4.9

kJ/mol) [78] before assessing the results of any theoretical method.

We base our calculations on dimer interactions, for which the interac-

tion energy is defined as ∆Ei = Edimer(i) − 2Emonomer. The coordinates of

all the anthracene dimers belonging to first and second coordination shells

(see Figure 2) were taken from Ref. [79] and were not otherwise optimized.

Note that: (i) previous and careful estimates of cohesive energy from dimer

interactions (benzene [80]) were certainly successful; (ii) the convergence is

believed to be attained since the consideration of additional shells is expected

to lead to negligible (note the well-known r−6 decay of these interactions) en-

ergy contributions; and (iii) the use of a nanoaggregate, instead of the set

of all considered dimers, would add the problem of many-body interactions

which is not still completely solved despite recent interesting advances in the

right direction [81–83]. Finally, to get an estimate of the cohesive or lattice

energy, one needs to multiply each association energy by the number (m) of

symmetry-related pairs, −∆Elatt = mi
∑

i ∆Ei, and then to divide the results

by two as a result of the counting method, see Ref. [84]. Note how the final

value of ∆Elatt is made positive to compare with experimental (electronic-

only) sublimation energies.

The behavior of canonical MP2 is analyzed first as reference for further

improvements. Whereas the result for ∆Elatt with the def2-TZVP basis set is

affected of a large error (158.3 kJ/mol), the use of def2-QZVP largely reduces
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it (132.3 kJ/mol) and brings it closer to the CBS estimate (123.9 kJ/mol)

after applying an extrapolation technique using the well-known dependence

(n−3, where n is related to the largest angular moment of the basis func-

tions for each considered basis set) of this correlation energy with respect

to basis set size [85]. We employ now the LPNO-pCCSD method in two

variants (LPNO-pCCSD1a, having α = −1 and β = γ = 1, and LPNO-

pCCSD1b, having α = γ = −1 and β = 1). We will refer in the following

only to the LPNO-pCCSD1a results because both approaches lead to practi-

cally indistinguishable results. Using the def2-TZVP basis set drops a value

of 114.4 kJ/mol for ∆Elatt, which may be hopefully improved considering the

CBS limit. Then, taking into account that: (i) the O(N6) scaling of LPNO-

pCCSD1a precludes its application with basis sets larger than the def2-TZVP

one, and (ii) basis set effects on correlation energy (Ec) can be efficiently cap-

tured at the MP2 level; we approximate the final (nearly-converged) energies

by:

ELPNO−pCCSD1a/CBS ≈ EHF/def2−QZVP + EMP2/CBS
c (5)

+
(

ELPNO−pCCSD1a/def2−TZVP
c − EMP2/def2−TZVP

c

)

,

as it has been also done before with much success [44, 45]. Note that we as-

sume that: (i) HF energies are practically converged at the def2-QZVP level;

and (ii) the residual difference between LPNO-pCCSD1a and MP2 corre-

lation energies has a less marked dependence on basis sets than the MP2

correlation energy itself. We obtain now a value for ∆Elatt of 94.7 kJ/mol,

which can be considered of large accuracy and close to the experimental esti-

mate (see Figure 3). As a test of self-consistency of the extrapolation schemes

investigated, if one substitutes now EMP2/CBS
c by EMP2/def2−QZVP

c in eq. (5)

the value of ∆Elatt is only slightly affected (95.3 kJ/mol) in the right direc-

tion. Other investigated approaches, for instance a slower n−2.4 convergence
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for MP2-derived correlation energies [86], to estimate the CBS limit led to

less accurate results and will be thus not shown.

The SCS-MP2 results are presented next: whereas Table 2 gathers the

∆Ei values corresponding to all dimer interactions, the resulting ∆Elatt en-

ergy is included in Figure 3 too. Note that we also extrapolate the correla-

tion energy provided by def2-TZVP and def2-QZVP using the same function

than before for the MP2 case. The accuracy of this scheme will be inves-

tigated elsewhere. As a matter of example, we focus on the ∆Ei energy of

the (a/2,b/2,0) pair, see Figure 2, which actually drives the herringbone-like

growing of anthracene molecules contributing the most to ∆Elatt in all cases,

to see how its value consistently decreases upon larger basis sets: –34.0, –

29.8, and –28.2 kJ/mol with the def2-TZVP, def2-QZVP, and at the CBS

limit, respectively. We have also detected with not-so-large basis sets (i.e.,

def2-TZVP) how some interaction energies (admittedly small) become in this

case positive (∆Ei > 0) and can thus perturb the final estimate of ∆Elatt

resulting in a slight underbinding. This spurious numerical effect can be at-

tributed again to the basis set incompleteness since, as it can be observed in

Table 2, all the intermolecular interactions have the right sign once the CBS

limit is achieved. The accuracy of the SCS-S66-MP2 variant is close to that

of SCS-MP2 although some appreciations appear also to be in order: (i) the

cohesive energy with the def2-TZVP (def2-QZVP), and the specific same-

and opposite-spin scaling parameters for each basis set, is strongly (slightly)

overestimated finding again that ∆Ei > 0 for some dimers, resulting in fi-

nal values of 150.0 and 111.6 kJ/mol, respectively; (ii) we observe a more

pronounced dependence of the results with basis set effects, since going from

def2-TZVP to def2-QZVP the value of ∆Elatt is reduced by a rough 25 %
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(20 % in the SCS-MP2 case); and (iii) since the scaling parameters depend

on basis sets, and can thus partly mimic their incompleteness, we do not

perform the corresponding extrapolation to the CBS limit.

The previously derived MP2 values can be also helpful to approximately

interpret the results of the double-hybrid calculations. Actually, the B2-

PLYP method missing the dispersion correction provides a value of 34.6

kJ/mol, and thus severely underestimates the experimental value, which

qualitatively correlates with the weight of the PT2-like term entering into its

formulation (∆EB2−PLYP
latt ≈ wPT2 ∆EMP2

latt ). This underlines again the impor-

tance of the PT2-like term for double-hybrid calculations, since corresponding

semilocal pure or hybrid functionals completely neglect these dispersion inter-

actions and give thus unbound dimers. Note that in the case of mPW2-PLYP

or PWPB95, the exchange functional was reparameterized to partially mimic

long-range interactions, and thus they might behave slightly better (49.5 and

44.8 kJ/mol, respectively). Even if these values are admittedly affected of

large errors, more than 50 %, they serve as a good starting point for adding

the dispersion energy still missed and thus for further discussing the rest of

results. One can easily see from Table 2 how accurate are now the predic-

tions of all schemes used, for instance, with the B2-PLYP model, that is,

the B2-PLYP–D2, B2-PLYP–D3, and the B2-PLYP–NL corrections. They

predict values between 108–110 kJ/mol, which can be considered very close

to the experimental estimate (see Figure 3), and indeed almost all the tested

DH functionals provided very accurate values, including mPW2-PLYP–D2

(102.6 kJ/mol) and PWPB95–D3 (105.3 kJ/mol). Although the leading con-

tributions to the cohesive energy mainly arise from the inner coordination

sphere, interactions from the outer sphere account for 24–26 % of its value
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and can be thus considered as significant. Note also that the slower conver-

gence of the PT2-type term upon increasing basis sets, compared with the

other functional terms, is not expected to modify significantly the results

when a sufficiently large (e.g. def2-QZVP) basis set is used. However, we

have also to recognize an error (around ± 1–2 kJ/mol) in these theoretical

estimates arising from the positive energy values for the (-a,0,c) and (-a,b,c)

dimers. Furthermore, we have also assessed the influence of longer range

interactions through the dimer (0,2b,0) belonging to the third-shell. The

results obtained with B2-PLYP–D2, B2-PLYP–D3, and B2-PLYP–NL are

about –0.1 kJ/mol, between 150–250 times smaller that for the correspond-

ing 2nd-shell dimer (0,b,0), and can thus considered as negligible.

The –D3 scheme can be further corrected by accounting for the influence

of three-body terms (i.e., the contributions for all atoms triples A, B, and

C) by means of the following expression [87]:

E3−body ≈ EABC =
N

∑

A>B>B

CABC
9

(3 cos θa cos θb cos θc + 1)

(RABRBCRAC)3 fn(RAB, RBC , RAC),

(6)

where CABC
9 is the corresponding coefficient (approximated by CABC

9 =

−
√

CAB
6 CBC

6 CAC
6 ) and θi are the internal angles of the triangle formed by

the interatomic distances (RABRBCRAC). Although this correction may be

in principle applied to all schemes, we prefer to keep consistency with orig-

inal developments and then to restrict it to the case of –D3. Note that we

have evaluated in the past [38] this contribution for the nanoaggregate of

anthracene molecules depicted in Figure 4, which corresponds to the posi-

tions of the molecules in the a-b plane of the crystalline lattice (the most

densely packed) and thus represents a trade-off between size and computa-

tional resources, to obtain a value of 7.2 kJ/mol. Note that this contribution
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is positive and thus correct the typical slight overbinding of the –D3-based

approaches. The final B2-PLYP–D3 and PWPB95–D3 cohesive energies are

now 103.3 and 98.1 kJ/mol, respectively, lying within the experimental accu-

racy. This reinforces the robustness of all tested dispersion corrections since,

almost independently of the underlying exchange-correlation functional, they

are able to largely overcome the underestimation found for the uncorrected

expressions and can thus be used safely for related properties and systems

using finite-model approaches.

Finally, we remind that previous estimates of lattice energies of anthracene

crystals were mainly performed with O(N3) or O(N4) methods, employing

different dispersion corrections and technical conditions, which makes diffi-

cult the direct comparison of values. Notwidthstanding this, and fixing the

functional PBE in all cases, we mention values ranging from 51.6 to 135.5

kJ/mol. More specifically, results within PBE-lg (51.6 kJ/mol [88]), PBE-

XDM (96.3 kJmol [77]), PBE-D2 (104.3 kJ/mol [89] and 106.22 kJ/mol [77]),

and PBE-TS (130.5 kJ/mol [89] and 135.5 kJ/mol [77]) schemes are reported

in the literature, which indicates a strong influence on the results of the for-

merly employed dispersion corrections as well as their technicalities. As a

double-check, note how B3LYP-D2 drops a value of 105.9 kJ/mol [90] being

thus close to PBE-D2, as it should be expected. If one fixes now the revised

PBE (revPBE) functional [91], we had previously obtained values between

128–126 (112–108) kJ/mol when the variants revPBE-D3 and revPBE0-D3

(revPBE-NL and revPBE0-NL), respectively, were employed [38]. On the

other hand, all the methods considered here, independently of their differ-

ent origin and parameterization and once basis set incompleteness issues are

solved, lead to values ranging between 96–110 kJ/mol to be compared with
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an experimental estimate of 101 ± 5 kJ/mol.

4 Conclusions

The interactions between weakly overlapping densities become a seri-

ous challenge for any modern quantum-chemical method as far as a decent

compromise between accuracy and computational effort needs to be always

achieved. Searching to shed light about this issue, we have systematically

studied by means of modern theoretical methods the non-covalent interac-

tions appearing in the case of the anthracene molecular crystal. These inter-

actions are known to drive the final supramolecular arrangement of samples,

the crystal growth preferred direction and the possible (if any) polymorphism

of molecular materials. It was found that the LPNO-pCCSD1a (and related)

method behaves sufficiently accurate for such applications, essentially cap-

turing the physics of weak interactions, as well as the reference CCSD(T)

method would expectedly do, but here at an order of magnitude (concerning

computational cost and resources) lower. The same statement about the ex-

cellent performance of the SCS-MP2 modification of MP2 can be also made,

with an additional decrease in cost by an order of magnitude, which might

thus hopefully pave the way towards more and more applications within the

field. The MP2 method could be soon considered as superseded, since ap-

parently there is no reason to further exploit the SCS-based variants. Inter-

estingly, the use of double-hybrid density functionals warrants to achieve the

desired accuracy once the dispersion correction (–D2, –D3 or –NL) is added,

without being affected of any erratic performance or of a large variation of

values after considering the different corrections. Therefore, we remain opti-

mistic about the alleged reputation of these methods as efficient, robust and
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accurate for current research and associated challenges when dealing with

non-covalent interactions between π-conjugated systems of large size.
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• Table 1. List of parameters entering into the dispersion correction for

all the methods employed.

• Table 2. Association energies (in kJ/mol) for interacting anthracene

dimers in the first and second coordination sphere, and corresponding

derived lattice or cohesive energies, at several theoretical levels.

25



Table 1:

Method s6 sr,6 s8 sr,8 b Ref.

B2-PLYP–D2 0.55 1.100 - - - [65]

mPW2-PLYP–D2 0.40 1.100 - - - [65]

B2-PLYP–D3 0.64 1.427 1.022 1.0 - [66]

PWPB95–D3 0.82 1.557 0.705 1.0 - [63]

B2-PLYP–NL - - - - 8.3 [71]
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Table 2:

SCS-MP2 B2-PLYP B2-PLYP–D2 B2-PLYP–D3 B2-PLYP–NL

Na (CBS) (def2-QZVP) (def2-QZVP) (def2-QZVP) (def2-QZVP)

1st-shell

(a/2,b/2,0) 4 –28.15 –10.28 –30.81 –30.97 –30.56

(a/2,b/2,c) 4 –5.48 –2.07 –7.60 –7.89 –7.22

(-a/2,b/2,c) 4 –0.59 0.07 –0.04 –0.07 –0.11

(0,0,c) 2 –2.48 –0.40 –4.66 –4.86 –3.99

2nd-shell

(a,0,0) 2 –0.82 –0.29 –1.12 –1.31 –1.64

(0,b,0) 2 –16.82 –8.68 –21.22 –22.08 –21.23

(a,b,0) 4 –0.88 –0.26 –0.66 –0.76 –0.88

(a,0,c) 2 –2.42 –0.71 –1.79 –2.11 –2.40

(-a,0,c) 2 –0.49 0.13 0.11 0.11 0.10

(0,b,c) 4 –0.76 –0.10 –0.32 –0.37 –0.43

(a,b,c) 4 –0.49 –0.13 –0.18 –0.26 –0.34

(-a,b,c) 4 –0.46 0.19 0.18 0.17 0.17

Cohesive energyb 96.68 34.58 107.58 110.54 107.91
a Number of symmetry-related pairs.
b Note that the counting method needs dividing the total result by two (see Ref. [84]).
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• Figure 1. Chemical structure of anthracene.

• Figure 2. Interacting dimers (extracted from the crystalline structure)

in the first and second coordination shell (from top to bottom and from

left to right): (a/2,b/2,0); (a/2,b/2,c); (-a/2,b/2,c); (c,0,0); (a,0,0);

(0,b,0); (a,b,0); (a,0,c); (-a,0,c); (0,b,c); (a,b,c); and (-a,b,c).

• Figure 3. Estimates of cohesive energies (kJ/mol) by different theoret-

ical methods, with some B2-PLYP variants (with the the def2-QZVP

basis set) and ab initio methods (at the complete basis set limit). The

experimental value (dashed red line) of 100.6 kJ/mol, and its average

experimental uncertainty (± 4.9 kJ/mol), are also included.

• Figure 4. Aggregate of anthracene molecules used to study 3-body

interactions.
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Figure 2.
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Figure 4.
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